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Preface

These notes were written based on a number of courses I taught over the years in the U.S.,
Greece and the U.K. They form the core material for an undergraduate course on Markov
chains in discrete time. There are, of course, dozens of good books on the topic. The
only new thing here is that I give emphasis to probabilistic methods as soon as possible.
Also, I introduce stationarity before even talking about state classification. I tried to make
everything as rigorous as possible while maintaining each step as accessible as possible. The
notes should be readable by someone who has taken a course in introductory (non-measure-
theoretic) probability.

The first part is about Markov chains and some applications. The second one is specifically
for simple random walks. Of course, one can argue that random walk calculations should
be done before the student is exposed to the Markov chain theory. I have tried both and
prefer the current ordering. At the end, I have a little mathematical appendix.

There notes are still incomplete. I plan to add a few more sections:

– On algorithms and simulation

– On criteria for positive recurrence

– On doing stuff with matrices

– On finance applications

– On a few more delicate computations for simple random walks

– Reshape the appendix

– Add more examples

These are things to come...

A few starred sections should be considered “advanced” and can be omitted at first reading.
I tried to put all terms in blue small capitals whenever they are first encountered. Also,
“important” formulae are placed inside a coloured box.

v



PART I: MARKOV CHAINS

1 Introduction

A Markov chain is a mathematical model of a random phenomenon evolving with time in a
way that the past affects the future only through the present. The “time” can be discrete
(i.e. the integers), continuous (i.e. the real numbers), or, more generally, a totally ordered
set. We are herein constrained by the Syllabus to discuss only discrete-time Markov chains.
In the module following this one you will study continuous-time chains.

In Mathematics, a phenomenon which evolves with time in a way that only the present
affects the future is called a dynamical system.

An example from Arithmetic of a dynamical system in discrete time is the one which
finds the greatest common divisor gcd(a, b) between two positive integers a and b. Recall
(from elementary school maths), that gcd(a, b) = gcd(r, b), where r = rem(a, b) is the
remainder of the division of a by b. By repeating the procedure, we end up with two
numbers, one of which is 0, and the other the greatest common divisor. Formally, we let
our “state” be a pair of integers (xn, yn), where xn ≥ yn, initialised by

x0 = max(a, b), y0 = min(a, b),

and evolving as

xn+1 = yn

yn+1 = rem(xn, yn), n = 0, 1, 2, . . .

In other words, there is a function F that takes the pair Xn = (xn, yn) into Xn+1 =
(xn+1, yn+1). The sequence of pairs thus produced, X0, X1, X2, . . . has the property that,
for any n, the future pairs Xn+1, Xn+2, . . . depend only on the pair Xn.

An example from Physics is provided by Newton’s laws of motion. Suppose that a
particle of mass m is moving under the action of a force F in a straight line. For instance,
the particle is suspended at the end of a spring and force is produced by extending the
spring and letting the system oscillate (Hooke’s law). Newton’s second law says that the
acceleration is proportional to the force:

mẍ = F.

Here, x = x(t) denotes the position of the particle at time t. Its velocity is ẋ = dx
dt , and its

acceleration is ẍ = d2x
dt2

. Assume that the force F depends only on the particle’s position
and velocity, i.e. F = f(x, ẋ). The state of the particle at time t is described by the pair
X(t) = (x(t), ẋ(t)). It is not hard to see that, for any t, the future trajectory (X(s), s ≥ t)
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can be completely specified by the current state X(t). In other words, past states are not
needed.

Markov chains generalise this concept of dependence of the future only on the present. The
generalisation takes us into the realm of Randomness. We will be dealing with random
variables, instead of deterministic objects.

Other examples of dynamical systems are the algorithms run, say, by the software in your
computer. Some of these algorithms are deterministic, but some are stochastic.1 They are
stochastic either because the problem they are solving is stochastic or because the problem
is deterministic but “very large” such as finding the determinant of a matrix with 10,000
rows and 10,000 columns or computing the integral of a complicated function of a large
number of variables. Indeed, an effective way for dealing with large problems is via the use
of randomness, i.e. via the use of the tools of Probability.

We will develop a theory that tells us how to describe, analyse, and use those mathematical
models which are called Markov chains. We will also see why they are useful and discuss
how they are applied. In addition, we will see what kind of questions we can ask and what
kind of answers we can hope for.

2 Examples of Markov chains

2.1 A mouse in a cage

A mouse is in a cage with two cells, 1 and 2, containing fresh and stinky cheese, respectively.
A mouse lives in the cage. A scientist’s job is to record the position of the mouse every
minute. When the mouse is in cell 1 at time n (minutes) then, at time n+1 it is either still
in 1 or has moved to 2.

1 2

Statistical observations lead the scientist to believe that the mouse moves from cell 1 to cell
2 with probability α = 0.05; it does so, regardless of where it was at earlier times. Similarly,
it moves from 2 to 1 with probability β = 0.99.

We can summarise this information by the transition diagram:

1Stochastic means random. An example of a random algorithm is the Monte Carlo method for the
approximate computation of the integral

∫ b

a
f(x)dx of a complicated function f : suppose that f is positive

and bounded below B. Choose a pair (X0, Y0) of random numbers, a ≤ X0 ≤ b, 0 ≤ Y0 ≤ B, uniformly.
Repeat with (Xn, Yn), for steps n = 1, 2, . . .. Each time count 1 if Yn < f(Xn) and 0 otherwise. Perform this
a large number N of times. Count the number of 1’s and divide by N . The resulting ratio is an approximation
of
∫ b

a
f(x)dx. Try this on the computer!
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α

β

1−α 1−β21

Another way to summarise the information is by the 2×2 transition probability matrix

P =

(
1− α α
β 1− β

)
=

(
0.95 0.05
0.99 0.01

)

Questions of interest:
1. How long does it take for the mouse, on the average, to move from cell 1 to cell 2?
2. How often is the mouse in room 1 ?
Question 1 has an easy, intuitive, answer: Since the mouse really tosses a coin to decide
whether to move or stay in a cell, the first time that the mouse will move from 1 to 2 will
have mean 1/α = 1/0.05 ≈ 20 minutes. (This is the mean of the binomial distribution with
parameter α.)

2.2 Bank account

The amount of money in Mr Baxter’s bank account evolves, from month to month, as
follows:

Xn+1 = max{Xn +Dn − Sn, 0}.
Here, Xn is the money (in pounds) at the beginning of the month, Dn is the money he
deposits, and Sn is the money he wants to spend. So if he wishes to spend more than what
is available, he can’t.

Assume that Dn, Sn, are random variables with distributions FD, FS , respectively. Assume
also that X0, D0, S0, D1, S1, D2, S2, . . . are independent random variables.

The information described above by the evolution of the account together with the distri-
butions for Dn and Sn leads to the (one-step) transition probability which is defined by:

px,y := P (Xn+1 = y|Xn = x), x, y = 0, 1, 2, . . .

We easily see that if y > 0 then

px,y = P (Dn − Sn = y − x) =
∞∑

z=0

P (Sn = z,Dn − Sn = y − x)

=
∞∑

z=0

P (Sn = z,Dn = z + y − x)

=
∞∑

z=0

P (Sn = z)P (Dn = z + y − x)

=
∞∑

z=0

FS(z)FD(z + y − x),
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something that, in principle, can be computed from FS and FD. Of course, if y = 0, we
have px,0 = 1−∑∞

y=1 px,y. The transition probability matrix is

P =




p0,0 p0,1 p0,2 · · ·
p1,0 p1,1 p1,2 · · ·
p2,0 p2,1 p2,2 · · ·
· · · · · · · · · · · ·




and is an infinite matrix.

Questions of interest:
1. Will Mr Baxter’s account grow, and if so, how fast?
2. How long will it take (if ever) for the bank account to empty?

We shall develop methods for answering these and other questions.

2.3 Simple random walk (drunkard’s walk)

Consider a completely drunk person who walks along a street. being drunk, he has no sense
of direction. So he may move forwards with equal probability that he moves backwards.

−2 −1 1 2 3 0

1/2

1/2 1/2 1/2 1/2 1/2

1/21/21/21/2

Questions:
1. If he starts from position 0, how often will he be visiting 0?
2. Are there any places which he will never visit?
3. Are there any places which he will visit infinitely many times?
4. If the pub is located in position 0 and his home in position 100, how long will it take
him, on the average, to go from the pub to home?

You might object to the assumption that the person is totally drunk and has no sense of
direction. We may want to model such a case by assigning probability p for the drunkard
to go one step to the right (and probability 1− p for him to go one step to the left).

2.4 Simple random walk (drunkard’s walk) in a city

Suppose that the drunkard is allowed to move in a city whose streets are laid down in a
square pattern:
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Salvador Dali (1922)
The Drunkard

Suppose that the drunkard moves from corner to corner. So he can move east, west, north
or south, and let’s say he’s completely drunk, so we assign probability 1/4 for each move.

We may again want to ask similar questions. But, observe, that since there are more degrees
of freedom now, there is clearly a higher chance that our man will be lost.

These things are, for now, mathematically imprecise, but they will become more precise in
the sequel.

2.5 Actuarial chains

A life insurance company wants to find out how much money to charge its clients. Clearly,
the company must have an idea on how long the clients will live. It proposes the following
model summarising the state of health of an individual on a monthly basis:

SH

D

0.10.01
0.8

0.3

Thus, there is probability pH,S = 0.3 that the person will become sick, given that he is
currently healthy, etc. Note that the diagram omits pH,H , and pS,S because pH,H = 1 −
pH,S − pH,D, and pS,S = 1 − pS,H − pS,D. Also, pD,D is omitted, the reason being that the
company does not believe that its clients are subject to resurrection; therefore, pD,D = 1.

Question: What is the distribution of the lifetime (in months) of a currently healthy indi-
vidual?

Clearly, the answer to this is crucial for the policy determination.
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3 The Markov property

3.1 Definition of the Markov property

Consider a (finite or infinite) sequence of random variables {Xn, n ∈ T}, where T is a subset
of the integers. We say that this sequence has the Markov property if,

for any n ∈ T,
the future process (Xm,m > n,m ∈ T)

is independent of
the past process (Xm,m < n,m ∈ T),

conditionally on Xn.

Sometimes we say that {Xn, n ∈ T} is Markov instead of saying that it has the Markov
property.

Usually, T = Z+ = {0, 1, 2, 3, . . .} or N = {1, 2, 3, . . .} or the set Z of all integers (positive,
zero, or negative). We focus almost exclusively to the first choice. So we will omit referring
to T explicitly, unless needed. We will also assume, almost exclusively (unless otherwise
said explicitly), that the Xn take values in some countable set S, called the state space.
The elements of S are frequently called states.

Since S is countable, it is customary to call (Xn) a Markov chain.

Let us now write the Markov property in an equivalent way.

Lemma 1. (Xn, n ∈ Z+) is Markov if and only if, for all n ∈ Z+ and all i0, . . . , in+1 ∈ S,

P (Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P (Xn+1 = in+1 | Xn = in).

Proof. If (Xn) is Markov then the claim holds by the conditional independence of Xn+1

and (X0, . . . , Xn−1) given Xn. On the other hand, if the claim holds, we can see that by
applying it several times we obtain

P (∀ k ∈ [n+ 1, n+m] Xk = ik | Xn = in, . . . , X0 = i0) =

P (∀ k ∈ [n+ 1, n+m] Xk = ik | Xn = in),

for any n,m and any choice of states i0, . . . , in+m, which precisely means that

(Xn+1, . . . , Xn+m) and (X0, . . . , Xn−1) are independent conditionally on Xn.

This is true for any n and m, and so future is independent of past given the present, viz.
the Markov property.

3.2 Transition probability and initial distribution

We therefore see that joint probabilities can be expressed as

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in)

= P (X0 = i0)P (X1 = i1 | X0 = i0)P (X2 = i2 | X1 = i1) · · ·P (Xn = in | Xn−1 = in−1),
(1)
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which means that the two functions

µ(i) := P (X0 = i) , i ∈ S

pi,j(n, n+ 1) := P (Xn+1 = j | Xn = i) , i, j ∈ S, n ≥ 0,

will specify all joint distributions2:

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in)

= µ(i0) pi0,i1(0, 1) pi1,i2(1, 2) · · · pin−1,in(n− 1, n).

The function µ(i) is called initial distribution. The function pi,j(n, n + 1) is called
transition probability from state i at time n to state j at time n+ 1. More generally,

pi,j(m,n) := P (Xn = j | Xm = i)

is the transition probability from state i at time m to state j time n ≥ m. Of course,

pi,j(n, n) = 1(i = j)

and, by (1),

pi,j(m,n) =
∑

i1∈S

· · ·
∑

in−1∈S

pi,i1(m,m+ 1) · · · pin−1,i(n− 1, n), (2)

which is reminiscent of matrix multiplication. Therefore, remembering a bit of Algebra, we
define, for each m ≤ n the matrix

P(m,n) := [pi,j(m,n)]i,j∈S ,

viz., a square matrix whose rows and columns are indexed by S (and this, of course, requires
some ordering on S) and whose entries are pi,j(m,n). If |S| = d then we have d×d matrices,
but if S is an infinite set, then the matrices are infinitely large.3 In this new notation, we
can write (2) as

P(m,n) = P(m,m+ 1)P(m+ 1,m+ 2) · · ·P(n− 1, n),

or as
P(m,n) = P(m, ℓ) P(ℓ, n) if m ≤ ℓ ≤ n,

something that can be called semigroup property or Chapman-Kolmogorov equa-
tion.

3.3 Time-homogeneous chains

We will specialise to the case of time-homogeneous chains, which, by definition, means
that

the transition probabilities pi,j(n, n+ 1) do not depend on n ,

2And, by a result in Probability, all probabilities of events associated with the Markov chain
3This causes some analytical difficulties. But we will circumvent them by using Probability only.
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and therefore we can simply write

pi,j(n, n+ 1) =: pi,j ,

and call pi,j the (one-step) transition probability from state i to state j, while

P = [pi,j ]i,j∈S

is called the (one-step) transition probability matrix or, simply, transition ma-
trix. Then

P(m,n) = P× P× · · · · · · × P︸ ︷︷ ︸
n−m times

= Pn−m,

for all m ≤ n, and the semigroup property is now even more obvious because

Pa+b = PaPb,

for all integers a, b ≥ 0.

From now on, unless otherwise specified, when we say “Markov chain” we will mean “time-
homogeneous Markov chain”.

The matrix notation is useful. For example, let

µn := [µn(i) = P (Xn = i)]i∈S

be the distribution of Xn, arranged in a row vector. Then we have

µn = µ0P
n , (3)

as follows from (1) and the definition of P.

Notational conventions

Unit mass. The distribution that assigns value 1 to a state i and 0 to all other states is
denoted by δi. In other words,

δi(j) :=

{
1, if j = i

0, otherwise.

We call δi the unit mass at i. It corresponds, of course, to picking state i with probability
1. Notice that any probability distribution on S can be written as a linear combination of
unit masses. For example, if µ assigns probability p to state i1 and 1− p to state i2, then

µ = pδi1 + (1− p)δi2 .

Starting from a specific state i. A useful convention used for time-homogeneous chains
is to write

Pi(A) := P (A | X0 = i).

Thus Pi is the law of the chain when the initial distribution is δi. Similarly, if Y is a real
random variable, we write

EiY := E(Y | X0 = i) =
∑

y

yP (Y = y | X0 = i) =
∑

y

yPi(Y = y).

8



4 Stationarity

We say that the process (Xn, n = 0, 1, . . .) is stationary if it has the same law as (Xn, n =
m,m+ 1, . . .), for any m ∈ Z+.

In other words, the law of a stationary process does not depend on the origin of time.

Clearly, a sequence of i.i.d. random variables provides an example of a stationary process.
We now investigate when a Markov chain is stationary. To provide motivation and intuition,
let us look at the following example:

Example: Motion on a polygon. Consider a canonical heptagon and let a bug move
on its vertices. If at time n the bug is on a vertex, then, at time n + 1 it moves to one of
the adjacent vertices with equal probability.

It should be clear that if initially place the bug at random on one of the vertices, i.e. selecting
a vertex with probability 1/7, then, at any point of time n, the distribution of the bug will
still be the same. Hence the uniform probability distribution is stationary.

Example: the Ehrenfest chain. This is a model of gas distributed between two identical
communicating chambers. Imagine there are N molecules of gas (where N is a large number,
say N = 1025) in a metallic chamber with a separator in the middle, dividing it into two
identical rooms. The gas is placed partly in room 1 and partly in room 2. Then a hole
is opened in the separator and we watch what happens as the molecules diffuse between
the two rooms. It is clear, that if room 1 contains more gas than room 2 then there is a
tendency to observe net motion from 1 to 2. We can model this by saying that the chance
that a molecule move from room 1 to room 2 is proportional to the number of molecules in
room 1, and vice versa. Let Xn be the number of molecules in room 1 at time n. Then

pi,i+1 = P (Xn+1 = i+ 1 | Xn = i) =
N − i

N

pi,i−1 = P (Xn+1 = i− 1 | Xn = i) =
i

N
.

If we start the chain with X0 = N (all molecules in room 1) then the process (Xn, n ≥ 0)
will not be stationary: indeed, for a while we will be able to tell how long ago the process
started, as it takes some time before the molecules diffuse from room to room. The question
then is: can we distribute the initial number of molecules in a way that the origin of time
plays no role? One guess might be to take X0 = N/2. But this will not work, because it
is impossible for the number of molecules to remain constant at all times. On the average,
we indeed expect that we have N/2 molecules in each room. Another guess then is: Place
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each molecule at random either in room 1 or in room 2. If we do so, then the number of
molecules in room 1 will be i with probability

π(i) =

(
N

i

)
2−N , 0 ≤ i ≤ N,

(a binomial distribution). We can now verify that if P (X0 = i) = π(i) then P (X1 = i) = π(i)
and, hence, P (Xn = i) = π(i) for all n. Indeed,

P (X1 = i) =
∑

j

P (X0 = j)pj,i

= P (X0 = i− 1)pi−1,i + P (X0 = i+ 1)pi+1,i

= π(i− 1)pi−1,i + π(i+ 1)pi+1,i

=

(
N

i− 1

)
2−N

N − i+ 1

N
+

(
N

i+ 1

)
2−N

i+ 1

N
= · · · = π(i).

(The dots signify some missing algebra, which you should go through by yourselves.)

The example above is typical: We found (by guessing!) some distribution π with the property
that if X0 has distribution π then every other Xn also has distribution π. If we can do so,
then we have created a stationary Markov chain.

But we need to prove this.

Lemma 2. A Markov chain (Xn, n ∈ Z+) is stationary if and only if it is time-homogeneous
and Xn has the same distribution as Xℓ for all n and ℓ.

Proof. The only if part is obvious. For the if part, use (1) to see that

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in) =

P (Xm = i0, Xm+1 = i1, Xm+2 = i2, . . . , Xm+n = in),

for all m ≥ 0 and i0, . . . , in ∈ S.

In other words, a Markov chain is stationary if and only if the distribution of Xn does not
change with n. Since, by (3), the distribution µn at time n is related to the distribution
at time 0 by µn = µ0P

n, we see that the Markov chain is stationary if and only if the
distribution µ0 is chosen so that

µ0 = µ0P.

Changing notation, we are led to consider:

The stationarity problem: Given [pij ], find those distributions π such that

πP = π. (4)

Such a π is called . stationary or invariant distribution. The equations (4) are called

balance equations.
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Eigenvector interpretation: The equation π = πP says that π is a left eigenvector of
the matrix P with eigenvalue 1. In addition to that, π must be a probability:

∑

i∈S

π(i) = 1.

The matrix P has the eigenvalue 1 always because
∑

j∈S pi,j = 1, which, in matrix notation,
can be written as P1 = 1, where 1 is a column whose entries are all 1, and this means that
1 is a (right) eigenvector of P corresponding to the eigenvalue 1.

Example: card shuffling. Consider a deck of d = 52 cards and shuffle them in the
following (stupid) way: pick two cards at random and swap their positions. Keep doing it
continuously. We can describe this by a Markov chain which takes values in the set Sd of d!
permutations of {1, . . . , d}. Thus, each x ∈ Sd is of the form x = (x1, . . . , xd), where all the
xi are distinct. It is easy to see that the stationary distribution is uniform:

π(x) =
1

d!
, x ∈ Sd.

Example: waiting for a bus. After bus arrives at a bus stop, the next one will arrive
in i minutes with probability p(i), i = 1, 2 . . .. The times between successive buses are i.i.d.
random variables. Consider the following process: At time n (measured in minutes) let
Xn be the time till the arrival of the next bus. Then (Xn, n ≥ 0) is a Markov chain with
transition probabilities

pi+1,i = 1, if i > 0

p1,i = p(i), i ∈ N.

The state space is S = N = {1, 2, . . .}. To find the stationary distribution, write the
equations (4):

π(i) =
∑

j≥1

π(j)pj,i = π(0)p(i) + π(i+ 1), i ≥ 1.

These can easily be solved:

π(i) = π(1)
∑

j≥i

p(j), i ≥ 0.

To compute π(1), we use the normalisation condition
∑

i≥1 π(i) = 1, which gives

π(1) =

(∑

i≥1

∑

j≥i

p(j)

)−1

.

But here, we must be careful. Who tells us that the sum inside the parentheses is finite? If
the sum is infinite, then we run into trouble: indeed, π(1) will be zero, and so each π(i) will
be zero. This means that the solution to the balance equations is identically zero, which in
turn means that the normalisation condition cannot be satisfied. So we must make an:

ASSUMPTION:
∑

i≥1

∑
j≥i p(j) <∞.

11



Let us work out the sum to see if this assumption can be expressed in more “physical”
terms: ∑

i≥1

∑

j≥i

p(j) =
∑

j≥1

∑

i≥1

1(j ≥ i)p(j) =
∑

j≥1

jp(j),

and the latter sum is the expected time between two successive bus arrivals. So our assump-
tion really means:

ASSUMPTION ⇐⇒ the expected time between successive bus arrivals is finite.
So, what we have really shown is that this assumption is a necessary and sufficient condition
for the existence and uniqueness of a stationary distribution.

Example: bread kneading.* (This is slightly beyond the scope of these lectures and can be
omitted.) Consider an infinite binary vector

ξ = (ξ1, ξ2, . . .),

i.e. ξi ∈ {0, 1} for all i, and transform it according to the following rule:

if ξ1 = 0 then shift to the left to obtain (ξ2, ξ3, . . .);
if ξ1 = 1 then shift to the left and flip all bits to obtain (1− ξ2, 1− ξ3, . . .).

We have thus defined a mapping ϕ from binary vectors into binary vectors. The Markov chain is
obtained by applying the mapping ϕ again and again.

ξ(n+ 1) = ϕ(ξ(n)).

Here ξ(n) = (ξ1(n), ξ2(n), . . .) is the state at time n. Note that there is nothing random in the
transition mechanism of this chain! The only way to instill randomness is by choosing the initial
state at random. So let us do so. You can check that , for any n = 0, 1, 2, . . ., any r = 1, 2, . . ., and
any ε1, . . . , εr ∈ {0, 1},

P (ξ1(n+ 1) = ε1, . . . , ξr(n+ 1) = εr)

= P (ξ1(n) = 0, ξ2(n) = ε1, . . . , ξr+1(n) = εr)

+ P (ξ1(n) = 1, ξ2(n) = 1− ε1, . . . , ξr+1(n) = 1− εr). (5)

We can show that if we start with the ξr(0), r = 1, 2, . . ., i.i.d. with

P (ξr(0) = 1) = P (ξr(0) = 0) = 1/2

then the same will be true for all n.

P (ξr(n) = 1) = P (ξr(n) = 0) = 1/2

The proof is by induction: if the ξ1(n), ξ2(n), . . . are i.i.d. with P (ξr(n) = 1) = P (ξr(n) = 0) = 1/2

then, from (5), the same is true at n+ 1. Hence choosing the initial state at random in this manner

results in a stationary Markov chain.

Remarks: This is not a Markov chain with countably many states. So it goes beyond our theory. But

to even think about it will give you some strength. As for the name of the chain (bread kneading)

it can be justified as follows: to each ξ there corresponds a number x between 0 and 1 because ξ

can be seen as the binary representation of the real number x. If ξ1 = 0 then x < 1/2 and our

shifting rule maps x into 2x. If ξ1 = 1 then x ≥ 1/2, and the rule maps x into 2(1 − x). But the

function f(x) = min(2x, 2(1 − x)), applied to the interval [0, 1] (think of [0, 1] as a flexible bread

dough arranged in a long rod) kneads the bread for it stretches it till it doubles in length and then

folds it back in the middle.

12



Note on terminology: When a Markov chain is stationary we refer to it as being in
steady-state.

4.1 Finding a stationary distribution

As explained above, a stationary distribution π satisfies

π = πP (balance equations)

π1 = 1 (normalisation condition).

In other words,

π(i) =
∑

j∈S

π(j)pj,i, i ∈ S,

∑

j∈S

π(j) = 1.

If the state space has d states, then the above are d + 1 equations. But we only have d
unknowns. This is OK, because the first d equations are linearly dependent: the sum of
both sides equals 1, therefore one of them is always redundant.

Writing the equations in this form is not always the best thing to do. Instead of eliminating
equations, we introduce more, expecting to be able to choose, amongst them, a set of d
linearly independent equations which can be more easily solved. The convenience is often
suggested by the topological structure of the chain, as we will see in examples.

Let us introduce the notion of “probability flow” from a set A of states to its complement
under a distribution π:

F (A,Ac) :=
∑

i∈A

∑

j∈Ac

π(i)pi,j .

Think of π(i)pi,j as a “current” flowing from i to j. So F (A,Ac) is the total current from
A to Ac. We have:

Proposition 1. π is a stationary distribution if and only if π1 = 1 and

F (A,Ac) = F (Ac, A),

for all A ⊂ S.

Proof. If the latter condition holds, then choose A = {i} and see that you obtain the balance
equations. Conversely, suppose that the balance equations hold. Fix a set A ⊂ S and write

π(i) =
∑

j∈S

π(j)pj,i =
∑

j∈A

π(j)pj,i +
∑

j∈Ac

π(j)pj,i

Multiply π(i) by
∑

j∈S pi,j (which equals 1):

π(i)
∑

j∈S

pi,j =
∑

j∈A

π(j)pj,i +
∑

j∈Ac

π(j)pj,i

13



Now split the left sum also:

∑

j∈A

π(i)pi,j +
∑

j∈Ac

π(i)pi,j =
∑

j∈A

π(j)pj,i +
∑

j∈Ac

π(j)pj,i

This is true for all i ∈ S. Summing over i ∈ A, we see that the first term on the left cancels
with the first on the right, while the remaining two terms give the equality we seek.

AcA

AcF(    ,   )A

AcF(   ,     )A

Schematic representation of the flow balance relations.

The extra degree of freedom provided by the last result, gives us flexibility. One can ask
how to choose a minimal complete set of linearly independent equations, but we shall not
do this here. Instead, here is an example:

Example: Consider the 2-state Markov chain with p12 = α, p21 = β. (Consequently,
p11 = 1− α, p22 = 1− β.) Assume 0 < α, β < 1. We have

π(1)α = π(2)β,

which immediately tells us that π(1) is proportional to β and π(2) proportional to α:

π(1) = cβ, π(2) = cα.

The constant c is found from
π(1) + π(2) = 1.

That is,

π(1) =
β

α+ β
, π(2) =

α

α+ β
.

If we take α = 0.05, β = 0.99 (as in the mouse example), we find π(1) = 0.99
1.04 ≈ 0.952,

π(2) = 0.05
1.04 ≈ 0.048. Thus, in steady state, the mouse spends only 95.2% of the time in

room 1, and 4.8% of the time in room 2.

Example: a walk with a barrier. Consider the following chain, where p+ q = 1:

0     1     2     3     4     . . .
p

q

p p

q q q

p

q

The balance equations are:

π(i) = pπ(i− 1) + qπ(i+ 1), i = 1, 2, 3, . . .

14



But we can make them simpler by choosing A = {0, 1, . . . , i− 1}. If i ≥ 1 we have

F (A,Ac) = π(i− 1)p = π(i)q = F (Ac, A).

These are much simpler than the previous ones. In fact, we can solve them immediately.
For i ≥ 1,

π(i) = (p/q)iπ(0).

Does this provide a stationary distribution? Yes, provided that
∑∞

i=0 π(i) = 1. This is
possible if and only if p < q, i.e. p < 1/2. (If p ≥ 1/2 there is no stationary distribution.)

5 Topological structure

5.1 The graph of a chain

This refers to the structure of the process that does not depend on the exact values of the
transition probabilities but only on which of them are positive. This is often cast in terms of
a digraph (directed graph), i.e. a pair (S,E) where S is the state space and E ⊂ S×S
defined by

(i, j) ∈ E ⇐⇒ pi,j > 0.

In graph-theoretic terminology, S is a set of vertices, and E a set of directed edges. We can
frequently (but not always) draw the graph (as we did in examples) and visualise the set E
as the set of all edges with arrows.

5.2 The relation “leads to”

We say that a state i leads to state j if, starting from i, the chain will visit j at some finite
time. In other words,

i leads to j (written as i j) ⇐⇒ Pi(∃n ≥ 0 Xn = j) > 0.

Notice that this relation is reflexive):

∀i ∈ S i i

Furthermore:

Theorem 1. The following are equivalent:

(i) i j

(ii) pi,i1pi1,i2 · · · pin−1,j > 0 for some n ∈ N and some states i1, . . . , in−1.

(iii) Pi(Xn = j) > 0 for some n ≥ 0.

Proof. If i = j there is nothing to prove. So assume i 6= j.
• Suppose that i j. Since

0 < Pi(∃n ≥ 0 Xn = j) ≤
∑

n≥0

Pi(Xn = j),
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the sum on the right must have a nonzero term. In other words, (iii) holds.
• Suppose that (ii) holds. We have

Pi(Xn = j) =
∑

i1,...,in−1

pi,i1pi1,i2 · · · pin−1,j ,

where the sum extends over all possible choices of states in S. By assumption, the sum
contains a nonzero term. Hence Pi(Xn = j) > 0, and so (iii) holds.
• Suppose now that (iii) holds. Look at the last display again. Since Pi(Xn = j) > 0, we
have that the sum is also positive and so one of its terms is positive, meaning that (ii) holds.
In addition, (i) holds, because

Pi(Xn = j) ≤ Pi(∃m ≥ 0 Xm = j).

Corollary 1. The relation  is transitive: If i j and j  k then i k.

5.3 The relation “communicates with”

Define next the relation

i communicates with j (written as i! j) ⇐⇒ i j and j  i.

Obviously, this is symmetric (i! j ⇐⇒ j! i).

Corollary 2. The relation! is an equivalence relation.

Proof. Equivalence relation means that it is symmetric, reflexive and transitive. We just
observed it is symmetric. It is reflexive and transitive because  is so.

Just as any equivalence relation, it partitions S into equivalence classes known as com-
municating classes. The communicating class corresponding to the state i is, by defini-
tion, the set of all states that communicate with i:

[i] := {j ∈ S : j! i}. (6)

So, by definition, [i] = [j] if and only if i ! j. Two communicating classes are either
identical or completely disjoint.

1 2 3 4 5

6

In the example of the figure, we see that there are four communicating classes:

{1}, {2, 3}, {4, 5}, {6}.

The first two classes differ from the last two in character. The class {4, 5} is closed: if the chain

goes in there then it never moves out of it. However, the class {2, 3} is not closed.
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More generally, we say that a set of states C ⊂ S is closed if

∑

j∈C

pi,j = 1, for all i ∈ C.

Lemma 3. A communicating class C is closed if and only if the following holds:
If i ∈ C and if i j then j ∈ C.

Proof. Suppose first that C is a closed communicating class. Suppose that i j. We then
can find states i1, . . . , in−1 such that pi,i1pi1,i2 · · · pin−1,j > 0. Thus, pi,i1 > 0. Since i ∈ C,
and C is closed, we have i1 ∈ C. Similarly, pi1,i2 > 0, and so i2 ∈ C, and so on, we conclude
that j ∈ C. The converse is left as an exercise.

Closed communicating classes are particularly important because they decompose the chain
into smaller, more manageable, parts.

If all states communicate with all others, then the chain (or, more precisely, its transition
matrix P) is called irreducible. In graph terms, starting from any state, we can reach any
other state. In other words still, the state space S is a closed communicating class.

If a state i is such that pi,i = 1 then we say that i is an absorbing state. To put it
otherwise, the single-element set {i} is a closed communicating class.

Note: If we consider a Markov chain with transition matrix P and fix n ∈ N then the
Markov chain with transition matrix Pn has exactly the same closed communicating classes.
Why?

A state i is essential if it belongs to a closed communicating class. Otherwise, the state
is inessential.

Note: An inessential state i is such that there exists a state j such that i j but j 6 i.

1C C C

C
C

2
3

4
5

The general structure of a Markov chain is indicated in this figure. Note that

there can be no arrows between closed communicating classes. The classes

C4, C5 in the figure above are closed communicating classes. The communicat-

ing classes C1, C2, C3 are not closed. There can be arrows between two non-

closed communicating classes but they are always in the same direction.

A general Markov chain can have an infinite number of communicating classes.

If we remove the non-closed communicating classes then we obtain a collection of disjoint
closed communicating classes with no arrows between them.
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5.4 Period

Consider the following chain:

1 2

34

The chain is irreducible, i.e. all states form a single closed communicating class. Notice
however, that we can further simplify the behaviour of the chain by noticing that if the
chain is in the set C1 = {1, 3} at some point of time then, it will move to the set C2 = {2, 4}
at the next step and vice versa. The chain alternates between the two sets. So if the chain
starts with X0 ∈ C1 then we know that X1 ∈ C2, X2 ∈ C1, X3 ∈ C2, X4 ∈ C1, . . . We say
that the chain has period 2. (Can you find an example of a chain with period 3?)

We will now give the definition of the period of a state of an arbitrary chain.

Let us denote by p
(n)
ij the entries of Pn. Since

Pm+n = PmPn,

we have
p
(m+n)
ij ≥ p

(m)
ik p

(n)
kj , for all m,n ≥ 0, i, j ∈ S.

So p
(2n)
ii ≥

(
p
(n)
ii

)2
, and, more generally,

p
(ℓn)
ii ≥

(
p
(n)
ii

)ℓ
, ℓ ∈ N.

Therefore if p
(n)
ii > 0 then p

(ℓn)
ii > 0 for all ℓ ∈ N. Another way to say this is:

If the integer n divides m (denote this by: n | m) and if p
(n)
ii > 0 then p

(m)
ii > 0.

So, whether it is possible to return to i in m steps can be decided by one of the integer
divisors of m.

The period of an essential state is defined as the greatest common divisor of all natural
numbers n with such that it is possible to return to i in n steps:

d(i) := gcd{n ∈ N : Pi(Xn = i) > 0} .

A state i is called aperiodic if d(i) = 1. The period of an inessential state is not defined.

Theorem 2 (the period is a class property). If i! j then d(i) = d(j).

Proof. Consider two distinct essential states i, j. Let Di = {n ∈ N : p
(n)
ii > 0}, Dj = {n ∈

N : p
(n)
jj > 0}, d(i) = gcdDi, d(j) = gcdDj . If i  j there is α ∈ N with p

(α)
ij > 0 and if
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j  i there is β ∈ N with p
(β)
ji > 0. So p

(α+β)
jj ≥ p

(α)
ij p

(β)
ji > 0, showing that α + β ∈ Dj .

Therefore
d(j) | α+ β.

Now let n ∈ Di. Then p
(n)
ii > 0 and so p

(α+n+β)
jj ≥ p

(α)
ij p

(n)
ii p

(β)
ji > 0, showing that α+n+β ∈

Dj . Therefore
d(j) | α+ β + n for all n ∈ Di.

If a number divides two other numbers then it also divides their difference. From the last
two displays we get

d(j) | n for all n ∈ Di.

So d(j) is a divisor of all elements of Di. Since d(i) is the greatest common divisor we have
d(i) ≥ d(j) (in fact, d(j) | d(i)). Arguing symmetrically, we obtain d(i) ≤ d(j) as well. So
d(i) = d(j).

Theorem 3. If i is an aperiodic state then there exists n0 such that p
(n)
ii > 0 for all n ≥ n0.

Proof. Pick n2, n1 ∈ Di such that n2 − n1 = 1. Let n be sufficiently large. Divide n by n1
to obtain n = qn1 + r, where the remainder r ≤ n1 − 1. Therefore n = qn1 + r(n2 − n1) =
(q− r)n1+ rn2. Because n is sufficiently large, q− r > 0. Since n1, n2 ∈ Di, we have n ∈ Di

as well.

Of particular interest, are irreducible chains, i.e. chains where, as defined earlier, all states
communicate with one another. An irreducible chain has period d if one (and hence all) of
the states have period d. In particular, if d = 1, the chain is called aperiodic.

Corollary 3. An irreducible chain with finitely many states is aperiodic if and only if there

exists an n such that p
(n)
ij > 0 for all i, j ∈ S.

More generally, if an irreducible chain has period d then we can decompose the state space
into d sets C0, C1, . . . , Cd−1 such that the chain moves cyclically between them.

This figure shows the internal structure of a closed communicating class with period d = 4.

Formally, this is the content of the following theorem.

Theorem 4. Consider an irreducible chain with period d. Then we can uniquely partition
the state space S into d disjoint subsets C0, C1, . . . , Cd−1 such that

∑

j∈Cr+1

pij = 1, i ∈ Cr, r = 0, 1, . . . , d− 1.

(Here Cd := C0.)
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Proof. Define the relation

i
d
! j ⇐⇒ p

(nd)
ij > 0 for some n ≥ 0.

Notice that this is an equivalence relation. Hence it partitions the state space S into d
disjoint equivalence classes. We show that these classes satisfy what we need. Assume
d > 1. Pick a state i0 and let C0 be its equivalence class (i.e the set of states j such that

i
d
! j). Then pick i1 such that pi0i1 > 0. Let C1 be the equivalence class of i1. Continue

in this manner and define states

i0, i1, . . . , id−1

with corresponding classes
C0, C1, . . . , Cd−1.

It is easy to see that if we continue and pick a further state id with pid−1,id > 0, then,
necessarily, id ∈ C0. We now show that if i belongs to one of these classes and if pij > 0
then, necessarily, j belongs to the next class. Take, for example, i ∈ C0. Suppose pij > 0
but j 6∈ C1 but, say, j ∈ C2. Consider the path

i0 → i→ j → i2 → i3 → · · · → id → i0.

Such a path is possible because of the choice of the i0, i1, . . ., and by the assumptions that

i0
d
! i, i2

d
! j. The existence of such a path implies that it is possible to go from i0 to

i0 in a number of steps which is an integer multiple of d− 1 (why?), which contradicts the
definition of d.

6 Hitting times and first-step analysis

Consider a Markov chain with transition probability matrix P. We define the hitting time4

of a set of states A by
TA := inf{n ≥ 0 : Xn ∈ A}.

We are interested in deriving formulae for the probability that this time is finite as well as
the expectation of this time.

We use a method that is based upon considering what the Markov chain does at time 1,
i.e. after it takes one step from its current position; that is why we call it “first-step
analysis”.

As an example, consider the chain

0 1 2

11

1/6

1/3

1/2
4We shall later consider the time inf{n ≥ 1 : Xn ∈ A} which differs from TA simply by considering n ≥ 1

instead of n ≥ 0. If X0 6∈ A the two times coincide. We avoid excessive notation by using the same letter for
both. The reader is warned to be alert as to which of the two variables we are considering at each time.
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It is clear that P1(T0 <∞) < 1, because the chain may end up in state 2. But what exactly
is this probability equal to?

To answer this in its generality, fix a set of states A, and define

ϕ(i) := Pi(TA <∞).

We then have:

Theorem 5. The function ϕ(i) satisfies

ϕ(i) = 1, i ∈ A

ϕ(i) =
∑

j∈S

pijϕ(j), i 6∈ A.

Furthermore, if ϕ′(i) is any other solution of these equations then ϕ′(i) ≥ ϕ(i) for all i ∈ S.

Proof. If i ∈ A then TA = 0, and so ϕ(i) = 1. If i 6∈ A, then TA ≥ 1. So TA = 1 + T ′
A,

(where T ′
A is the remaining time until A is hit). We first have

Pi(TA <∞) =
∑

j∈S

Pi(1 + T ′
A <∞|X1 = j)Pi(X1 = j) =

∑

j∈S

Pi(T
′
A <∞|X1 = j)pij

But observe that the random variable T ′
A is a function of the future after time 1 (i.e. a

function of X1, X2, . . .). Therefore, the event T ′
A is independent of X0, conditionally on X1.

Hence:
P (T ′

A <∞|X1 = j,X0 = i) = P (T ′
A <∞|X1 = j).

But the Markov chain is homogeneous, which implies that

P (T ′
A <∞|X1 = j) = P (TA <∞|X0 = j) = Pj(TA <∞) = ϕ(j).

Combining the above, we have

Pi(TA <∞) =
∑

j∈S

ϕ(j)pij ,

as needed. For the second part of the proof, let ϕ′(i) be another solution. Then

ϕ′(i) =
∑

j∈A

pij +
∑

j 6∈A

pijϕ
′(j).

By self-feeding this equation, we have

ϕ′(i) =
∑

j∈A

pij +
∑

j 6∈A

pij


∑

k∈A

pjk +
∑

k 6∈A

pjkϕ
′(k)




=
∑

j∈A

pij +
∑

j 6∈A

pij
∑

k∈A

pjk +
∑

j 6∈A

pij
∑

k 6∈A

pjkϕ
′(k)
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We recognise that the first term equals Pi(TA = 1), the second equals Pi(TA = 2), so the
first two terms together equal Pi(TA ≤ 2). By omitting the last term we obtain ϕ′(i) ≥
Pi(TA ≤ 2). By continuing self-feeding the above equation n times, we obtain

ϕ′(i) ≥ Pi(TA ≤ n).

Letting n→ ∞, we obtain
ϕ′(i) ≥ Pi(TA <∞) = ϕ(i).

Example: In the example of the previous figure, we choose A = {0}, the set that contains
only state 0. We let ϕ(i) = Pi(T0 < ∞), i = 0, 1, 2. We immediately have ϕ(0) = 1, and
ϕ(2) = 0. (If the chain starts from 0 it takes no time to hit 0; if the chain starts from 2 it
will never hit 0.) As for ϕ(1), we have

ϕ(1) =
1

3
ϕ(1) +

1

2
ϕ(0),

so ϕ(1) = 3/4.
∼◦∼◦∼◦∼◦∼◦∼◦∼◦∼

Next consider the mean time (mean number of steps) until the set A is hit for the first time.

ψ(i) := EiTA.

We have:

Theorem 6. The function ψ(i) satisfies

ψ(i) = 0, i ∈ A

ψ(i) = 1 +
∑

j 6∈A

pijψ(j), i 6∈ A.

Furthermore, if ψ′(i) is any other solution of these equations then ψ′(i) ≥ ψ(i) for all i ∈ S.

Proof. Start the chain from i. If i ∈ A then, obviously, TA = 0 and so ψ(i) := EiTA = 0. If
i 6∈ A, then TA = 1 + T ′

A, as above. Therefore,

EiTA = 1 + EiT
′
A = 1 +

∑

j∈S

pijEjTA = 1 +
∑

j 6∈A

pijψ(j),

which is the second of the equations. The second part of the proof is omitted.

Example: Continuing the previous example, let A = {0, 2}, and let ψ(i) = EiTA. Clearly,
ψ(0) = ψ(2) = 0, because it takes no time to hit A if the chain starts from A. On the other
hand,

ψ(1) = 1 +
1

3
ψ(1),
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which gives ψ(1) = 3/2. (This should have been obvious from the start, because the under-
lying experiment is the flipping of a coin with “success” probability 2/3, therefore the mean
number of flips until the first success is 3/2.)

∼◦∼◦∼◦∼◦∼◦∼◦∼◦∼
Now let us consider two hitting times TA, TB for two disjoint sets of states A,B. We may
ask to find the probabilities

ϕAB(i) = Pi(TA < TB).

It should be clear that the equations satisfied are:

ϕAB(i) = 1, i ∈ A

ϕAB(i) = 0, i ∈ B

ϕAB(i) =
∑

j∈A

pijϕAB(j), otherwise.

Furthermore, ϕAB is the minimal solution to these equations.
∼◦∼◦∼◦∼◦∼◦∼◦∼◦∼

As yet another application of the first-step analysis method, consider the following situation:
Every time the state is x a reward f(x) is earned. This happens up to the first hitting time
TA first hitting time of the set A. The total reward is f(X0) + f(X1) + · · · + f(XTA). We
are interested in the mean total reward

h(x) := Ex

TA∑

n=0

f(Xn).

Clearly,
h(x) = f(x), x ∈ A,

because when X0 ∈ A then T0 = 0 and so the total reward is f(X0). Next, if x 6∈ A, as
argued earlier,

TA = 1 + T ′
A,

where T ′
A is the remaining time, after one step, until set A is reached. Then

h(x) = Ex

1+T ′

A∑

n=0

f(Xn)

= f(x) + Ex

1+T ′

A∑

n=1

f(Xn)

= f(x) + Ex

T ′

A∑

n=0

f(Xn+1),

where, in the last sum, we just changed index from n to n + 1. Now the last sum is a
function of the future after time 1, i.e. of the random variables X1, X2, . . .. Hence, by the
Markov property,

Ex

T ′

A∑

n=0

f(Xn+1) =
∑

y∈S

pxyh(y).
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Thus, the set of equations satisfied by h, are

h(x) = 0, x ∈ A

h(x) = f(x) +
∑

y∈S

pxyh(y), x 6∈ A.

You can remember the latter ones by thinking that the expectecd total reward equals the
immediate reward f(x) plus the expected remaining reward.

Example: A thief enters sneaks in the following house and moves around the rooms,
collecting “rewards”: when in room i, he collects i pounds, for i = 1, 2, 3, unless he is in
room 4, in which case he dies immediately.

1

4

2

3

The question is to compute the average total reward, if he starts from room 2, until he dies
in room 4. (Sooner or later, he will die; why?) If we let h(i) be the average total reward if
he starts from room i, we have

h(4) = 0

h(1) = 1 +
1

2
h(2)

h(3) = 3 +
1

2
h(2)

h(2) = 2 +
1

2
h(1) +

1

2
h(3).

We solve and find h(2) = 8. (Also, h(1) = 5, h(3) = 7.)

7 Gambler’s ruin

Consider the simplest game of chance of tossing an (possibly unfair) coin repeatedly and
independently. Let p the probability of heads and q = 1− p that of tails. If heads come up
then you win £1 per pound of stake. So, if just before the k-th toss you decide to bet Yk
pounds then after the realisation of the toss you will have earned Yk pounds if heads came
up or lost Yk pounds if tails appeared. If ξk is the outcome of the k-th toss (where ξk = +1
means heads and ξk = −1 means tails), your fortune after the n-th toss is

Xn = X0 +
n∑

k=1

Ykξk.

The successive stakes (Yk, k ∈ N) form the strategy of the gambler. Clearly, no
gambler is assumed to have any information about the outcome of the upcoming toss, so
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if the gambler wants to have a strategy at all, she must base it on whatever outcomes
have appeared thus far. In other words, Yk cannot depend on ξk. It can only depend on
ξ1, . . . , ξk−1 and–as is often the case in practice–on other considerations of e.g. astrological
nature.

We wish to consider the problem of finding the probability that the gambler will never lose
her money.

This has profound actuarial applications: An insurance company must make sure that
the strategies it employs are such that–at least–the company will not go bankrupt (and, in
addition, it will make enormous profits). The difference between the gambler’s ruin problem
for a company and that for a mere mortal is that, in the first case, the company has control
over the probability p.

Let us consider a concrete problem. The gambler starts with X0 = x pounds and has a
target: To make b pounds (b > x). She will stop playing if her money fall below a (a < x).

To solve the problem, in simplest case Yk = 1 for all k, is our next goal.

We use the notation Px (respectively, Ex) for the probability (respectively, expectation)
under the initial condition X0 = x. Consider the hitting time of state y:

Ty := inf{n ≥ 0 : Xn = y}.

We are clearly dealing with a Markov chain in the state space

{a, a+ 1, a+ 2, . . . , b− 1, b}

with transition probabilities

pi,i+1 = p, pi,i−1 = q = 1− p, a < i < b,

and where the states a, b are absorbing.

Theorem 7. Consider a gambler playing a simple coin tossing game, as described above,
betting £1 at each integer time against a coin which has P (heads) = p, P (tails) = 1 − p.
Let £x be the initial fortune of the gambler. Then the probability that the gambler’s fortune
will reach level b > x before reaching level a < x equals:

Px(Tb < Ta) =





(q/p)x−a − 1

(q/p)b−a − 1
, if p 6= q

x− a

b− a
, if p = q = 1/2

, a ≤ x ≤ b.

Proof. We first solve the problem when a = 0, b = ℓ > 0 and let

ϕ(x, ℓ) := Px(Tℓ < T0), 0 ≤ x ≤ ℓ.

The general solution will then obtained from

Px(Tb < Ta) = ϕ(x− a, b− a).

(Think why!) To simplify things, write ϕ(x) instead of ϕ(x, ℓ). We obviously have

ϕ(0) = 0, ϕ(ℓ) = 1,
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and, by first-step analysis,

ϕ(x) = pϕ(x+ 1) + qϕ(x− 1), 0 < x < ℓ.

Since p+ q = 1, we can write this as

p[ϕ(x+ 1)− ϕ(x)] = q[ϕ(x)− ϕ(x− 1)].

Let δ(x) := ϕ(x+ 1)− ϕ(x). We have

δ(x) =
q

p
δ(x− 1) =

(
q

p

)2

δ(x− 2) = · · · =
(
q

p

)x
δ(0).

Assuming that λ := q/p 6= 1, we find

ϕ(x) = δ(x− 1) + δ(x− 2) + · · ·+ δ(0) = [λx−1 + · · ·+ λ+ 1]δ(0) =
λx − 1

λ− 1
δ(0).

Since ϕ(ℓ) = 1, we have λℓ−1
λ−1 δ(0) = 1 which gives δ(0) = (λ− 1)/(λℓ − 1). We finally find

ϕ(x) =
λx − 1

λℓ − 1
, 0 ≤ x ≤ ℓ, λ 6= 1.

If λ = 1 then q = p and so

ϕ(x+ 1)− ϕ(x) = ϕ(x)− ϕ(x− 1).

This gives δ(x) = δ(0) for all x and ϕ(x) = xδ(0). Since ϕ(ℓ) = 1, we find δ(0) = 1/ℓ and so

ϕ(x) =
x

ℓ
, 0 ≤ x ≤ ℓ, λ = 1.

Summarising, we have obtained

ϕ(x, ℓ) =

{
λx−1
λℓ−1

, if λ 6= 1
x
ℓ , if λ = 1.

The general case is obtained by replacing ℓ by b− a and x by x− a.

Corollary 4. The ruin probability of a gambler starting with £x is

Px(T0 <∞) =

{
(q/p)x, if p > 1/2

1, if p ≤ 1/2.

Proof. We have

Px(T0 <∞) = lim
ℓ→∞

Px(T0 < Tℓ) = 1− lim
ℓ→∞

Px(Tℓ < T0).

If p > 1/2, then λ = q/p < 1, and so

Px(T0 <∞) = 1− lim
ℓ→∞

λx − 1

λℓ − 1
= 1− λx − 1

0− 1
= λx.

If p < 1/2, then λ = q/p > 1, and so

Px(T0 <∞) = 1− lim
ℓ→∞

λx − 1

λℓ − 1
= 1− 0 = 1.

Finally, if p = q,

Px(T0 <∞) = 1− lim
ℓ→∞

x

ℓ
= 1− 0 = 1.
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8 Stopping times and the strong Markov property

A random time is a random variable taking values in the time-set, including, possibly, the
value +∞. In particular, a stopping time τ is a random variable with values in Z+∪{+∞}
such that 1(τ = n) is a deterministic function of (X0, . . . , Xn) for all n ∈ Z+.

An example of a stopping time is the time TA, the first hitting time of the set A, considered
earlier.

An example of a random time which is not a stopping time is the last visit of a specific set.

Recall that the Markov property states that, for any n, the future process (Xn, Xn+1, . . .)
is independent of the past process (X0, . . . , Xn) if we know the present Xn.

We will now prove that this remains true if we replace the deterministic n by a random
stopping time τ . This stronger property is referred to as the strong Markov property.

Theorem 8 (strong Markov property). Suppose (Xn, n ≥ 0) is a time-homogeneous Markov
chain. Let τ be a stopping time. Then, conditional on τ <∞ and Xτ = i, the future process
(Xτ+n, n ≥ 0) is independent of the past process (X0, . . . , Xτ ) and has the same law as the
original process started from i.

Proof. Let τ be a stopping time. Let A be any event determined by the past (X0, . . . , Xτ )
if τ < ∞. Since (X0, . . . , Xτ )1(τ < ∞) =

∑
n∈Z+

(X0, . . . , Xn)1(τ = n), any such A must
have the property that, for all n ∈ Z+, A ∩ {τ = n} is determined by (X0, . . . , Xn). We are
going to show that for any such A,

P (Xτ+1 = j1, Xτ+2 = j2, . . . ;A | Xτ , τ <∞)

= P (Xτ+1 = j1, Xτ+2 = j2, . . . | Xτ , τ <∞)P (A | Xτ , τ <∞)

and that
P (Xτ+1 = j1, Xτ+2 = j2, . . . | Xτ = i, τ <∞) = pi,j1pj1,j2 · · ·

We have:

P (Xτ+1 = j1,Xτ+2 = j2, . . . ;A,Xτ = i, τ = n)

(a)
= P (Xn+1 = j1, Xn+2 = j2, . . . ;A,Xn = i, τ = n)

(b)
= P (Xn+1 = j1, Xn+2 = j2, . . . | Xn = i, A, τ = n)P (Xn = i, A, τ = n)

(c)
= P (Xn+1 = j1, Xn+2 = j2, . . . | Xn = i)P (Xn = i, A, τ = n)

(d)
= pi,j1pj1,j2 · · ·P (Xn = i, A, τ = n),

where (a) is just logic, (b) is by the definition of conditional probability, (c) is due to the
fact that A∩ {τ = n} is determined by (X0, . . . , Xn) and the ordinary splitting property at
n, and (d) is due to the fact that (Xn) is time-homogeneous Markov chain with transition
probabilities pij . Our assertions are now easily obtained from this by first summing over all
n (whence the event {τ < ∞} appears) and then by dividing both sides by P (Xτ = i, τ <
∞).
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9 Regenerative structure of a Markov chain

A sequence of i.i.d. random variables is a (very) particular example of a Markov chain. The
random variables Xn comprising a general Markov chain are not independent. However, by
using the strong Markov property, we will show that we can split the sequence into i.i.d.
“chunks”.

The idea is that if we can find a state i that is visited again and again, then the behaviour of
the chain between successive visits cannot be influenced by the past or the future (and that
is due to the strong Markov property). Schematically,
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Fix a state i ∈ S and let Ti be the first time that the chain will visit this state:

Ti := inf{n ≥ 1 : Xn = i}.

Note the subtle difference between this Ti and the Ti of Sec-
tion 6. Our Ti here is always positive. The Ti of Section
6 was allowed to take the value 0. If X0 6= i then the two
definitions coincide.

State i may or may not be visited again. Regardless, we let T
(2)
i be the time of the second

visit. (And we set T
(1)
i := Ti.) We let T

(3)
i be the time of the third visit, and so on. Formally,

we recursively define

T
(r)
i := inf{n > T

(r−1)
i : Xn = i}, r = 2, 3, . . .

All these random times are stopping times. (Why?)

Consider the “trajectory” of the chain between two successive visits to the state i:

X
(r)
i :=

(
Xn, T

(r)
i ≤ n < T

(r+1)
i

)
, r = 1, 2, . . .

Let also
X

(0)
i :=

(
Xn, 0 ≤ n < T

(1)
i

)
.

We think of
X

(0)
i , X

(1)
i , X

(2)
i , . . .

as “random variables”, in a generalised sense. They are, in fact, random trajectories. We

refer to them as excursions of the process. So X
(r)
i is the r-th excursion: the chain visits
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state i for the r-th time, and “goes for an excursion”; we “watch” it up until the next time
it returns to state i.

An immediate consequence of the strong Markov property is:

Theorem 9. The excursions

X
(0)
i , X

(1)
i , X

(2)
i , . . .

are independent random variables. In particular, all, except, possibly, X
(0)
i , have the same

distribution.

Proof. Apply Strong Markov Property (SMP) at T
(r)
i : SMP says that, given the state at

the stopping time T
(r)
i , the future after T

(r)
i is independent of the past before T

(r)
i . But

the state at T
(r)
i is, by definition, equal to i. Therefore, the future is independent of the

past, and this proves the first claim. The claim that X
(1)
i , X

(2)
i have the same distribution

follows from the fact that the Markov chain is time-homogeneous. Therefore, if it starts
from state i at some point of time, it will behave in the same way as if it starts from the
same state at another point of time.

A trivial, but important corollary of the observation of this section is that:

Corollary 5. (Numerical) functions g(X
(0)
i ), g(X

(1)
i ), g(X

(2)
i ), . . . of the excursions are

independent random variables.

Example: Define

Λr :=

T
(r+1)
i∑

n=T
(r)
i

1(Xn = j)

The meaning of Λr is this: it expresses the number of visits to a state j between two successive
visits to the state i. The last corollary ensures us that Λ1,Λ2, . . . are independent random
variables. Moreover, for time-homogeneous Markov chains, they are also identical in law
(i.i.d.).

10 Recurrence and transience

When a Markov chain has finitely many states, at least one state must be visited infinitely
many times. Perhaps some states (inessential ones) will be visited finitely many times, but
there are always states which will be visited again and again, ad infinitum.

We abstract this trivial observation and give a couple of definitions:

First, we say that a state i is recurrent if, starting from i, the chain returns to i infinitely
many times:

Pi(Xn = i for infinitely many n) = 1.

Second, we say that a state i is transient if, starting from i, the chain returns to i only
finitely many times:

Pi(Xn = i for infinitely many n) = 0.
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Important note: Notice that the two statements above are not negations of one another.
Indeed, in principle, there could be yet another possibility:

0 < Pi(Xn = i for infinitely many n) < 1.

We will show that such a possibility does not exist, therefore concluding that every state is
either recurrent or transient.

Consider the total number of visits to state i (excluding the possibility that X0 = i):

Ji =
∞∑

n=1

1(Xn = i) = sup{r ≥ 0 : T
(r)
i <∞} .

Suppose that the Markov chain starts from state i.

Notice that: state i is visited infinitely many times ⇐⇒ Ji = ∞.

Notice also that
fii := Pi(Ji ≥ 1) = Pi(Ti <∞).

We claim that:

Lemma 4. Starting from X0 = i, the random variable Ji is geometric:

Pi(Ji ≥ k) = fkii , k ≥ 0.

Proof. By the strong Markov property at time T
(k−1)
i , we have

Pi(Ji ≥ k) = Pi(Ji ≥ k − 1)Pi(Ji ≥ 1).

Indeed, the event {Ji ≥ k} implies that T
(k−1)
i < ∞ and that Ji ≥ k − 1. But the past

before T
(k−1)
i is independent of the future, and that is why we get the product. Therefore,

Pi(Ji ≥ k) = fiiPi(Ji ≥ k − 1) = f2iiPi(Ji ≥ k − 2) = · · · = fkii.

Notice that fii = Pi(Ti <∞) can either be equal to 1 or smaller than 1.

If fii = 1 we have that Pi(Ji ≥ k) = 1 for all k, i.e. Pi(Ji = ∞) = 1. This means that the
state i is recurrent.

If fii < 1, then Pi(Ji <∞) = 1. This means that the state i is transient.

Because either fii = 1 or fii < 1, we conclude what we asserted earlier, namely, every state
is either recurrent or transient.

We summarise this together with another useful characterisation of recurrence & transience
in the following two lemmas.

Lemma 5. The following are equivalent:
1. State i is recurrent.
2. fii = Pi(Ti <∞) = 1.
3. Pi(Ji = ∞) = 1.
4. EiJi = ∞.
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Proof. State i is recurrent if, by definition, it is visited infinitely many times, which, by
definition of Ji is equivalent to Pi(Ji = ∞) = 1. Hence EiJi = ∞ also. If EiJi = ∞, then,
owing to the fact that Ji is a geometric random variable, we see that its expectation cannot
be infinity without Ji itself being infinity with probability one. The equivalence of the first
two statements was proved before the lemma.

Lemma 6. The following are equivalent:
1. State i is transient.
2. fii = Pi(Ti <∞) < 1.
3. Pi(Ji <∞) = 1.
4. EiJi <∞.

Proof. State i is transient if, by definition, it is visited finitely many times with probability
1. This, by the definition of Ji, is equivalent to Pi(Ji <∞) = 1, and, since Ji is a geometric
random variable, this implies that EiJi < ∞. On the other hand, if we assume EiJi < ∞,
then, clearly, Ji cannot take value +∞ with positive probability; therefore Pi(Ji <∞) = 1.
The equivalence of the first two statements was proved above.

Corollary 6. If i is a transient state then p
(n)
ii → 0, as n→ ∞.

Proof. If i is transient then EiJi <∞. But

EiJi = Ei

∞∑

n=1

1(Xn = i) =
∞∑

n=1

Pi(Xn = i) =
∞∑

n=1

p
(n)
ii .

But if a series is finite then the summands go to 0, i.e. p
(n)
ii → 0, as n→ ∞.

10.1 First hitting time decomposition

Define
f
(n)
ij := Pi(Tj = n),

i.e. the probability to hit state j for the first time at time n ≥ 1, assuming that the chain

starts from state i. Notice the difference with p
(n)
ij . The latter is the probability to be in

state j at time n (not necessarily for the first time) starting from i. Clearly,

f
(n)
ij ≤ p

(n)
ij ,

but the two sequences are related in an exact way:

Lemma 7.

p
(n)
ij =

n∑

m=1

f
(m)
ij p

(n−m)
jj , n ≥ 1.

Proof. From Elementary Probability,

p
(n)
ij = Pi(Xn = j) =

n∑

m=1

Pi(Tj = m,Xn = j)

=
n∑

m=1

Pi(Tj = m)Pi(Xn = j | Tj = m)
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The first term equals f
(m)
ij , by definition. For the second term, we use the Strong Markov

Property:

Pi(Xn = j | Tj = m) = Pi(Xn = j | Xm = j) = p
(n−m)
jj .

Corollary 7. If j is a transient state then p
(n)
ij → 0, as n→ ∞, for all states i.

Proof. If j is transient, we have
∑∞

n=1 pjj = EjJj < ∞. Now, by summing over n the
relation of Lemma 7, we obtain (after interchanging the order of the two sums in the right
hand side)

∞∑

n=1

p
(n)
ij =

∞∑

m=1

f
(m)
ij

∞∑

n=m

p
(n−m)
jj = (1 + EjJj)

∞∑

m=1

f
(m)
ij = (1 + EjJj)Pi(Tj <∞),

which is finite, and hence p
(n)
ij as n→ ∞.

10.2 Communicating classes and recurrence/transience

Recall the definition of the relation “state i leads to state j”, denoted by i  j: it means
that, starting from i, the probability to go to j in some finite time is positive. In other
words, if we let

fij := Pi(Tj <∞) ,

we have
i j ⇐⇒ fij > 0.

We now show that recurrence is a class property. ( Remember: another property that was
a class property was the property that the state have a certain period.)

Theorem 10. If i is recurrent and if i j then j is recurrent and

fij = Pi(Tj <∞) = 1.

In particular, j  i, and
gij := Pi(Tj < Ti) > 0.

Proof. Start with X0 = i. If i is recurrent and i  j then there is a positive probability

(= fij) that j will appear in one of the i.i.d. excursions X
(0)
i ,X

(1)
i , . . ., and so the probability

that j will appear in a specific excursion is positive. So the random variables

δj,r := 1

(
j appears in excursion X

(r)
i

)
, r = 0, 1, . . .

are i.i.d. and since they take the value 1 with positive probability, infinitely many of them
will be 1 (with probability 1), showing that j will appear in infinitely many of the excursions
for sure. Hence, not only fij > 0, but also fij = 1. Hence, j  i. The last statement is
simply an expression in symbols of what we said above. Indeed, the probability that j will
appear in a specific excursion equals gij = Pi(Tj < Ti).

Corollary 8. In a communicating class, either all states are recurrent or all states are
transient.
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Proof. If i is recurrent then every other j in the same communicating class satisfies i! j,
and hence, by the above theorem, every other j is also recurrent. If a communicating class
contains a state which is transient then, necessarily, all other states are also transient.

Theorem 11. If i is inessential then it is transient.

Proof. Suppose that i is inessential, i.e. there is a state j such that i j but j 6 i. Hence
there is m such that

Pi(A) = Pi(Xm = j) > 0,

but
Pi(A ∩B) = Pi(Xm = j, Xn = i for infinitely many n) = 0.

But then,
0 < Pi(A) = Pi(A ∩B) + Pi(A ∩Bc) = Pi(A ∩Bc) ≤ Pi(B

c),

i.e.
P (B) = Pi(Xn = i for infinitely many n) < 1.

Hence, Pi(B) = 0, and so i is a transient state.

So if a communicating class is recurrent then it contains no inessential states and so it is
closed.

Theorem 12. Every finite closed communicating class is recurrent.

Proof. Let C be the class. By closedness, X remains in C, if started in C. By finiteness,
some state i must be visited infinitely many times. This state is recurrent. Hence all states
are recurrent.

11 Positive recurrence

Recall that if we fix a state i and let Ti be the first return time to i then either Pi(Ti <∞) = 1
(in which case we say that i is recurrent) or Pi(Ti <∞) < 1 (transient state).

We now take a closer look at recurrence. Recall that a finite random variable may not
necessarily have finite expectation.

Example: Let U0, U1, U2, . . . be i.i.d. random variables, uniformly distributed in the unit
interval [0, 1]. Let

T := inf{n ≥ 1 : Un > U0}.
Thus T represents the number of variables we need to draw to get a value larger than the
initial one. It should be clear that this can, for example, appear in a certain game. What
is the expectation of T? First, observe that T is finite. Indeed,

P (T > n) = P (U1 ≤ U0, . . . , Un ≤ U0)

=

∫ 1

0
P (U1 ≤ x, . . . , Un ≤ x | U0 = x)dx

=

∫ 1

0
xndx =

1

n+ 1
.
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Therefore,

P (T <∞) = lim
n→∞

P (T ≤ n) = lim
n→∞

(1− 1

n+ 1
) = 1.

But

ET =

∞∑

n=1

P (T > n) =

∞∑

n=1

1

n+ 1
= ∞.

You are invited to think about the meaning of this: If the initial value U0 is unknown, then
it takes, on the average, an infinite number of steps to exceed it!

We now classify a recurrent state i as follows:

We say that i is positive recurrent if EiTi <∞.

We say that i is null recurrent if EiTi = ∞.

Our goal now is to show that a chain possessing a positive recurrent state also possesses a
stationary distribution. Before doing that, we shall discover what the form of this stationary
distribution is by using the Law of Large Numbers

12 Law (=Theorem) of Large Numbers in Probability The-
ory

The following result is, arguably, the Fundamental Theorem of Probability Theory. It is
traditional to refer to it as “Law”. But this is misleading. It is not a Law, it is a Theorem
that can be derived from the axioms of Probability Theory.

We state it here without proof.

Theorem 13. Let Z1, Z2, . . . be i.i.d. random variables.
(i) Suppose E|Z1| <∞ and let µ = EZ1. Then

P

(
lim
n→∞

Z1 + · · ·+ Zn
n

= µ

)
= 1.

(ii) Suppose Emax(Z1, 0) = ∞, but Emin(Z1, 0) > −∞. Then

P

(
lim
n→∞

Z1 + · · ·+ Zn
n

= ∞
)

= 1.

13 Law of Large Numbers for Markov chains

The law of large numbers stated above requires independence. When we have a Markov
chain, the sequence X0, X1, X2, . . . of successive states is not an independent sequence. To
apply the law of large numbers we must create some kind of independence. To our rescue
comes the regenerative structure of a Markov chain identified at an earlier section.
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13.1 Functions of excursions

Namely, given a recurrent state a ∈ S (which will be referred to as the ground state for
no good reason other than that it has been fixed once and for all) the sequence of excursions

X
(1)
a , X

(2)
a , X

(3)
a , . . .

forms an independent sequence of (generalised) random variables. Since functions of inde-
pendent random variables are also independent, we have that

G(X (1)
a ), G(X (2)

a ), G(X (3)
a ), . . .

are i.i.d. random variables, for reasonable choices of the functions G taking values in R.

Example 1: To each state x ∈ S, assign a reward f(x). Then, for an excursion X ,
define G(X ) to be the maximum reward received during this excursion. Specifically, in this
example,

G(X (r)
a ) = max{f(Xt) : T

(r)
a ≤ t < T (r+1)

a }.

Example 2: Let f(x) be as in example 1, but define G(X ) to be the total reward received
over the excursion X . Thus,

G(X (r)
a ) =

∑

T
(r)
a ≤t<T

(r+1)
a

f(Xt). (7)

Whichever the choice of G, the law of large numbers tells us that

G(X
(1)
a ) + · · ·+G(X

(n)
a )

n
→ EG(X (1)

a ), (8)

as n→ ∞, with probability 1. Note that

EG(X (1)
a ) = EG(X (2)

a ) = · · · = E
[
G(X (0)

a ) | X0 = a
]
= EaG(X

(0)
a ).

because the excursions X
(1)
a , X

(2)
a , . . . are i.i.d., and because if we start with X0 = a, the

initial excursion X
(0)
a also has the same law as the rest of them. The final equality in the

last display is merely our notation for the expectation of a random variable conditional on
X0 = a.

13.2 Average reward

Consider now a function f : S → R, which, as in Example 2, we can think of as a reward
received when the chain is in state x. We are interested in the existence of the limit

time-average reward = lim
t→∞

1

t

t∑

k=0

f(Xk),

which represents the ‘time-average reward’ received. In particular, we shall assume that f
is bounded and shall examine those conditions which yield a nontrivial limit.
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Theorem 14. Suppose that a Markov chain possesses a positive recurrent state a ∈ S (i.e.
EaTa <∞) and assume that the distribution of X0 is such that

P (Ta <∞) = 1.

Let f : S → R+ be a bounded ‘reward’ function. Then, with probability one, the ‘time-average
reward’ f exists and is a deterministic quantity:

P

(
lim
t→∞

1

t

t∑

n=0

f(Xn) = f

)
= 1 ,

where

f =

Ea

Ta−1∑

n=0

f(Xn)

EaTa
=
∑

x∈S

f(x)π(x).

Proof. We shall present the proof in a way that the constant f will reveal itself–it will be
discovered. The idea is this: Suppose that t is large enough. We are looking for the total
reward received between 0 and t. We break the sum into the total reward received over the
initial excursion, plus the total reward received over the next excursion, and so on. Thus
we need to keep track of the number, Nt, say, of complete excursions from the ground state
a that occur between 0 and t.

Nt := max{r ≥ 1 : T (r)
a ≤ t}.

For example, in the figure below, Nt = 5.

T
a
(1) T

a
(2)

T
a
(3) T

a
(4) T

a
(5)

t0

We write the total reward as a sum of rewards over complete excursions plus a first and a
last term:

t∑

n=0

f(Xn) =

Nt−1∑

r=1

Gr +Gfirst
t +Glast

t .

In other words, Gr is given by (7), Gfirst
t is the reward up to time Ta = T

(1)
a or t (whichever

is smaller), and Glast
t is the reward over the last incomplete cycle. We assumed that f is

bounded, say |f(x)| ≤ B. Hence |Gfirst
t | ≤ BTa. Since P (Ta <∞) = 1, we have BTa/t→ 0,

as t→ ∞, and so
1

t
Gfirst
t → 0,

as t→ ∞, with probability one. A similar argument shows that

1

t
Glast
t → 0,

36



also. So we are left with the sum of the rewards over complete cycles. Write now

1

t

Nt−1∑

r=1

Gr =
Nt

t

1

Nt

Nt−1∑

r=1

Gr. (9)

Look again what the Law of Large Numbers (8) tells us: that

lim
n→∞

1

n

n∑

r=1

Gr = EG1,

with probability one. Since T
(r)
a → ∞, as r → ∞, it follows that the number Nt of complete

cycles before time t will also be tending to ∞, as t→ ∞. Hence,

lim
t∞

1

Nt

Nt−1∑

r=1

Gr = EG1. (10)

Now look at the sequence

T (r)
a = T (1)

a +
r∑

k=1

(T (k)
a − T (k−1)

a )

and see what the Law of Large Numbers again, Since T
(1)
a /r → 0, and since T

(k)
a − T

(k−1)
a ,

k = 1, 2, . . ., are i.i.d. random variables with common expectation EaTa, we have

lim
r→∞

T
(r)
a

r
= EaTa. (11)

By definition, we have that the visit with index r = Nt to the ground state a is the last
before t (see also figure above):

T (Nt)
a ≤ t < T (Nt+1)

a .

Hence
T
(Nt)
a

Nt
≤ t

Nt
<
T
(Nt+1)
a

Nt
.

But (11) tells us that

lim
t→∞

T
(Nt)
a

Nt
= lim

t→∞

T
(Nt+1)
a

Nt
= EaTa.

Hence

lim
t→∞

Nt

t
=

1

EaTa
. (12)

Using (10) and (12) in (9) we have

lim
t→∞

1

t

Nt−1∑

r=1

Gr =
EG1

EaTa
.

Thus

lim
t→∞

1

t

t∑

n=0

f(Xn) =
EG1

EaTa
=: f.
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To see that f is as claimed, just observe that

EG1 = E
∑

T
(1)
a ≤t<T

(1+1)
a

f(Xt) = Ea
∑

0≤t<Ta

f(Xt),

from the Strong Markov Property.

Comment 1: It is important to understand what the formula says. The constant f is a sort
of average over an excursion. The numerator of f is computed by summing up the rewards
over the excursion (making sure that not both endpoints are included). The denominator
is the duration of the excursion. Note that we include only one endpoint of the excursion,
not both. We may write EG1 = Ea

∑
0≤t<Ta

f(Xt) or EG1 = Ea
∑

0<t≤Ta
f(Xt).

Ta

f(X )
0 = f(a)

f(X )1

f(X )2

Ta−1f(       )

0

Comment 2: A very important particular case occurs when we choose

f(x) := 1(x = b),

i.e. we let f to be 1 at the state b and 0 everywhere else. The theorem above then says that,
for all b ∈ S,

lim
t→∞

1

t

t∑

n=1

1(Xn = b) =

Ea

Ta−1∑

k=0

1(Xk = b)

EaTa
, (13)

with probability 1.

Comment 3: If in the above we let b = a, the ground state, then we see that the numerator
equals 1. Hence

lim
t→∞

1

t

t∑

n=1

1(Xn = a) =
1

EaTa
, (14)

with probability 1.

The physical interpretation of the latter should be clear: If, on the average, it takes EaTa
units of time between successive visits to the state a, then the long-run proportion of visits
to the state a should equal 1/EaTa.

Comment 4: Suppose that two states, a, b, which communicate and are positive recurrent.
We can use b as a ground state instead of a. Applying formula (14) with b in place of a we
find that the limit in (13) also equals 1/EbTb. The equality of these two limits gives:

(
average no. of times state b is visited
between two successive visits to state a

)
= Ea

Ta−1∑

k=0

1(Xk = b) =
EaTa
EbTb

.
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14 Construction of a stationary distribution

Our discussions on the law of large numbers for Markov chains revealed that the quantity

ν [a](x) := Ea

Ta−1∑

n=0

1(Xn = x) , x ∈ S. (15)

should play an important role. Indeed, we saw (Comment 2 above) that if a is a positive
recurrent state then

ν [a](x)

EaTa

is the long-run fraction of times that state x is visited.

Note: Although ν [a] depends on the choice of the ‘ground’ state a, we will soon realise that
this dependence vanishes when the chain is irreducible. Hence the superscript [a] will soon
be dropped. In view of this, notice that the choice of notation ν [a] is justifiable through the
notation (6) for the communicating class of the state a.

Clearly, this should have something to do with the concept of stationary distribution dis-
cussed a few sections ago.

Proposition 2. Fix a ground state a ∈ S and assume that it is recurrent5. Consider the
function ν [a] defined in (15). Then ν [a] satisfies the balance equations:

ν [a] = ν [a]P,

i.e.
ν [a](x) =

∑

y∈S

ν [a](y)pyx, x ∈ S.

Moreover, for any state b such that a→ x (a leads to x), we have

0 < ν [a](x) <∞.

Proof. We start the Markov chain with X0 = a, where a is the fixed recurrent ground state
whose existence was assumed. Recurrence tells us that Ta <∞ with probability one. Since

a = XTa ,

we can write

ν [a](x) = Ea

Ta∑

k=1

1(Xn = x). (16)

This was a trivial but important step: We replaced the n = 0 term with the n = Ta term.
Both of them equal 1, so there is nothing lost in doing so. The real reason for doing so is
because we wanted to replace a function of X0, X1, X2, . . . by a function of X1, X2, X3, . . .

5We stress that we do not need the stronger assumption of positive recurrence here.
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and thus be in a position to apply first-step analysis, which is precisely what we do next:

ν [a](x) = Ea

∞∑

n=1

1(Xn = x, n ≤ Ta)

=
∞∑

n=1

Pa(Xn = x, n ≤ Ta)

=

∞∑

n=1

∑

y∈S

Pa(Xn = x,Xn−1 = y, n ≤ Ta)

=
∞∑

n=1

∑

y∈S

pyxPa(Xn−1 = y, n ≤ Ta)

=
∑

y∈S

pyx Ea

Ta∑

n=1

1(Xn−1 = y)

=
∑

y∈S

pyx ν
[a](y),

where, in this last step, we used (16). So we have shown ν [a](x) =
∑

y∈S pyx ν
[a](y), for all

x ∈ S, which are precisely the balance equations.
We just showed that ν [a] = ν [a]P. Therefore, ν [a] = ν [a]Pn, for all n ∈ N.

Next, let x be such that a x; so there exists n ≥ 1, such that p
(n)
ax > 0. Hence

ν [a](x) ≥ ν [a](a)p(n)ax = p(n)ax > 0.

From Theorem 10, x a; so there exists m ≥ 1, such that p
(m)
xa > 0. Hence

1 = ν [a](a) ≥ ν [a](x)p(m)
xa > ν [a](x),

so, indeed, ν [a](x) <∞.

Note: The last result was shown under the assumption that a is a recurrent state. We are
now going to assume more, namely, that a is positive recurrent. First note that, from (16),

∑

x∈S

ν [a](x) = Ea

Ta∑

n=1

∑

x∈S

1(Xn = x) = Ea

Ta∑

n=1

1 = EaTa,

which, by definition, is finite when a is positive recurrent.

We now have:

Corollary 9. Suppose that the Markov chain possesses a positive recurrent state a. Define

π[a](x) :=
ν [a](x)

EaTa
=

Ea

Ta−1∑

n=0

1(Xn = x)

EaTa
, x ∈ S. (17)

This π is a stationary distribution.
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In other words: If there is a positive recurrent state, then the set of linear equations

π(x) =
∑

y∈S

π(y)pyx, x ∈ S

∑

y∈S

π(y) = 1

have at least one solution.

Proof. Since a is positive recurrent, we have EaTa < ∞, and so π[a] is not trivially equal
to zero. We have already shown, in Proposition 2, that ν [a]P = ν [a]. But π[a] is simply a
multiple of ν [a]. Therefore, π[a]P = π[a]. It only remains to show that π[a] is a probability,
i.e. that it sums up to one. But

∑

x∈S

π[a](x) =
1

EaTa

∑

x∈S

ν [a](x) = 1.

Pause for thought: We have achieved something VERY IMPORTANT: if we have one,
no matter which one, positive recurrent state, then we immediately have a stationary (prob-
ability) distribution! We DID NOT claim that this distribution is, in general, unique. This
is what we will try to do in the sequel.

15 Positive recurrence is a class property

We now show that (just like recurrence) positive recurrence is also a class property.

Theorem 15. Let i be a positive recurrent state. Suppose that i  j. Then j is positive
recurrent.

Proof. Start with X0 = i. Consider the excursions X
(r)
i , r = 0, 1, 2, . . . We already know

that j is recurrent. Hence j will occur in infinitely many excursions, and the probability
gij = Pi(Tj <∞) that j occurs in a specific excursion is positive. Also, since the excursions
are independent, the event that j occurs in a specific excursion is independent from the
event that j occurs in the next excursion. In words, to decide whether j will occur in a
specific excursion, we toss a coin with probability of heads gij > 0. The coins are i.i.d. If
heads show up at the r-th excursion, then j occurs in the r-th excursion. Otherwise, if tails
show up, then the r-th excursion does not contain state j. Let R1 (respectively, R2) be the
index of the first (respectively, second) excursion that contains j.
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PiTi

R1
R1+1 R1

+2

R2

This random variable has the same law as 
under 

ζ

i

j

We just need to show that the sum of the durations of excursions with indices R1, . . . , R2

has finite expectation. In other words, we just need to show that

ζ :=

R2−R1+1∑

r=1

Zr

has finite expectation, where the Zr are i.i.d. with the same law as Ti. But, by Wald’s
lemma, the expectation of this random variable equals

Eiζ = (EiTi)× Ei(R2 −R1 + 1) = (EiTi)× (g−1
ij + 1)

because R2 −R1 is a geometric random variable:

Pi(R2 −R1 = r) = (1− gij)
r−1gij , r = 1, 2, . . .

Since gij > 0 and EiTi <∞ we have that Eiζ <∞.

Corollary 10. Let C be a communicating class. Then either all states in C are positive
recurrent, or all states are null recurrent or all states are transient.

An irreducible Markov chain is called recurrent if one (and hence all) states are recurrent.

An irreducible Markov chain is called positive recurrent if one (and hence all) states are
positive recurrent.

An irreducible Markov chain is called null recurrent if one (and hence all) states are null
recurrent.

An irreducible Markov chain is called transient if one (and hence all) states are transient.

POSITIVE RECURRENT NULL RECURRENT

TRANSIENTRECURRENT 

IRREDUCIBLE CHAIN
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16 Uniqueness of the stationary distribution

At the risk of being too pedantic, we stress that a stationary distribution may not be unique.
Example: Consider the chain we’ve seen before:

0 1 2

11

1/6

1/3

1/2

Clearly, state 1 (and state 2) is positive recurrent, for totally trivial reasons (it is, after all,
an absorbing state). Hence, there is a stationary distribution. But observe that there are
many–infinitely many–stationary distributions: For each 0 ≤ α ≤ 1, the π defined by

π(0) = α, π(1) = 0, π(2) = 1− α

is a stationary distribution. (You should think why this is OBVIOUS!) Notice that 1 6! 2.
This lack of communication is, indeed, what prohibits uniqueness.

Theorem 16. Consider positive recurrent irreducible Markov chain. Then there is a unique
stationary distribution.

Proof. Let π be a stationary distribution. Consider the Markov chain (Xn, n ≥ 0) and
suppose that

P (X0 = x) = π(x), x ∈ S.

In other words, we start the Markov chain from the stationary distribution π. Then, for all
n, we have

P (Xn = x) = π(x), x ∈ S. (18)

Since the chain is irreducible and positive recurrent we have Pi(Tj < ∞) = 1, for all states
i and j. Fix a ground state a. Then

P (Ta <∞) =
∑

x∈S

π(x)Px(Ta <∞) =
∑

x∈S

π(x) = 1.

By (13), following Theorem 14, we have, for all x ∈ S,

1

t

t∑

n=1

1(Xn = x) →
Ea

Ta−1∑

k=0

1(Xk = x)

EaTa
= π[a](x),

as t→ ∞, with probability one. By a theorem of Analysis (Bounded Convergence Theorem),
recognising that the random variables on the left are nonnegative and bounded below 1, we
can take expectations of both sides:

E

(
1

t

t∑

n=1

1(Xn = x)

)
→ π[a](x),

as t→ ∞. But, by (18),

E

(
1

t

t∑

n=1

1(Xn = x)

)
=

1

t

t∑

n=1

P (Xn = x) = π(x).
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Therefore π(x) = π[a](x), for all x ∈ S. Thus, an arbitrary stationary distribution π must
be equal to the specific one π[a]. Hence there is only one stationary distribution.

Corollary 11. Consider a positive recurrent irreducible Markov chain and two states a, b ∈
S. Then

π[a] = π[b].

In particular, we obtain the cycle formula:

Ea

Ta−1∑

k=0

1(Xk = x)

EaTa
=

Eb

Tb−1∑

k=0

1(Xk = x)

EbTb
, x ∈ S.

Proof. There is a unique stationary distribution. Both π[a] and π[b] are stationary distribu-
tions, so they are equal. The cycle formula merely re-expresses this equality.

Corollary 12. Consider a positive recurrent irreducible Markov chain with stationary dis-
tribution π. Then, for all a ∈ S,

π(a) =
1

EaTa
.

Proof. There is only one stationary distribution. Hence π = π[a]. In particular, π(a) =
π[a](a) = 1/EaTa, from the definition of π[a].

In Section 14 we assumed the existence of a positive recurrent state a and proved the
existence of a stationary distribution π. The following is a sort of converse to that, which
is useful because it is often used as a criterion for positive recurrence:

Corollary 13. Consider an arbitrary Markov chain. Assume that a stationary distribution
π exists. Then any state i such that π(i) > 0 is positive recurrent.

Proof. Let i be such that π(i) > 0. Let C be the communicating class of i. Let π(·|C) be
the distribution defined by restricting π to C:

π(x|C) := π(x)

π(C)
, x ∈ C,

where π(C) =
∑

y∈C π(y). Consider the restriction of the chain to C. Namely, delete all
transition probabilities pxy with x 6∈ C, y ∈ C. We can easily see that we thus obtain
a Markov chain with state space C with stationary distribution π(·|C). This is in fact,
the only stationary distribution for the restricted chain because C is irreducible. By the
above corollary, π(i|C) = 1

EiTi
. But π(i|C) > 0. Therefore EiTi < ∞, i.e. i is positive

recurrent.

17 Structure of a stationary distribution

It is not hard to show now what an arbitrary stationary distribution looks like.

Consider a Markov chain. Decompose it into communicating classes. Then for each positive
recurrent communicating class C there corresponds a unique stationary distribution πC
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which assigns positive probability to each state in C. This is defined by picking a state (any
state!) a ∈ C and letting πC := π[a].

An arbitrary stationary distribution π must be a linear combination of these πC .

Proposition 3. To each positive recurrent communicating class C there corresponds a sta-
tionary distribution πC . Any stationary distribution π is necessarily of the form

π =
∑

C: C positive recurrent
communicating class

αC πC ,

where αC ≥ 0, such that
∑

C αC = 1.

Proof. Let π be an arbitrary stationary distribution. If π(x) > 0 then x belongs to some
positive recurrent class C. For each such C define the conditional distribution

π(x|C) := π(x)

π(C)
, where π(C) :=

∑

x∈C

π(x).

Then (π(x|C), x ∈ C) is a stationary distribution. By our uniqueness result, π(x|C) ≡
πC(x). So we have that the above decomposition holds with αC = π(C).

18 Coupling and stability

18.1 Definition of stability

Stability refers to the convergence of the probabilities P (Xn = x) as n→ ∞. So far we have
seen, that, under irreducibility and positive recurrence conditions, the so-called Cesaro
averages 1

n

∑n
k=1 P (Xk = x) converge to π(x), as n→ ∞. A sequence of real numbers an

may not converge but its Cesaro averages 1
n(a1 + · · ·+ an) may converge; for example, take

an = (−1)n.

Why stability? There are physical reasons why we are interested in the stability of a
Markov chain. A Markov chain is a simple model of a stochastic dynamical system. Stability
of a deterministic dynamical system means that the system eventually converges to a fixed
point (or, more generally, that it remains in a small region). For example, consider the
motion of a pendulum under the action of gravity. We all know, from physical experience,
that the pendulum will swing for a while and, eventually, it will settle to the vertical position.

This is the stable position. There is dissipation of energy due to friction and that causes
the settling down. In an ideal pendulum, without friction, the pendulum will perform an
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oscillatory motion ad infinitum. Still, we may it is stable because it does not (it cannot!)
swing too far away.

The simplest differential equation As another example, consider the following differ-
ential equation

ẋ = −ax+ b, x ∈ R.

There are myriads of applications giving physical interpretation to this, so I’ll leave it upon
the reader to decide whether he or she wants to consider this as an financial example, or an
example in physics, or whatever. The thing to observe here is that there is an equilibrium
point i.e. the one found by setting the right-hand side equal to zero:

x∗ = b/a.

t
0 1 2 3 4

0

1

2

3

4

x*

t

If we start with x(t = 0) = x∗, then x(t) = x∗ for all t > 0. If, moreover, a > 0, then
regardless of the starting position, we have x(t) → x∗, as t→ ∞. We say that x∗ is a stable
equilibrium.

A linear stochastic system We now pass on to stochastic systems. Since we are pro-
hibited by the syllabus to speak about continuous time stochastic systems, let us consider
a stochastic analogue of the above in discrete time:

Xn+1 = ρXn + ξn.

Specifically, we here assume that X0, ξ0, ξ1, ξ2, . . . are given, mutually independent, random
variables, and define a stochastic sequence X1, X2, . . . by means of the recursion above. We
shall assume that the ξn have the same law. It follows that |ρ| < 1 is the condition for
stability. But what does stability mean? In general, it cannot mean convergence to a fixed
equilibrium point, simple because the ξn’s depend on the time parameter n. However notice
what happens when we solve the recursion. And we are in a happy situation here, for we
can do it:

X1 = ρX0 + ξ0

X2 = ρX1 + ξ1 = ρ(ρX0 + ξ0) + ξ1 = ρ2X0 + ρξ0 + ξ1

X3 = ρX2 + ξ2 = ρ3X0 + ρ2ξ0 + ρξ1 + ξ2

· · · · · ·
Xn = ρnX0 + ρn−1ξ0 + ρn−2ξ1 + · · ·+ ρξn−2 + ξn−1.
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Since |ρ| < 1, we have that the first term goes to 0 as n→ ∞. The second term,

X̃n := ρn−1ξ0 + ρn−2ξ1 + · · ·+ ρξn−2 + ξn−1,

which is a linear combination of ξ0, . . . , ξn−1 does not converge, but notice that if we let

X̂n := ρn−1ξn−1 + ρn−2ξn−2 + · · ·+ ρξ1 + ξ0,

we have
P (X̃n ≤ x) = P (X̂n ≤ x).

The nice thing is that, under nice conditions, (e.g. assume that the ξn are bounded) X̂n

does converge to

X̂∞ =
∞∑

k=0

ρkξk.

What this means is that, while the limit of Xn does not exists, the limit of its distribution
does:

lim
n→∞

P (Xn ≤ x) = lim
n→∞

P (X̃n ≤ x) = lim
n→∞

P (X̂n ≤ x) = P (X̂∞ ≤ x)

This is precisely the reason why we cannot, for time-homogeneous Markov chains, define
stability in a way other than convergence of the distributions of the random variables.

18.2 The fundamental stability theorem for Markov chains

Theorem 17. If a Markov chain is irreducible, positive recurrent and aperiodic with (unique)
stationary distribution π then

lim
n→∞

P (Xn = x) = π(x),

uniformly in x, for any initial distribution. In particular, the n-step transition matrix Pn,
converges, as n→ ∞, to a matrix with rows all equal to π:

lim
n→∞

p
(n)
ij = π(j), i, j ∈ S.

18.3 Coupling

To understand why the fundamental stability theorem works, we need to understand the
notion of coupling.

Starting at an elementary level, suppose you are given the laws of two random variables
X,Y but not their joint law. In other words, we know f(x) = P (X = x), g(y) = P (Y = y),
but we are not given what P (X = x, Y = y) is.

Coupling refers to the various methods for constructing this joint law.

A straightforward (often not so useful) construction is to assume that the random variables
are independent and define P (X = x, Y = y) = P (X = x)P (Y = y).

But suppose that we have some further requirement, for instance, to try to make the co-
incidence probability P (X = Y ) as large as possible. How should we then define what
P (X = x, Y = y) is?
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Exercise: Let X, Y be random variables with values in Z and laws f(x) = P (X = x),
g(y) = P (Y = y), respectively. Find the joint law h(x, y) = P (X = x, Y = y) which respects
the marginals, i.e. f(x) =

∑
y h(x, y), g(y) =

∑
x h(x, y), and which maximises P (X = Y ).

The coupling we are interested in is a coupling of processes. We are given the law of a
stochastic process X = (Xn, n ≥ 0) and the law of a stochastic process Y = (Yn, n ≥ 0),
but we are not told what the joint probabilities are. A coupling of them refers to a joint
construction on the same probability space.

Suppose that we have two stochastic processes as above and suppose that they have been
coupled. We say that ransom time T is meeting time of the two processes if

Xn = Yn for all n ≥ T.

Note that it makes sense to speak of a meeting time, precisely because of the assumption
that the two processes have been constructed together. This T is a random variables that
takes values in the set of times or it may take values +∞, on the event that the two processes
never meet. The following result is the so-called coupling inequality:

Proposition 4. Let T be a meeting of two coupled stochastic processes X,Y . Then, for all
n ≥ 0, and all x ∈ S,

|P (Xn = x)− P (Yn = x)| ≤ P (T > n).

If, in particular, T is finite with probability one, i.e.

P (T <∞) = 1,

then
|P (Xn = x)− P (Yn = x)| → 0, as n→ ∞,

uniformly in x ∈ S.

Proof. We have

P (Xn = x) = P (Xn = x, n < T ) + P (Xn = x, n ≥ T )

= P (Xn = x, n < T ) + P (Yn = x, n ≥ T )

≤ P (n < T ) + P (Yn = x), (19)

and hence
P (Xn = x)− P (Yn = x) ≤ P (T > n).

Repeating (19), but with the roles of X and Y interchanged, we obtain

P (Yn = x)− P (Xn = x) ≤ P (T > n).

Combining the two inequalities we obtain the first assertion:

|P (Xn = x)− P (Yn = x)| ≤ P (T > n), n ≥ 0, x ∈ S.

Since this holds for all x ∈ S and since the right hand side does not depend on x, we can
write it as

sup
x∈S

|P (Xn = x)− P (Yn = x)| ≤ P (T > n), n ≥ 0.
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Assume now that P (T <∞) = 1. Then

lim
n→∞

P (T > n) = P (T = ∞) = 0.

Therefore,
sup
x∈S

|P (Xn = x)− P (Yn = x)| → 0,

as n→ ∞.

18.4 Proof of the fundamental stability theorem

First, review the assumptions of the theorem: the chain is irreducible, positive recurrent
and aperiodic. Let pij denote, as usual, the transition probabilities. We know that there is
a unique stationary distribution, denoted by π. We shall consider the laws of two processes.
The first process, denoted by X = (Xn, n ≥ 0) has the law of a Markov chain with transition
probabilities pij and X0 distributed according to some arbitrary distribution µ. The second
process, denoted by Y = (Yn, n ≥ 0) has the law of a Markov chain with transition proba-
bilities pij and Y0 distributed according to the stationary distribution µ. So both processes
are positive recurrent aperiodic Markov chains with the same transition probabilities; they
differ only in how the initial states are chosen. It is very important to note that we have
only defined the law of X and the law of Y but we have not defined a joint law; in other
words, we have not defined joint probabilities such as P (Xn = x,Xm = y). We now couple
them by doing the straightforward thing: we assume that X = (Xn, n ≥ 0) is independent
of Y = (Yn, n ≥ 0). Having coupled them, we can define joint probabilities, and it also
makes sense to consider their first meeting time:

T := inf{n ≥ 0 : Xn = Yn}.

Consider the process
Wn := (Xn, Yn).

Then (Wn, n ≥ 0) is a Markov chain with state space S × S. Its initial state W0 = (X0, Y0)
has distribution P (W0 = (x, y) = µ(x)π(y). Its (1-step) transition probabilities are

q(x,x′),(y,y′) := P
(
Wn+1 = (x′, y′) |Wn = (x, y)

)

= P (Xn+1 = x′ | Xn = x) P (Yn+1 = y′ | Yn = y) = px,x′ py,y′ .

Its n-step transition probabilities are

q
(n)
(x,x′),(y,y′) = p

(n)
x,x′ p

(n)
y,y′ .

From Theorem 3 and the aperiodicity assumption, we have that p
(n)
x,x′ > 0 and p

(n)
y,y′ for all

large n, implying that q
(n)
(x,x′),(y,y′) for all large n, and so (Wn, n ≥ 0) is an irreducible chain.

Notice that
σ(x, y) := π(x)π(y), (x, y) ∈ S × S,

is a stationary distribution for (Wn, n ≥ 0). (Indeed, had we started with both X0 and
Y0 independent and distributed according to π, then, for all n ≥ 1, Xn and Yn would be
independent and distributed according to π.) By positive recurrence, π(x) > 0 for all x ∈ S.
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Therefore σ(x, y) > 0 for all (x, y) ∈ S × S. Hence (Wn, n ≥ 0) is positive recurrent. In
particular,

P (T <∞) = 1.

Define now a third process by:

Zn := Xn1(n < T ) + Yn1(n ≥ T ).

Y

X

T

Zarbitrary distribution

stationary distribution

Thus, Zn equals Xn before the meeting time of X and Y ; after the meeting time, Zn = Yn.
Obviously, Z0 = X0 which has an arbitrary distribution µ, by assumption. Moreover,
(Zn,≥ 0) is a Markov chain with transition probabilities pij .

Hence (Zn, n ≥ 0) is identical in law to (Xn, n ≥ 0).

In particular, for all n and x,

P (Xn = x) = P (Zn = x).

Clearly, T is a meeting time between Z and Y . By the coupling inequality,

|P (Zn = x)− P (Yn = x)| ≤ P (T > n).

Since P (Zn = x) = P (Xn = x), and since P (Yn = x) = π(x), we have

|P (Xn = x)− π(x)| ≤ P (T > n),

which converges to zero, as n→ ∞, uniformly in x, precisely because P (T <∞) = 1.

Example showing that the aperiodicity assumption is essential for the method
used in the proof: If pij are the transition probabilities of an irreducible chain X and if
Y is an independent copy of X, then the process W = (X,Y ) may fail to be irreducible.
For example, suppose that S = {0, 1} and the pij are

p01 = p10 = 1.

Then the product chain has state space S×S = {(0, 0), (0, 1), (1, 0), (1, 1)} and the transition
probabilities are

q(0,0),(1,1) = q(1,1),(0,0) = q(0,1),(1,0) = q(1,0),(0,1) = 1.

This is not irreducible. However, if we modify the original chain and make it aperiodic by,
say,

p00 = 0.01, p01 = 0.99, p10 = 1,
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then the product chain becomes irreducible.

Example showing that the aperiodicity assumption is essential for the limiting
result: Consider the same chain as above:

p01 = p10 = 1.

Suppose X0 = 0. Then Xn = 0 for even n and = 1 for odd n. Therefore p
(n)
00 = 1 for even n

and = 0 for odd n. Thus, limn→∞ p
(n)
00 does not exist. However, if we modify the chain by

p00 = 0.01, p01 = 0.99, p10 = 1,

then
lim
n→∞

p
(n)
00 = lim

n→∞
p
(n)
10 = π(0), lim

n→∞
p
(n)
11 = lim

n→∞
p
(n)
01 = π(1),

where π(0), π(1) satisfy

0.99π(0) = π(1), π(0) + π(1) = 1,

i.e. π(0) ≈ 0.503, π(1) ≈ 0.497. In matrix notation,

lim
n→∞

(
p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
=

(
0.503 0.497
0.503 0.497

)
.

18.5 Terminology

A Markov chain which is irreducible and positive recurrent will be called ergodic.

A Markov chain which is irreducible and positive recurrent and aperiodic will be called
mixing.

The reader is asked to pay attention to this terminology which is different from the one used
in the Markov chain literature. Indeed, most people use the term “ergodic” for an irreducible,
positive recurrent and aperiodic Markov chain. But this is “wrong”. 6 The reason is that
the term “ergodic” means something specific in Mathematics (c.f. Parry, 1981), and this is
expressed by our terminology.

18.6 Periodic chains

Suppose now that we have a positive recurrent irreducible chain. By the results of Section
14, we know we have a unique stationary distribution π and that π(x) > 0 for all states x.

Suppose that the period of the chain is d. By the results of §5.4 and, in particular, Theorem
4, we can decompose the state space into d classes C0, C1, . . . , Cd−1, such that the chain
moves cyclically between them: from C0 to C1, from C1 to C2, and so on, from Cd back to
C0.

It is not difficult to see that

6We put “wrong” in quotes. Terminology cannot be, per se wrong. It is, however, customary to have a
consistent terminology.
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Lemma 8. The chain (Xnd, n ≥ 0) consists of d closed communicating classes, namely
C0, . . . , Cd−1. All states have period 1 for this chain.

Hence if we restrict the chain (Xnd, n ≥ 0) to any of the sets Cr we obtain a positive
recurrent irreducible aperiodic chain, and the previous results apply.

We shall show that

Lemma 9. ∑

i∈Cr

π(i) = 1/d,

for all r = 0, 1, . . . , d− 1.

Proof. Let αr :=
∑

i∈Cr
π(i). We have that π satisfies the balance equations:

π(i) =
∑

j∈S

π(j)pji, i ∈ S.

Suppose i ∈ Cr. Then pji = 0 unless j ∈ Cr−1. So

π(i) =
∑

j∈Cr−1

π(j)pji, i ∈ Cr.

Summing up over i ∈ Cr we obtain

αr =
∑

i∈Cr

π(i) =
∑

j∈Cr−1

π(j)
∑

i∈Cr

pji =
∑

j∈Cr−1

π(j) = αr−1.

Since the αr add up to 1, each one must be equal to 1/d.

Suppose that X0 ∈ Cr. Then, the (unique) stationary distribution of (Xnd, n ≥ 0) is
dπ(i), i ∈ Cr. Since (Xnd, n ≥ 0) is aperiodic, we have

p
(nd)
ij = Pi(Xnd = j) → dπ(j), as n→ ∞,

for all i, j ∈ Cr.

Can we also find the limit when i and j do not belong to the same class? Suppose that
i ∈ Ck, j ∈ Cℓ. Then, starting from i, the original chain enters Cℓ in r = ℓ− k steps (where
r is taken to be a number between 0 and d − 1, after reduction by d) and, thereafter, if
sampled every d steps, it remains in Cℓ. This means that:

Theorem 18. Suppose that pij are the transition probabilities of a positive recurrent irre-
ducible chain with period d. Let i ∈ Ck, j ∈ Cℓ, and let r = ℓ− k (modulo d). Then

p
(r+nd)
ij → dπ(j), as n→ ∞,

where π is the stationary distribution.
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19 Limiting theory for Markov chains*

We wish to complete our discussion about the possible limits of the n-step transition prob-

abilities p
(n)
ij , as n→ ∞.

Recall that we know what happens when j is positive recurrent and i is in the same commu-

nicating class as j If the period is 1, then p
(n)
ij → π(j) (Theorems 17). If the period is d then

the limit exists only along a selected subsequence (Theorem 18). We also saw in Corollary

7 that, if j is transient, then p
(n)
ij → 0 as n→ ∞, for all i ∈ S.

19.1 Limiting probabilities for null recurrent states

Theorem 19. If j is a null recurrent state then

p
(n)
ij → 0, as n→ ∞,

for all i ∈ S.

The proof will be based on two results from Analysis, the first of which is known as Helly-
Bray Lemma:

Lemma 10. Consider, for each n = 1, 2, . . ., a probability distribution on N, i.e. p(n) =(
p
(n)
1 , p

(n)
2 , p

(n)
3 , . . .

)
, where

∑∞
i=1 p

(n)
i = 1 and p

(n)
i ≥ 0 for all i. Then we can find a

sequence n1 < n2 < n3 < · · · of integers such that limk→∞ p
(nk)
i exists for all i ∈ N.

Proof. Since the numbers p
(n)
1 are contained between 0 and 1, there must be a subsequence

n11 < n12 < n13 < · · · , such that limk→∞ p
(n1

k
)

1 exists and equals, say, p1. Now consider the

numbers p
(n1

k
)

2 , k = 1, 2, . . .. Since they are contained between 0 and 1 there must be a

subsequence n2k of n1k such that limk→∞ p
(n2

k
)

1 exists and equals, say, p2. It is clear how we

continue. For each i we have found subsequence nik, k = 1, 2, . . . such that limk→∞ p
(ni

k
)

i

exists and equals, say, pi. We have, schematically,

p
(n1

1)
1 p

(n1
2)

1 p
(n1

3)
1 · · · → p1

p
(n2

1)
1 p

(n2
2)

1 p
(n2

3)
1 · · · → p2

p
(n3

1)
1 p

(n3
2)

1 p
(n3

3)
1 · · · → p3

· · · · · · · · · · · · · · · · · ·

Now pick the numbers in the diagonal. By construction, the sequence n2k of the second row
is a subsequence of n1k of the first row; the sequence n3k of the third row is a subsequence
of n2k of the second row; and so on. So the diagonal subsequence (nkk, k = 1, 2, . . .) is a

subsequence of each (nik, k = 1, 2, . . .), for each i. Hence p
(nk

k
)

i → pi, as k → ∞, for each
i.

The second result is Fatou’s lemma, whose proof we omit7:

7See Brémaud (1999).
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Lemma 11. If (yi, i ∈ N), (x
(n)
i , i ∈ N), n = 1, 2, . . . are sequences of nonnegative numbers

then
∞∑

i=1

yi lim inf
n→∞

x
(n)
i ≤ lim inf

n→∞

∞∑

i=1

yix
(n)
i .

Proof of Theorem 19. Let j be a null recurrent state. Suppose that for some i, the sequence

p
(n)
ij does not converge to 0. Hence we can find a subsequence nk such that

lim
k→∞

p
(nk)
ij = αj > 0.

Consider the probability vector (
p
(nk)
ix , x ∈ S

)
.

By Lemma 10, we can pick subsequence (n′k) of (nk) such that

lim
k→∞

p
(n′

k
)

ix = αx, for all x ∈ S.

Since aj > 0, we have

0 <
∑

x∈S

αx ≤ lim inf
k→∞

∑

x∈S

p
(n′

k
)

ix = 1.

The inequality follows from Lemma 11, and the last equality is obvious since we have a
probability vector. But Pn+1 = PnP, i.e.

p
(n′

k
+1)

ix =
∑

y∈S

p
(n′

k
)

iy pyx.

Therefore, by Lemma 11,

lim
k→∞

p
(n′

k
+1)

ix ≥
∑

y∈S

lim
k→∞

p
(n′

k
)

iy pyx.

Hence
αx ≥

∑

y∈S

αypyx, x ∈ S.

We wish to show that these inequalities are, actually, equalities. Suppose that one of them
is not, i.e. it is a strict inequality:

αx0 >
∑

y∈S

αypyx0 , for some x0 ∈ S.

This would imply that
∑

x∈S

αx >
∑

x∈S

∑

y∈S

αypyx =
∑

y∈S

αy
∑

x∈S

pyx =
∑

y∈S

αy,

and this is a contradiction (the number
∑

x∈S αx cannot be strictly larger than itself). Thus,

αx =
∑

y∈S

αypyx, x ∈ S.

Since
∑

x∈S αx ≤ 1, we have that

π(x) :=
αx∑
y∈S αy

satisfies the balance equations and has
∑

x∈S π(x) = 1, i.e. π is a stationary distribution.
Now π(j) > 0 because αj > 0, by assumption. By Corollary 13, state j is positive recurrent:
Contradiction.
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19.2 The general case

It remains to see what the limit of p
(n)
ij is, as n → ∞, when j is a positive recurrent state

but i and j do not necessarily belong to the same communicating class. The result when
the period j is larger than 1 is a bit awkward to formulate, so we will only look that the
aperiodic case.

Theorem 20. Let j be a positive recurrent state with period 1. Let C be the communicating
class of j and let πC be the stationary distribution associated with C. Let i be an arbitrary
state. Let

HC := inf{n ≥ 0 : Xn ∈ C}.
Let

ϕC(i) := Pi(HC <∞).

Then
lim
n→∞

p
(n)
ij = ϕC(i)π

C(j).

Proof. If i also belongs to C then ϕC(i) = 1 and so the result follows from Theorem 17. In
general, we have

p
(n)
ij = Pi(Xn = j) = Pi(Xn = j,HC ≤ n)

=
n∑

m=1

Pi(HC = m)Pi(Xn = j | HC = m).

Let µ be the distribution of XHC
given that X0 = i and that {HC <∞}. From the Strong

Markov Property, we have Pi(Xn = j | HC = m) = Pµ(Xn−m = j). But Theorem 17 tells us
that the limit exists regardless of the initial distribution, that is, Pµ(Xn−m = j) → πC(j),
as n→ ∞. Hence

lim
n→∞

p
(n)
ij = πC(j)

∞∑

m=1

Pi(HC = m) = πC(j)Pi(HC <∞),

which is what we need.

Remark: We can write the result of Theorem 20 as

lim
n→∞

p
(n)
ij =

fij
EjTj

,

where Tj = inf{n ≥ 1 : Xn = j}, and fij = Pi(Tj < ∞), as in §10.2. Indeed, πC(j) =
1/EjTj , and fij = ϕC(j). In this form, the result can be obtained by the so-called Abel’s
Lemma of Analysis, starting with the first hitting time decomposition relation of Lemma 7.
This is a more old-fashioned way of getting the same result.

Example: Consider the following chain (0 < α, β, γ < 1):

1 2 3 4 5

β

α

1−β
1−α

1

1

γ
1−γ
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The communicating classes are I = {3, 4} (inessential states), C1 = {1, 2} (closed class),
C2 = {5} (absorbing state). The stationary distributions associated with the two closed
classes are:

πC1(1) =
1

1 + γ
, πC1(2) =

γ

1 + γ
, πC2(5) = 1.

Let ϕ(i) be the probability that class C1 will be reached starting from state i. We have

ϕ(1) = ϕ(2) = 1, , ϕ(5) = 0,

while, from first-step analysis,

ϕ(3) = (1− α)ϕ(2) + αϕ(4)

ϕ(4) = (1− β)ϕ(5) + βϕ(3),

whence

ϕ(3) =
1− α

1− αβ
, ϕ(4) =

β(1− α)

1− αβ
.

Both C1, C2 are aperiodic classes. Hence, as n→ ∞,

p
(n)
31 → ϕ(3)πC1(1), p

(n)
32 → ϕ(3)πC1(2), p

(n)
33 → 0, p

(n)
34 → 0, p

(n)
35 → (1−ϕ(3))πC2(5).

Similarly,

p
(n)
41 → ϕ(4)πC1(1), p

(n)
42 → ϕ(4)πC1(2), p

(n)
43 → 0, p

(n)
44 → 0, p

(n)
45 → (1−ϕ(4))πC2(5).

20 Ergodic theorems

An ergodic theorem is a result about time-averages of random processes. The subject of
Ergodic Theory has its origins in Physics. The ergodic hypothesis in physics says that
the proportion of time that a particle spends in a particular region of its “phase space” is
proportional to the volume of this region. The phase (or state) space of a particle is not just
a physical space but it includes, for example, information about its velocity. Pioneers in
the are were, among others, the 19-th century French mathematicians Henri Poincaré and
Joseph Liouville.

Ergodic Theory is nowadays an area that combines many fields of Mathematics and Science,
ranging from Mathematical Physics and Dynamical Systems to Probability and Statistics.

We will avoid to give a precise definition of the term ‘ergodic’ but only mention what
constitutes a result in the area. For example, Theorem 14 is a type of ergodic theorem. And
so is the Law of Large Numbers itself (Theorem 13).

Recall that, in Theorem 14, we assumed the existence of a positive recurrent state. We now
generalise this.

Theorem 21. Suppose that a Markov chain possesses a recurrent state a ∈ S and starts
from an initial state X0 such that P (Ta <∞) = 1. Consider the quantity ν [a](x) defined as
the average number of visits to state x between two successive visits to state a–see 16. Let
f be a reward function such that

∑

x∈S

|f(x)|ν [a](x) <∞. (20)
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Then

P

(
lim
t→∞

∑t
n=0 f(Xn)∑t

n=0 1(Xn = a)
= f̂

)
= 1 , (21)

where

f̂ :=
∑

x∈S

f(x)ν [a](x).

Proof. The reader is asked to revisit the proof of Theorem 14. Note that the denominator∑t
n=0 1(Xn = a) equals the number Nt of visits to state a up to time t. As in Theorem 14,

we break the total reward as follows:

t∑

n=0

f(Xn) =

Nt−1∑

r=1

Gr +Gfirst
t +Glast

t ,

where Gr =
∑

T
(r)
a ≤t<T

(r+1)
a

f(Xt), while G
first
t , Glast

t are the total rewards over the first and

last incomplete cycles, respectively. As in the proof of Theorem 14, we have

lim
t→∞

1

t
Glast
t = lim

t→∞

1

t
Gfirst
t = 0,

with probability one. The Law of Large Numbers tells us that

lim
n→∞

1

n

n−1∑

r=0

Gr = EG1,

with probability 1 as long as E|G1| <∞. But this is precisely the condition (20). Replacing
n by the subsequence Nt, we obtain the result. We only need to check that EG1 = f̂ , and
this is left as an exercise.

Remark 1: The difference between Theorem 14 and 21 is that, in the former, we assumed
positive recurrence of the ground state a. If so, then, as we saw in the proof of Theorem
14, we have Nt/t → 1/EaTa. So if we divide by t the numerator and denominator of the
fraction in (21), we have that the denominator equals Nt/t and converges to 1/EaTa, so the
numerator converges to f̂/EaTa, which is the quantity denoted by f in Theorem 14.

Remark 2: If a chain is irreducible and positive recurrent then the Ergodic Theorem
Theorem 14 holds, and this justifies the terminology of §18.5.

21 Finite chains

We take a brief look at some things that are specific to chains with finitely many states.
Then at least one of the states must be visited infinitely often. So there are always recurrent
states. From proposition 2 we know that the balance equations

ν = νP

have at least one solution. Now, since the number of states is finite, we have

C :=
∑

i∈S

ν(i) <∞.
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Hence

π(i) :=
1

C
ν(i), i ∈ S,

satisfies the balance equations and the normalisation condition
∑

i∈S π(i) = 1. Therefore π
is a stationary distribution. At least some state i must have π(i) > 0. By Corollary 13, this
state must be positive recurrent.

Hence, a finite Markov chain always has positive recurrent states. If, in addition, the chain
is irreducible, then all states are positive recurrent, because positive recurrence is a class
property (Theorem 15). In addition, by Theorem 16, the stationary distribution is unique.

We summarise the above discussion in:

Theorem 22. Consider an irreducible Markov chain with finitely many states. Then the
chain is positive recurrent with a unique stationary distribution π. If, in addition, the chain
is aperiodic, we have

Pn → Π, as n→ ∞,

where P is the transition matrix and Π is a matrix all the rows of which are equal to π.

22 Time reversibility

Consider a Markov chain (Xn, n ≥ 0). We say that it is time-reversible, or, simply,
reversible if it has the same distribution when the arrow of time is reversed. More precisely,

(X0, X1, . . . , Xn) has the same distribution as (Xn, Xn−1, . . . , X0), for all n.

Another way to put this is by saying that observing any part of the process will not reveal
any information about whether the process runs forwards or backwards in time. It is, in a
sense, like playing a film backwards, without being able to tell that it is, actually, running
backwards. For example, if we film a standing man who raises his arms up and down
successively, and run the film backwards, it will look the same. But if we film a man who
walks and run the film backwards, then we instantly know that the film is played in reverse.

Lemma 12. A reversible Markov chain is stationary.

Proof. Reversibility means that (X0, X1, . . . , Xn) has the same distribution as (Xn, Xn−1, . . . , X0)
for all n. In particular, the first components of the two vectors must have the same distribu-
tion; that is, Xn has the same distribution as X0 for all n. Because the process is Markov,
this means that it is stationary.

Theorem 23. Consider an irreducible Markov chain with transition probabilities pij and
stationary distribution π. Then the chain is reversible if and only if the detailed balance
equations hold:

π(i)pij = π(j)pji, i, j ∈ S.

Proof. Suppose first that the chain is reversible. Taking n = 1 in the definition of reversibil-
ity, we see that (X0, X1) has the same distribution as (X1, X0), i.e.

P (X0 = i,X1 = j) = P (X1 = i,X0 = j),
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for all i and j. But

P (X0 = i,X1 = j) = π(i)pij , P (X0 = j,X1 = i) = π(j)pji.

So the detailed balance equations (DBE) hold.
Conversely, suppose the DBE hold. The DBE imply immediately that (X0, X1) has the
same distribution as (X1, X0). Now pick a state k and write, using the DBE,

π(i)pijpjk = [π(j)pji]pjk = [π(j)pjk]pji = π(k)pkjpji,

and this means that

P (X0 = i,X1 = j,X2 = k) = P (X0 = k,X1 = j,X2 = i),

for all i, j, k, and hence (X0, X1, X2) has the same distribution as (X2, X1, X0). By in-
duction, it is easy to show that, for all n, (X0, X1, . . . , Xn) has the same distribution as
(Xn, Xn−1, . . . , X0), and the chain is reversible.

Theorem 24. Consider an aperiodic irreducible Markov chain with transition probabilities
pij and stationary distribution π. Then the chain is reversible if and only if the Kol-
mogorov’s loop criterion holds: for all i1, i2, . . . , im ∈ S and all m ≥ 3,

pi1i2pi2i3 · · · pim−1im = pi1impimim−1 · · · pi2i1 . (22)

Proof. Suppose first that the chain is reversible. Hence the DBE hold. We will show the
Kolmogorov’s loop criterion (KLC). Pick 3 states i, j, k, and write, using DBE,

π(i)pijpjkpki = [π(j)pji]pjkpki = [π(j)pjk]pjipki = [π(k)pkj ]pjipki

= [π(k)pki]pjipkj = [π(i)pik]pjipkj = π(i)pikpkjpji

Since the chain is irreducible, we have π(i) > 0 for all i. Hence cancelling the π(i) from the
above display we obtain the KLC for m = 3. The same logic works for any m and can be
worked out by induction.
Conversely, suppose that the KLC (22) holds. Summing up over all choices of states
i3, i4, . . . , im−1 we obtain

pi1i2p
(m−3)
i2i1

= p
(m−3)
i1i2

pi2i1

If the chain is aperiodic, then, letting m→ ∞, we have p
(m−3)
i2i1

→ π(i1), and p
(m−3)
i1i2

→ π(i2),
implying that

π(i1)pi1i2 = π(i2)pi2i1 .

These are the DBE. So the chain is reversible.

Notes:
1) A necessary condition for reversibility is that pij > 0 if and only if pji > 0. In other
words, if there is an arrow from i to j in the graph of the chain but no arrow from j to i,
then the chain cannot be reversible.
2) The DBE are equivalent to saying that the ratio pij/pji can be written as a product of a
function of i and a function of j; we have separation of variables:

pij
pji

= f(i)g(j).
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(Convention: we form this ratio only when pij > 0.) Necessarily, f(i)g(i) must be 1 (why?),
so we have

pij
pji

=
g(j)

g(i)
.

Multiplying by g(i) and summing over j we find

g(i) =
∑

j∈S

g(j)pji.

So g satisfies the balance equations. This gives the following method for showing that a
finite irreducible chain is reversible:
• Form the ratio pij/pji and show that the variables separate.
• If the chain has infinitely many states, then we need, in addition, to guarantee, using
another method, that the chain is positive recurrent.

Example 1: Chain with a tree-structure. Consider a positive recurrent irreducible
Markov chain such that if pij > 0 then pji > 0. Form the graph by deleting all self-loops,
and by replacing, for each pair of distinct states i, j for which pij > 0, the two oriented
edges from i to j and from j to i by a single edge without arrow. If the graph thus obtained
is a tree, meaning that it has no loops, then the chain is reversible. For example, consider
the chain:

Replace it by:

This is a tree. Hence the original chain is reversible. The reason is as follows. Pick two
distinct states i, j for which pij > 0. If we remove the link between them, the graph becomes
disconnected. (If it didn’t, there would be a loop, and, by assumption, there isn’t any.) Let
A,Ac be the sets in the two connected components. There is obviously only one arrow from
AtoAc, namely the arrow from i to j; and the arrow from j to j is the only one from Ac

to A. The balance equations are written in the form F (A,Ac) = F (Ac, A) (see §4.1) which
gives

π(i)pij = π(j)pji,

i.e. the detailed balance equations. Hence the chain is reversible. And hence π can be found
very easily.
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Example 2: Random walk on a graph. Consider an undirected graph G with vertices
S, a finite set, and a set E of undirected edges. Each edge connects a pair of distinct
vertices (states) without orientation. Suppose the graph is connected. States j are i are
called neighbours if they are connected by an edge. For each state i define its degree

δ(i) = number of neighbours of i.

Now define the the following transition probabilities:

pij =

{
1/δ(i), if j is a neighbour of i

0, otherwise.

The Markov chain with these transition probabilities is called a random walk on a graph
(RWG). For example,

0
4 2

3

1

Here we have p12 = p10 = p14 = 1/3, p02 = 1/4, etc.

The stationary distribution of a RWG is very easy to find. We claim that

π(i) = Cδ(i),

where C is a constant. To see this let us verify that the detailed balance equations hold.

π(i)pij = π(j)pji.

There are two cases: If i, j are not neighbours then both sides are 0. If i, j are neighbours
then π(i)pij = Cδ(i) 1

δ(i) = C and π(j)pji = Cδ(j) 1
δ(j) = C; so both members are equal to

C. In all cases, the DBE hold. Hence we conclude that:

1. A RWG is a reversible chain.

2. The stationary distribution assigns to a state probability which is proportional to its
degree.

The constant C is found by normalisation, i.e.
∑

i∈S

π(i) = 1.

Since ∑

i∈S

δ(i) = 2|E|,

where |E| is the total number of edges, we have that C = 1/2|E|.
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23 New Markov chains from old ones*

We now deal with the question: if we have a Markov chain (Xn), how can we create new
ones?

23.1 Subsequences

The most obvious way to create a new Markov chain is by picking a subsequence, i.e. a
sequence of integers (nk)k≥0 such that

0 ≤ n0 < n1 < n2 < · · ·

and by letting
Yk := Xnk

, k = 0, 1, 2, . . .

The sequence (Yk, k = 0, 1, 2, . . .) has the Markov property but it is not time-homogeneous,
in general. If the subsequence forms an arithmetic progression, i.e. if

nk = n0 + km, k = 0, 1, 2, . . . ,

then (Yk, k = 0, 1, 2, . . .) has time-homogeneous transition probabilities:

P (Yk+1 = j|Yk = i) = p
(m)
ij ,

where p
(m)
ij are the m-step transition probabilities of the original chain. In this case, if,

in addition, π is a stationary distribution for the original chain, then it is a stationary
distribution for the new chain.

23.2 Watching a Markov chain when it visits a set

Suppose that the original chain is ergodic (i.e. irreducible and positive recurrent). Let A be

a set of states and let T
(r)
A be the r-th visit to A. Define

Yr := X
T

(r)
A

, r = 1, 2, . . .

Due to the Strong Markov Property, this process is also a Markov chain and it does have
time-homogeneous transition probabilities. The state space of (Yr) is A. If π is the stationary
distribution of the original chain then π/π(A) is the stationary distribution of (Yr).

23.3 Subordination

Let (Xn, n ≥ 0) be Markov with transition probabilities pij . Let (St, t ≥ 0) be independent
from (Xn) with

S0 = 0, St+1 = St + ξt, t ≥ 0,

where ξt are i.i.d. random variables with values in N and distribution

λ(n) = P (ξ0 = n), n ∈ N.
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Then
Yt := XSt , t ≥ 0,

is a Markov chain with

P (Yt+1 = j|Yt = i) =

∞∑

n=1

λ(n)p
(n)
ij .

23.4 Deterministic function of a Markov chain

If (Xn) is a Markov chain with state space S and if f : S → S′ is some function from S to
some countable set S′, then the process

Yn = f(Xn), n ≥ 0

is NOT, in general, a Markov chain.

If, however, f is a one-to-one function then (Yn) is a Markov chain. Indeed, knowledge of
f(Xn) implies knowledge of Xn and so, conditional on Yn the past is independent of the
future.

(Notation: We will denote the elements of S by i, j, . . ., and the elements of S′ by α, β, . . ..)

More generally, we have:

Lemma 13. Suppose that P (Yn+1 = β | Xn = i) depends on i only through f(i), i.e. that
there is a function Q : S′ × S′ → R such that

P (Yn+1 = β | Xn = i) = Q(f(i), β).

Then (Yn) has the Markov property.

Proof. Fix α0, α1, . . . , αn−1 ∈ S′ and let Yn−1 be the event

Yn−1 := {Y0 = α0, . . . , Yn−1 = αn−1}.

We need to show that

P (Yn+1 = β | Yn = α,Yn−1) = P (Yn+1 = β | Yn = α),
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for all choices of the variables involved. But

P (Yn+1 = β | Yn = α,Yn−1)

=
∑

i∈S

P (Yn+1 = β | Xn = i, Yn = α,Yn−1)P (Xn = i | Yn = α,Yn−1)

=
∑

i∈S

Q(f(i), β)P (Xn = i | Yn = α,Yn−1)

=
∑

i∈S

Q(f(i), β)
P (Yn = α|Xn = i,Yn−1)P (Xn = i|Yn−1)

P (Yn = α|Yn−1)

=
∑

i∈S

Q(f(i), β)
1(α = f(i))P (Xn = i|Yn−1)

P (Yn = α|Yn−1)

= Q(α, β)
∑

i∈S

P (Yn = α|Xn = i,Yn−1)P (Xn = i|Yn−1)

P (Yn = α|Yn−1)

= Q(α, β)

∑
i∈S P (Yn = α,Xn = i|Yn−1)P (Xn = i|Yn−1)

P (Yn = α|Yn−1)

= Q(α, β)
P (Yn = α|Yn−1)

P (Yn = α|Yn−1)

= Q(α, β).

Thus (Yn) is Markov with transition probabilities Q(α, β).

Example: Consider the symmetric drunkard’s random walk, i.e.

P (Xn+1 = i± 1|Xn = i) = 1/2, i ∈ Z.

Define
Yn := |Xn|.

Then (Yn) is a Markov chain. To see this, observe that the function | · | is not one-to-one.
But we will show that

P (Yn+1 = β|Xn = i), i ∈ Z, β ∈ Z+,

depends on i only through |i|. Indeed, conditional on {Xn = i}, and if i 6= 0, the absolute
value of next state will either increase by 1 or decrease by 1 with probability 1/2, regardless
of whether i > 0 or i < 0, because the probability of going up is the same as the probability
of going down. On the other hand, if i = 0, then |Xn+1| = 1 for sure. In other words, if we
let

Q(α, β) :=

{
1/2, if β = α± 1, α > 0

1, if β = 1, α = 0,

We have that
P (Yn+1 = β|Xn = i) = Q(|i|, β),

for all i ∈ Z and all β ∈ Z+, and so (Yn) is, indeed, a Markov chain with transition
probabilities Q(α, β).
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24 Applications

24.1 Branching processes: a population growth application

We describe a basic model for population growth known as the Galton-Watson process.
The idea is this: At each point of time n we have a number Xn of individuals each of which
gives birth to a random number of offspring, independently from one another, and following
the same distribution. The parent dies immediately upon giving birth. We let pk be the
probability that an individual will bear k offspring, k = 0, 1, 2, . . .. We find the population

at time n+ 1 by adding the number of offspring of each individual. Let ξ
(n)
k be the number

of offspring of the k-th individual in the n-th generation. Then the size of the (n + 1)-st
generation is:

Xn+1 = ξ
(n)
1 + ξ

(n)
2 + · · ·+ ξ

(n)
Xn
.

If we let
ξ(n) =

(
ξ
(n)
1 , ξ

(n)
2 , . . .

)

then we see that the above equation is of the form

Xn+1 = f(Xn, ξ
(n)),

and, since ξ(0), ξ(1), . . . are i.i.d. (and independent of the initial population size X0–a further
assumption), we have that (Xn, n ≥ 0) has the Markov property. It is a Markov chain with
time-homogeneous transitions. Computing the transition probabilities pij = P (Xn+1 =
j|Xn = i) is, in general, a hard problem, so we will find some different method to proceed.
But here is an interesting special case.

Example: Suppose that p1 = p, p0 = 1 − p. Thus, each individual gives birth to at one
child with probability p or has children with probability 1 − p. If we know that Xn = i
then Xn+1 is the number of successful births amongst i individuals, which has a binomial
distribution:

pij =

(
i

j

)
pj(1− p)i−j , 0 ≤ j ≤ i.

In this case, the population cannot grow: it will eventually reach 0, and 0 is always an
absorbing state.

Back to the general case, one question of interest is whether the process will become extinct
or not. We will not attempt to compute the pij neither draw the transition diagram because
they are both futile.

If p1 = P (ξ = 1) = 1 then Xn = X0 + n and this is a trivial case. So assume that p1 6= 1.
Then

P (ξ = 0) + P (ξ ≥ 2) > 0.

We distinguish two cases:
Case I: If p0 = P (ξ = 0) = 0 then the population can only grow. Hence all states i ≥ 1 are
transient. The state 0 is irrelevant because it cannot be reached from anywhere.
Case II: If p0 = P (ξ = 0) > 0 then state 0 can be reached from any other state: indeed, if the
current population is i there is probability pi0 that everybody gives birth to zero offspring.
But 0 is an absorbing state. Hence all states i ≥ 1 are inessential; therefore transient.
Therefore, with probability 1, if 0 is never reached then Xn → ∞. In other words, if the

65



population does not become extinct then it must grow to infinity. Let D be the event of
‘death’ or extinction:

D := {Xn = 0 for some n ≥ 0}.
We wish to compute the extinction probability

ε(i) := Pi(D),

when we start with X0 = i. Obviously, ε(0) = 1. For i ≥ 1, we can argue that

ε(i) = εi, where ε = P1(D).

Indeed, if we start with X0 = i in ital ancestors, each one behaves independently of one
another. For each k = 1, . . . , i, let Dk be the event that the branching process corresponding
to the k-th initial ancestor dies. We then have that

D = D1 ∩ · · · ∩Di,

and P (Dk) = ε, so P (D|X0 = i) = εi. Therefore the problem reduces to the study of the
branching process starting with X0 = 1. The result is this:

Proposition 5. Consider a Galton-Watson process starting with X0 = 1 initial ancestor.
Let

µ = Eξ =
∞∑

k=1

kpk

be the mean number of offspring of an individual. Let

ϕ(z) := Ezξ =
∞∑

k=0

zkpk

be the probability generating function of ξ. Let ε be the extinction probability of the process.
If µ ≤ 1 then the ε = 1. If µ > 1 then ε < 1 is the unique solution of

ϕ(z) = z.

Proof. We let

ϕn(z) := EzXn =
∞∑

k=0

zkP (Xn = k)

be the probability generating function of Xn. This function is of interest because it gives
information about the extinction probability ε. Indeed,

ϕn(0) = P (Xn = 0),

and, since
Xn = 0 implies Xm = 0 for all m ≥ n,

we have

lim
n→∞

ϕn(0) = lim
n→∞

P (Xm = 0 for all m ≥ n)

= P (there exists n such that Xm = 0 for all m ≥ n)

= P (D) = ε.
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Note also that
ϕ0(z) = 1, ϕ1(z) = ϕ(z).

We then have

ϕn+1(z) = EzXn+1 = E

[
zξ

(n)
1 zξ

(n)
2 · · · zξ

(n)
Xn

]

=
∞∑

i=0

E

[
zξ

(n)
1 zξ

(n)
2 · · · zξ

(n)
Xn 1(Xn = i)

]

=
∞∑

i=0

E
[
zξ

(n)
1 zξ

(n)
2 · · · zξ

(n)
i 1(Xn = i)

]

=

∞∑

i=0

E[zξ
(n)
1 ] E[zξ

(n)
2 ] · · ·E[zξ

(n)
i ] E[1(Xn = i)]

=
∞∑

i=0

ϕ(z)iP (Xn = i)

= E
[
ϕ(z)Xn

]

= ϕn(ϕ(z)).

Hence ϕ2(z) = ϕ1(ϕ(z)) = ϕ(ϕ(z)), ϕ3(z) = ϕ2(ϕ(z)) = ϕ(ϕ(ϕ(z))) = ϕ(ϕ2(z)), and so on,

ϕn+1(z) = ϕ(ϕn(z)).

In particular,
ϕn+1(0) = ϕ(ϕn(0)).

But ϕn+1(0) → ε as n → ∞. Also ϕn(0) → ε, and, since ϕ is a continuous function,
ϕ(ϕn(0)) → ϕ(ε). Therefore

ε = ϕ(ε).

Notice now that

µ =
d

dz
ϕ(z)

∣∣∣∣
z=1

.

Also, recall that ϕ is a convex function with ϕ(1) = 1. Therefore, if the slope µ at z = 1 is
≤ 1, the graph of ϕ(z) lies above the diagonal (the function z) and so the equation z = ϕ(z)
has no solutions other than z = 1. This means that ε = 1 (see left figure below). On
the other hand, if µ > 1, then the graph of ϕ(z) does intersect the diagonal at some point
ε∗ < 1. Let us show that, in fact, ε = ε∗. Since both ε and ε∗ satisfy z = ϕ(z), and since
the latter has only two solutions (z = 0 and z = ε∗), all we need to show is that ε < 1. But
0 ≤ ε∗. Hence ϕ(0) ≤ ϕ(ε∗) = ε∗. By induction, ϕn(0) ≤ ε∗. But ϕn(0) → ε. So ε ≤ ε∗ < 1.
Therefore ε = ε∗. (See right figure below.)
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(z)

0

1

z
1

Case: µ ≤ 1. Then ε = 1.

(z)

0

1

ε

ε0

1

z
1

Case: µ > 1. Then ε < 1.

24.2 The ALOHA protocol: a computer communications application

This is a protocol used in the early days of computer networking for having computer hosts
communicate over a shared medium (radio channel). The problem of communication over
a common channelis that if more than one hosts attempt to transmit a packet, there is
collision and the transmission is unsuccessful. Thus, for a packet to go through, only one of
the hosts should be transmitting at a given time. One obvious solution is to allocate time
slots to hosts in a specific order, periodically. So if there are, say, 3 hosts, then time slots
0, 1, 2, 3, 4, 5, 6, . . . are allocated to hosts 1, 2, 3, 1, 2, 3, 1, . . .. But this is not a good method:
it is a waste of time to allocate a slot to a host if that host has nothing to transmit. Since
things happen fast in a computer network, there is no time to make a prior query whether a
host has something to transmit or not. Abandoning this idea, we let hosts transmit whenever
they like. If collision happens, then the transmission is not successful and the transmissions
must be attempted anew.

In a simplified model, assume that on a time slot there are x packets amongst all hosts
that are waiting for transmission (they are ‘backlogged’). During this time slot assume
there is a number a of new packets that need to be transmitted (a = 0, 1, 2, . . .). Each of
the backlogged or newly arrived packets is independently selected for transmission with (a
small) probability p. Let s be the number of selected packets. If s = 1 there is a successful
transmission and, on the next times slot, there are x + a − 1 packets. If s ≥ 2, there is a
collision and, on the next times slot, there are x+ a packets.

If we let Xn be the number of backlogged packets at the beginning of the n-th time slot, An
the number of new packets on the same time slot, and Sn the number of selected packets,
then

Xn+1 =

{
max(Xn +An − 1, 0), if Sn = 1,

Xn +An, otherwise.

We assume that the An are i.i.d. random variables with some common distribution:

P (An = k) = λk, k ≥ 0,

where λk ≥ 0 and
∑

k≥0 kλk = 1. We also let

µ :=
∑

k≥1

kλk
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be the expectation of An. The random variable Sn has, conditional on Xn and An (and all
past states and arrivals) a distribution which is Binomial with parameters Xn +An, and p.
Indeed, selections are made amongst the Xn +An packets. So

P (Sn = k|Xn = x,An = a,Xn−1, An−1, . . .) =

(
x+ a

k

)
pkqx+a−k, 0 ≤ k ≤ x+ a,

where q = 1−p. The reason we take the maximum with 0 in the above equation is because,
if Xn + An = 0, we should not subtract 1. The process (Xn, n ≥ 0) is a Markov chain. Let
us find its transition probabilities. To compute px,x−1 when x > 0, we think as follows: to
have a reduction of x by 1, we must have no new packets arriving, and exactly one selection:

px,x−1 = P (An = 0, Sn = 1|Xn = x) = λ0xpq
x−1.

To compute px,x+k for k ≥ 0, we think like this: to have an increase by k we either need
exactly k new packets and no successful transmissions (i.e. Sn should be 0 or ≥ 2) or we
need k + 1 new packets and one selection (Sn = 1). So:

px,x+k = λk(1− (x+ k)pqx+k−1) + λk+1(x+ k + 1)pqx+k, k ≥ 1.

(One can easily check that
∑∞

k=−1 px,x+k = 1.) The main result is:

Proposition 6. The Aloha protocol is unstable, i.e. the Markov chain (Xn) is transient.

Idea of proof. Proving this is beyond the scope of the lectures, but we mention that it is
based on the so-called drift criterion which says that if the expected change Xn+1 − Xn

conditional on Xn = x is bounded below from a positive constant for all large x, then
the chain is transient. We here only restrict ourselves to the computation of this expected
change, defined by‘

∆(x) := E[Xn+1 −Xn|Xn = x].

For x > 0, we have

∆(x) = (−1)px,x−1 +
∑

k≥1

kpx,x+k

= −λ0xpqx−1 +
∑

k≥1

kλk −
∑

k≥1

kλk(x+ k)pqx+k−1 +
∑

k≥1

kλk+1(x+ k + 1)pqx+k.

= −λ0xpqx−1 + µ− λ1(x+ 1)pqx −
∑

k≥2

λk(x+ k)pqx+k−1

= µ− qxG(x),

where G(x) is a function of the form α + βx. Since p > 0, we have q < 1, and so qx tends
to 0 much faster than G(x) tends to ∞, so qxG(x) tends to 0 as x → ∞. So we can make
qxG(x) as small as we like by choosing x sufficiently large, for example we can make it
≤ µ/2. Therefore ∆(x) ≥ µ/2 for all large x. Unless µ = 0 (which is a trivial case: no
arrivals!), we have that the drift is positive for all large x and this can be used to prove
transience.
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24.3 PageRank (trademark of Google): A World Wide Web application

PageRank is an algorithm used by the popular search engine Google in order to assign
importance to a web page. The way it does that is by computing the stationary distribution
of a Markov chain that we now describe.

The web graph is a a graph set of vertices V consisting of web pages and edges representing
hyperlinks: thus, if page i has a link to page j then we put an arrow from i to j and consider
it as a directed edge of the graph. For each page i let L(i) be the set of pages it links to. If
L(i) = ∅, then i is a ‘dangling page’. Define transition probabilities as follows:

p̂ij =





1/|L(i)|, if j ∈ L(i)

1/|V |, if L(i) = ∅

0, otherwise.

So if Xn = i is the current location of the chain, the next location Xn+1 is picked uniformly
at random amongst all pages that i links to, unless i is a dangling page; in the latter case,
the chain moves to a random page.

It is not clear that the chain is irreducible, neither that it is aperiodic.

So we make the following modification. We pick α between 0 and 1 (typically, α ≈ 0.2) and
let

pij := (1− α)p̂ij +
α

|V | .

These are new transition probabilities. The interpretation is that of a ‘bored surfer’: a surfer
moves according the the original Markov chain, unless he gets bored–and this happens with
probability α–in which case he clicks on a random page.

So this is how Google assigns ranks to pages: It uses an algorithm, PageRank, to compute
the stationary distribution π corresponding to the Markov chain with transition matrix
P = [pij ]:

π = πP.

Then it says:
page i has higher rank than j if π(i) > π(j).

The idea is simple. Its implementation though is one of the largest matrix computations in
the world, because of the size of the problem. The algorithm used (PageRank) starts with
an initial guess π(0) for π and updates it by

π(k) = π(k−1)P.

It uses advanced techniques from linear algebra to speed up computations.

24.4 The Wright-Fisher model: an example from biology

In an organism, a gene controlling a specific characteristic (e.g. colour of eyes) appears in
two forms, a dominant (say A) and a recessive (say a). The alleles in an individual come
in pairs and express the individual’s genotype for that gene. This means that the external
appearance of a characteristic is a function of the pair of alleles. An individual can be of
type AA (meaning that all its alleles are A) or aa or Aa. When two individuals mate, their
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offspring inherits an allele from each parent. Thus, two AA individuals will produce and
AA child. But an AA mating with a Aa may produce a child of type AA or one of type Aa.

Imagine that we have a population of N individuals who mate at random producing a
number of offspring. We will assume that a child chooses an allele from each parent at
random. We will also assume that the parents are replaced by the children. The process
repeats, generation after generation. We would like to study the genetic diversity, meaning
how many characteristics we have. To simplify, we will assume that, in each generation, the
genetic diversity depends only on the total number of alleles of each type. So let x be the
number of alleles of type A (so and 2N −x is the number of those of type a). If so, then, at
the next generation the number of alleles of type A can be found as follows: Pick an allele
at random; this allele is of type A with probability x/2N ; maintain this allele for the next
generation. Do the same thing 2N times.

In this figure there are 4 alleles of type A (circles) and 6 of type a (squares). One of
the square alleles is selected 4 times. One of the circle alleles is selected twice. Three
of the square alleles are never selected. And so on. Alleles that are never picked up
may belong to individuals who never mate or may belong to individuals who mate
but their offspring did not inherit this allele. Since we don’t care to keep track of the
individuals’ identities, all we need is the information outlined in this figure.

We are now ready to define the Markov chain Xn representing the number of alleles of type
A in generation n. We have a transition from x to y if y alleles of type A were produced.
Each allele of type A is selected with probability x/2N . Since selections are independent,
we see that

pxy =

(
2N

y

)( x

2N

)y (
1− x

2N

)2N−y
, 0 ≤ y ≤ 2N.

Notice that there is a chance (= (1 − x
2N )2N ) that no allele of type A is selected at all,

and the population becomes one consisting of alleles of type a only. Similarly, there is a
chance (= ( x

2N )2N ) that only alleles of type A are selected, and the population becomes
one consisting of alleles of type A only. Clearly, p00 = p2N,2N = 1, so both 0 and 2N are
absorbing states. Since pxy > 0 for all 1 ≤ x, y ≤ 2N − 1, the states {1, . . . , 2N − 1} form a
communicating class of inessential states. Therefore

P (Xn = 0 or Xn = 2N for all large n) = 1,

i.e. the chain gets absorbed by either 0 or 2N . Let M = 2N . The fact that M is even is
irrelevant for the mathematical model. Another way to represent the chain is as follows:

Xn+1 = ξn1 + · · ·+ ξnM ,
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where, conditionally on (X0, . . . , Xn), the random variables ξn1 , . . . , ξ
n
M are i.i.d. with

P (ξnk = 1|Xn, . . . , X0) =
Xn

M
, P (ξnk = 0|Xn, . . . , X0) = 1− Xn

M
,

Therefore,

E(Xn+1|Xn, . . . , X0) = E(Xn+1|Xn) =M
Xn

M
= Xn.

This implies that, for all n ≥ 0,
EXn+1 = EXn

and thus, on the average, the number of alleles of type A won’t change. Clearly, we would
like to know the probability

ϕ(x) = Px(T0 > TM )P (T0 > TM |X0 = x)

that the chain will eventually be absorbed by state M . (Here, as usual, Tx := inf{n ≥
1 : Xn = x}.)
One can argue that, since, on the average, the expectation doesn’t change and, since, at
“the end of time” the chain (started from x) will be either M with probability ϕ(x) or 0
with probability 1− ϕ(x), we should have

M × ϕ(x) + 0× (1− ϕ(x)) = x,

i.e.
ϕ(x) = x/M.

The result is correct, but the argument needs further justification because “the end of time”
is not a deterministic time. We show that our guess is correct by proceeding via the mundane
way of verifying that it satisfies the first-step analysis equations. These are:

ϕ(0) = 0, ϕ(M) = 1, ϕ(x) =
M∑

y=0

pxyϕ(y).

The first two are obvious. The right-hand side of the last equals

M∑

y=0

(
M

y

)( x
M

)y (
1− x

M

)M−y y

M
=

M∑

y=1

M !

y!(M − y)!

( x
M

)y (
1− x

M

)M−y y

M

=
M∑

y=1

(M − 1)!

(y − 1)!(M − y)!

( x
M

)y−1+1 (
1− x

M

)M−y−1+1

=
x

M

M∑

y=1

(
M − 1

y − 1

)( x
M

)y−1 (
1− x

M

)(M−1)−(y−1)

=
x

M

( x
M

+ 1− x

M

)M−1
=

x

M
,

as needed.
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24.5 A storage or queueing application

A storage facility stores, say, Xn electronic components at time n. A number An of new
components are ordered and added to the stock, while a number of them are sold to the
market. If the demand is for Dn components, the demand is met instantaneously, provided
that enough components are available, and so, at time n + 1, there are Xn + An − Dn

components in the stock. Otherwise, the demand is only partially satisfied, and the stock
reached level zero at time n+ 1. We can express these requirements by the recursion

Xn+1 = (Xn +An −Dn) ∨ 0

where a ∨ b := max(a, b). Here are our assumptions: The pairs of random variables
((An, Dn), n ≥ 0) are i.i.d. and

E(An −Dn) = −µ < 0.

Thus, the demand is, on the average, larger than the supply per unit of time. We have that
(Xn, n ≥ 0) is a Markov chain. We will show that this Markov chain is positive recurrent.
We will apply the so-called Loynes’ method.

Let
ξn := An −Dn,

so that Xn+1 = (Xn + ξn) ∨ 0, for all n ≥ 0. Since the Markov chain is represented by this
very simple recursion, we will try to solve the recursion. Working for n = 1, 2, . . . we find

X1 = (X0 + ξ0) ∨ 0

X2 = (X1 + ξ1) ∨ 0 = (X0 + ξ0 + ξ1) ∨ ξ1 ∨ 0

X3 = (X2 + ξ2) ∨ 0 = (X0 + ξ0 + ξ1 + ξ2) ∨ (ξ1 + ξ2) ∨ ξ2 ∨ 0

· · ·
Xn = (X0 + ξ0 + · · ·+ ξn−1) ∨ (ξ1 + · · ·+ ξn−1) ∨ · · · ∨ ξn−1 ∨ 0.

The correctness of the latter can formally be proved by showing that it does satisfy the
recursion. Let us consider

g(n)xy := Px(Xn > y) = P
(
(x+ ξ0 + · · ·+ ξn−1) ∨ (ξ1 + · · ·+ ξn−1) ∨ · · · ∨ ξn−1 ∨ 0 > y

)
.

Thus, the event whose probability we want to compute is a function of (ξ0, . . . , ξn−1). Notice,
however, that

(ξ0, . . . , ξn−1)
d
= (ξn−1, . . . , ξ0).

Indeed, the random variables (ξn) are i.i.d. so we can shuffle them in any way we like without
altering their joint distribution. In particular, instead of considering them in their original
order, we reverse it. Therefore,

g(n)xy = P
(
(x+ ξn−1 + · · ·+ ξ0) ∨ (ξn−2 + · · ·+ ξ0) ∨ · · · ∨ ξ0 ∨ 0 > y

)
.

Let

Zn := ξ0 + · · ·+ ξn−1

Mn := Zn ∨ Zn−1 ∨ · · · ∨ Z1 ∨ 0.
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Then
g
(n)
0y = P (Mn > y).

Since
Mn+1 ≥Mn

we have
g
(n)
0y ≤ g

(n+1)
0y ,

for all n. The limit of a bounded and increasing sequence certainly exists:

g(y) := lim
n→∞

g
(n)
0y = lim

n→∞
P0(Xn > y).

We claim that
π(y) := g(y)− g(y − 1)

satisfies the balance equations. But

Mn+1 = 0 ∨ max
1≤j≤n+1

Zj

= 0 ∨
(

max
1≤j≤n+1

(Zj − Z1) + ξ0
)

d
= 0 ∨ (Mn + ξ0),

where the latter equality follows from the fact that, in computing the distribution of Mn

which depends on ξ0, . . . , ξn−1, we may replace the latter random variables by ξ1, . . . , ξn.
Hence, for y ≥ 0,

P (Mn+1 = y) = P (0 ∨ (Mn + ξ0) = y)

=
∑

x≥0

P (Mn = x)P (0 ∨ (x+ ξ0) = y)

=
∑

x≥0

P (Mn = x) pxy.

Since the n-dependent terms are bounded, we may take the limit of both sides as n → ∞,
and, using π(y) = limn→∞ P (Mn = y), we find

π(y) =
∑

x≥0

π(x)pxy.

So π satisfies the balance equations. We must make sure that it also satisfies
∑

y π(y) = 1.
This will be the case if g(y) is not identically equal to 1. Here, we will use the assumption
that Eξn = −µ < 0. From the Law of Large Numbers we have

P ( lim
n→∞

Zn/n = −µ) = 1.

This implies that
P ( lim

n→∞
Zn = −∞) = 1.

But then
P ( lim

n→∞
Mn = 0 ∨max{Z1, Z2, . . .} <∞) = 1.
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Hence
g(y) = P (0 ∨max{Z1, Z2, . . .} > y)

is not identically equal to 1, as required.

It can also be shown (left as an exercise) that if Eξn > 0 then the Markov chain is transient.

The case Eξn = 0 is delicate. Depending on the actual distribution of ξn, the Markov chain
may be transient or null recurrent.
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PART II: RANDOM WALKS

25 Random walk

The purpose of this part of the notes is to take a closer look at a special kind of Markov
chain known as random walk. Our Markov chains, so far, have been processes with time-
homogeneous transition probabilities. A random walk possesses an additional property,
namely, that of spatial homogeneity. This means that the transition probability pxy should
depend on x and y only through their relative positions in space. To be able to say this, we
need to give more structure to the state space S, a structure that enables us to say that

px,y = px+z,y+z

for any translation z. For example, we can let S = Z
d, the set of d-dimensional vectors with

integer coordinates. More general spaces (e.g. groups) are allowed, but, here, we won’t go
beyond Z

d.

So, given a function
p(x), x ∈ Z

d,

a random walk is a Markov chain with time- and space-homogeneous transition probabilities
given by

px,y = p(y − x).

Example 1: Let
p(x) = C2−|x1|−···−|xd|,

where C is such that
∑

x p(x) = 1.

Example 2: Let where ej be the vector that has 1 in the j-th position and 0 everywhere
else. Define

p(x) =





pj , if x = ej , j = 1, . . . , d

qj , if x = −ej , j = 1, . . . , d

0, otherwise

where p1+ · · ·+pd+q1+ · · ·+qd = 1. A random walk of this type is called simple random
walk or nearest neighbour random walk. If d = 1, then

p(1) = p, p(−1) = q, p(x) = 0, otherwise,

where p + q = 1. This is the drunkard’s walk we’ve seen before. In dimension d = 1, this
walk enjoys, besides time- and space-homogeneity, the skip-free property, namely that
to go from state x to state y it must pass through all intermediate states because its value
can change by at most 1 at each step.

Example 3: Define

p(x) =

{
1
2d , if x ∈ {±e1, . . . ,±ed}
0, otherwise
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This is a simple random walk, which, in addition, has equal probabilities to move from one
state x to one of its “neighbouring states” x± e1, . . . , x± ed. We call it simple symmetric
random walk. If d = 1, then

p(1) = p(−1) = 1/2, p(x) = 0, otherwise,

and this is the symmetric drunkard’s walk.

The special structure of a random walk enables us to give more detailed formulae for its
behaviour. Let us denote by Sn the state of the walk at time n. It is clear that Sn can be
represented as

Sn = S0 + ξ1 + · · ·+ ξn,

where ξ1, ξ2, . . . are i.i.d. random variables in Z
d with common distribution

P (ξn = x) = p(x), x ∈ Z
d.

We refer to ξn as the increments of the random walk. Furthermore, the initial state S0 is
independent of the increments. Obviously,

p(n)xy = Px(Sn = y) = P (x+ ξ1 + · · ·+ ξn = y) = P (ξ1 + · · ·+ ξn = y − x).

The random walk ξ1 + · · ·+ ξn is a random walk starting from 0. So, we can reduce several
questions to questions about this random walk.

Furthermore, notice that

P (ξ1 + ξ2 = x) =
∑

y

P (ξ1 = x, x+ ξ2 = y) =
∑

y

p(x)p(y − x).

(When we write a sum without indicating explicitly the range of the summation variable,
we will mean a sum over all possible values.) Now the operation in the last term is known
as convolution. The convolution of two probabilities p(x), p′(x), x ∈ Z

d is defined as a
new probability p ∗ p′ given by

(p ∗ p′)(x) =
∑

y

p(x)p′(y − x).

The reader can easily check that

p ∗ p′ = p′ ∗ p, p ∗ (p′ ∗ p′′) = (p ∗ p′) ∗ p′′, p ∗ δz = p.

(Recall that δz is a probability distribution that assigns probability 1 to the point z.) In
this notation, we have

P (ξ1 + ξ2 = x) = (p ∗ p)(x).
We will let p∗n be the convolution of p with itself n times. We easily see that

P (ξ1 + · · ·+ ξn = x) = p∗n(x).

One could stop here and say that we have a formula for the n-step transition probability. But
this would be nonsense, because all we have done is that we dressed the original problem in
more fancy clothes. Indeed, computing the n-th order convolution for all n is a notoriously
hard problem, in general. We shall resist the temptation to compute and look at other
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methods. After all, who cares about the exact value of p∗n(x) for all n and x? Perhaps it
is the case (a) that different questions we need to ask or (b) that approximate methods are
more informative than exact ones.

Here are a couple of meaningful questions:
A. Will the random walk ever return to where it started from?
B. If yes, how long will that take?
C. If not, where will it go?

26 The simple symmetric random walk in dimension 1: path
counting

This is a random walk with values in Z and transition probabilities pi,i+1 = pi,i−1 = 1/2 for
all i ∈ Z. When the walk starts from 0 we can write

Sn = ξ1 + · · ·+ ξn,

where the ξn are i.i.d. random variables (random signs) with P (ξn = ±1) = 1/2.

Look at the distribution of (ξ1, . . . , ξn), a random vector with values in {−1,+1}n. Clearly,
all possible values of the vector are equally likely. Since there are 2n elements in {0, 1}n, we
have

P (ξ1 = ε1, . . . , ξn = εn) = 2−n.

So, for fixed n, we are dealing with a uniform distribution on the sample space {−1,+1}n.
Events A that depend only on these the first n random signs are subsets of this sample
space, and so

P (A) =
#A

2n
, A ⊂ {−1,+1}n,

where #A is the number of elements of A.

Therefore, if we can count the number of elements of A we can compute its probability. The
principle is trivial, but its practice may be hard. In the sequel, we shall learn some counting
methods.

First, we should assign, to each initial position and to each sequence of n signs, a path of
length n. So if the initial position is S0 = 0, and the sequence of signs is {+1,+1,−1,+1,−1}
then we have a path in the plane that joins the points (0, 0) → (1, 1) → (2, 2) → (3, 1) →
(4, 2) → (5, 1):

+

+ − + −

(0,0)

(1,1)

(2,2)

(3,1)

(4,2)

(5,1)

We can thus think of the elements of the sample space as paths.

As a warm-up, consider the following:
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Example: Assume that S0 = 0, and compute the probability of the event

A = {S2 ≥ 0, S4 = −1, S6 < 0, S7 < 0}.
The paths comprising this event are shown below. We can easily count that there are 6
paths in A. So P (A) = 6/26 = 6/128 = 3/64 ≈ 0.047.

−

−

0 1 2

1

2

1

2

3

−

−

−−

6543

7

7

4

26.1 Paths that start and end at specific points

Now consider a path that starts from a specific point and ends up at a specific point. We
use the notation

{(m,x) (n, y)} =: {all paths that start at (m,x) and end up at (n, y)}.
Let us first show that

Lemma 14. The number of paths that start from (0, 0) and end up at (n, y) is given by:

#{(0, 0) (n, i)} =

(
n
n+i
2

)

More generally, the number of paths that start from (m,x) and end up at (n, y) is given by:

#{(m,x) (n, y)} =

(
n−m

(n−m+ y − x)/2

)
. (23)

Remark. In if n+ i is not an even number then there is no path that starts from (0, 0) and
ends at (n, i). Hence

(
n

(n+i)/2

)
= 0, in this case.

Proof. Consider a path that starts from (0, 0) and ends at (n, i).

(0,0)

(n,i)

n

The lightly shaded region contains all
paths of length n that start at (0, 0)).
(There are 2n of them.)
The darker region shows all paths that
start at (0, 0) and end up at the specific
point (n, i).
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Let u be the number of +’s in this path (the number of upward segments) and d the number
of −’s (the number of downward segments). Then

u+ d = n, u− d = i.

Hence
u = (n+ i)/2, d = (n− i)/2.

So if we know where the path starts from and where it ends at we know how many times it
has gone up and how many down. The question then becomes: given a sequence of n signs
out of which u are + and the rest are −, in how many ways can we arrange them? Well, in
exactly

(
n
u

)
ways, and this proves the formula.

Notice that u = (n+ i)/2 must be an integer. This is true if n+ i is even or, equivalently if
n and i are simultaneously even or simultaneously odd. If this is not the case, then there is
no path that can go from (0, 0) to (n, i). For example (look at the figure), there is no path
that goes from (0, 0) to (3, 2). We shall thus define

(
n
u

)
to be zero if u is not an integer.

More generally, the number of paths that start from (m,x) and end up at (n, y) equals
the number of paths that start from (0, 0) and end up at (n −m, y − x). So, applying the
previous formula, we obtain (23).

26.2 Paths that start and end at specific points and do not touch zero at
all

Lemma 15. Suppose that x, y > 0. The number of paths (m,x) (n, y) that never become
zero (i.e. they do not touch the horizontal axis) is given by:

#{(m,x) (n, y); remain > 0} =

(
n−m

1
2(n−m+ y − x)

)
−
(

n−m
1
2(n−m− y − x)

)
.

(24)

Proof.

(m,x)

(n,y)

n−m

The shaded region contains all possible
paths that start at (m,x) and end up at
the specific point (n, y) which, in addition,
never touch the horizontal axis.

Consider, instead, a path that starts at (m,x) and ends up at point (n, y) which DOES
touch the horizontal axis, like the path indicated by the solid line below. There is a trick,
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called reflection, which is useful here. Note that to each such path there corresponds
another path obtained by following it up to the first time it hits zero and then reflecting it
around the horizontal axis. In the figure below, follow the solid path starting at (m,x) up
to the first time it hits zero and then follow the dotted path: this is the reflected path.

(m, x)

(n, y)

(n, −y)

A path and its reflection
around a horizontal line. No-
tice that the reflection starts
only at the point where the
path touches the horizontal
line.

Note that if we know the reflected path we can recover the original path. Hence we may
as well count the number of reflected paths. But each reflected path starts from (m,x) and
ends at (n,−y) and so it necessarily crosses the horizontal axis. We thus apply (23) with
−y in place of y:

#{(m,x) (n, y); touch zero} = #{(m,x) (n,−y)}

=

(
n−m

(n−m− y − x)/2

)
.

So, for x > 0, y > 0,

#{(m,x) (n, y); remain > 0}
= #{(m,x) (n, y)} −#{(m,x) (n, y); touch zero}

=

(
n−m

1
2(n−m+ y − x)

)
−
(

n−m
1
2(n−m− y − x)

)
.

Corollary 14. For any y > 0,

#{(1, 1) (n, y); remain > 0} =
( y
n

)
#{(0, 0) (n, y)}. (25)

Let m = 1, x = 1 in (24):

#{(1, 1) (n, y); remain > 0} =

(
n− 1

1
2(n+ y)− 1

)
−
(

n− 1
1
2(n− y)− 1

)

=
(n− 1)!(n+y

2 − 1
)
!
(n−y

2

)
!
− (n− 1)!(n−y

2 − 1
)
!
(n−y

2

)
!

=

(
1

n

n+ y

2
− 1

n

n− y

2

)
n!(n+y

2

)
!
(n−y

2

)
!

=
y

n

(
n
n+y
2

)
,

and the latter term equals the total number of paths from (0, 0) to (n, y).
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Corollary 15. The number of paths from (m,x) to (n, y) that do not touch level z <
min(x, y) is given by:

#{(m,x) (n, y); remain > z} =

(
n−m

1
2(n−m+ y − x)

)
−
(

n−m
1
2(n−m− y − x)− z

)
.

(26)

Proof. Because it is only the relative position of x and y with respect to z that plays any
role, we have

#{(m,x) (n, y); remain > z} = #{(m,x+ z) (n, y + z); remain > 0}

and so the formula is obtained by an application of (24).

Corollary 16. The number of paths from (0, 0) to (n, y), where y ≥ 0, that remain ≥ 0 is
given by:

#{(0, 0) (n, y); remain ≥ 0} =

(
n
n+y
2

)
−
(

n
n+y
2 + 1

)
(27)

Proof.

#{(0, 0) (n, y); remain ≥ 0} = #{(0, 0) (n, y); remain > −1}
= #{(0, 1) (n, y + 1); remain > 0}

=

(
n
n+y
2

)
−
(

n
n−y
2 − 1

)

=

(
n
n+y
2

)
−
(

n
n+y
2 + 1

)
,

where we used (26) with z = −1.

Corollary 17 (Catalan numbers). The number of paths from (0, 0) to (n, 0) that remain
≥ 0 is given by:

#{(0, 0) (n, 0); remain ≥ 0} =
1

n+ 1

(
n+ 1

n/2

)
.

Proof. Apply (27) with y = 0:

#{(0, 0) (n, 0); remain ≥ 0} =

(
n
n
2

)
−
(

n
n
2 − 1

)
=

1

n+ 1

(
n+ 1

n/2

)
,

where the latter calculation is as in the proof of (25).

Corollary 18. The number of paths that start from (0, 0), have length n, and remain
nonnegative is given by:

#{(0, 0) (n, •); remain ≥ 0} =

(
n

⌈n/2⌉

)
. (28)

where ⌈x⌉ denotes the smallest integer that is ≥ x.
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Proof. To see, this, just use (27) and sum over all y ≥ 0. If n = 2m then we need to set
y = 2z in (27) (otherwise (27) is just zero) and so we have

#{(0, 0) (2m, •); remain ≥ 0} =
∑

z≥0

[(
2m

m+ z

)
−
(

2m

m+ z + 1

)]

=

(
2m

m

)
−
(

2m

m+ 1

)
+

(
2m

m+ 1

)
−
(

2m

m+ 2

)
+ · · ·+

(
2m

2m− 1

)
−
(
2m

2m

)
+

(
2m

2m

)
± · · ·

=

(
2m

m

)
=

(
n

n/2

)
,

because all the terms that are denoted by · · · are equal to 0, while the rest cancel with one
another, and only the first one remains. If n = 2m + 1 then we need to set y = 2z + 1 in
(27) (otherwise (27) is just zero) and so we have

#{(0, 0) (2m+ 1, •); remain ≥ 0} =
∑

z≥0

[(
2m+ 1

m+ z + 1

)
−
(

2m+ 1

m+ z + 2

)]

=

(
2m+ 1

m+ 1

)
−
(
2m+ 1

m+ 2

)
+

(
2m+ 1

m+ 2

)
−
(
2m+ 1

m+ 3

)
+· · ·+

(
2m+ 1

2m

)
−
(
2m+ 1

2m+ 1

)
+

(
2m+ 1

2m+ 1

)
±· · ·

=

(
2m+ 1

m+ 1

)
=

(
n

⌈n/2⌉

)
.

2m 2m

We have shown that the
shaded regions contain exactly
the same number of paths.
Was this, a posteriori, obvi-
ous?

27 The simple symmetric random walk in dimension 1: sim-
ple probability calculations

Since all paths of certain length have the same probability, we can translate the path counting
formulae into corresponding probability formulae.

27.1 Distribution after n steps

Lemma 16.

P0(Sn = y) =

(
n

(n+ y)/2

)
2−n.
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P (Sn = y|Sm = x) =

(
n−m

(n−m+ y − x)/2

)
2−n−m.

In particular, if n is even,

u(n) := P0(Sn = 0) =

(
n

n/2

)
2−n. (29)

Proof. We have

P0(Sn = y) =
#{(0, 0) (n, y)}

2n
,

and

P (Sn = y|Sm = x) =
#{paths (m,x) (n, y)}

2n−m
,

and we apply (23).

27.2 The ballot theorem

Theorem 25. The probability that, given that S0 = 0 and Sn = y > 0, the random walk
never becomes zero up to time n is given by

P0(S1 > 0, S2 > 0, . . . , Sn > 0 | Sn = y) =
y

n
. (30)

Proof. Such a simple answer begs for a physical/intuitive explanation. But, for now, we
shall just compute it. The left side of (30) equals

#{paths (1, 1) (n, y) that do not touch zero} × 2−n

#{paths (0, 0) (n, y)} × 2−n

=

(
n− 1

1
2(n− 1 + y − 1)

)
−
(

n− 1
1
2(n− 1− y − 1)

)

(
n

1
2(n+ y)

) =
y

n
.

This is called the ballot theorem and the reason will be given in Section 29.

27.3 Some conditional probabilities

Lemma 17. If n, y ≥ 0 are both even or both odd then

P0(S1 ≥ 0 . . . , Sn ≥ 0 | Sn = y) = 1− P0(Sn = y + 2)

P0(Sn = y)
=

y + 1
1
2(n+ y) + 1

.

In particular, if n is even,

P0(S1 ≥ 0 . . . , Sn ≥ 0 | Sn = 0) =
1

(n/2) + 1
.
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Proof. We use (27):

P0(Sn ≥ 0 . . . , Sn ≥ 0 | Sn = y) =
P0(Sn ≥ 0 . . . , Sn ≥ 0, Sn = y)

P0(Sn = y)

=

(
n
n+y
2

)
−
(

n
n+y
2 + 1

)

(
n
n+y
2

) = 1− P0(Sn = y + 2)

P0(Sn = y)
.

This is further equal to

1− n!

(n+y2 + 1)! (n−y2 − 1)!

(n+y2 )! (n−y2 )!

n!
= 1−

n−y
2

n+y
2 + 1

=
y + 1
n+y
2 + 1

.

27.4 Some remarkable identities

Theorem 26. If n is even,

P0(S1 ≥ 0, . . . , Sn ≥ 0) = P0(S1 6= 0, . . . , Sn 6= 0) = P0(Sn = 0).

Proof. For even n we have

P0(S1 ≥ 0, . . . , Sn ≥ 0) =
#{(0, 0) (n, •); remain ≥ 0}

2n
=

(
n

n/2

)
2−n = P0(Sn = 0),

where we used (28) and (29). We next have

P0(S1 6= 0, . . . , Sn 6= 0)
(a)
= P0(S1 > 0, . . . , Sn > 0) + P0(S1 < 0, . . . , Sn < 0)

(b)
= 2P0(S1 > 0, . . . , Sn > 0)

(c)
= 2P0(ξ1 = 1)P0(S2 > 0, . . . , Sn > 0 | ξ1 = 1)

(d)
= P0(1 + ξ2 > 0, 1 + ξ2 + ξ3 > 0, . . . , 1 + ξ2 + · · ·+ ξn > 0 | ξ1 = 1)

(e)
= P0(ξ2 ≥ 0, ξ2 + ξ3 ≥ 0, . . . , ξ2 + · · ·+ ξn ≥ 0)

(f)
= P0(S1 ≥ 0, . . . , Sn−1 ≥ 0)

(g)
= P0(S1 ≥ 0, . . . , Sn ≥ 0),

where (a) is obvious, (b) follows from symmetry, (c) is just conditioning on {ξ1 = 1} and
using the fact that S1 = ξ1, (d) follows from P0(ξ1 = 1) = 1/2 and from the substitution of
the value of ξ1 on the left of the conditioning, (e) follows from the fact that ξ1 is independent
of ξ2, ξ3, . . . and from the fact that if m is integer then 1+m > 0 is equivalent to m ≥ 0, (f)
follows from the replacement of (ξ2, ξ3, . . .) by (ξ1, ξ2, . . .), and finally (g) is trivial because
Sn−1 ≥ 0 means Sn−1 > 0 because Sn−1 cannot take the value 0, and Sn−1 > 0 implies that
Sn ≥ 0.

85



27.5 First return to zero

In (29), we computed, for even n, the probability u(n) that the walk (started at 0) attains
value 0 in n steps. We now want to find the probability f(n) that the walk will return to 0
for the first time in n steps.

Theorem 27. Let n be even, and u(n) = P0(Sn = 0). Then

f(n) := P0(S1 6= 0, . . . , Sn−1 6= 0, Sn = 0) =
u(n)

n− 1
.

Proof. Since the random walk cannot change sign before becoming zero,

f(n) = P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0) + P0(S1 < 0, . . . , Sn−1 < 0, Sn = 0).

By symmetry, the two terms must be equal. So

f(n) = 2P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0)

= 2P0(Sn−1 > 0, Sn = 0) P0(S1 > 0, . . . , Sn−2 > 0|Sn−1 > 0, Sn = 0)

Now,
P0(Sn−1 > 0, Sn = 0) = P0(Sn = 0) P (Sn−1 > 0|Sn = 0).

We know that P0(Sn = 0) = u(n) =
(
n
n/2

)
2−n. Also, given that Sn = 0, we either have

Sn−1 = 1 or −1, with equal probability. So the last term is 1/2. To take care of the last
term in the last expression for f(n), we see that Sn−1 > 0, Sn = 0 means Sn−1 = 1, Sn = 0.
By the Markov property at time n− 1, we can omit the last event. So

f(n) = 2u(n)
1

2
P0(S1 > 0, . . . , Sn−2 > 0|Sn−1 = 1),

and the last probability can be computed from the ballot theorem–see (30): it is equal to
1/(n− 1). So

f(n) =
u(n)

n− 1
.

28 The reflection principle for a simple random walk in di-
mension 1

The reflection principle says the following. Fix a state a. Put a two-sided mirror at a.
If a particle is to the right of a then you see its image on the left, and if the particle is to
the left of a then its mirror image is on the right. So if the particle is in position s then its
mirror image is in position s̃ = 2a− s because s− a = a− s̃.

It is clear that if a particle starts at 0 and performs a simple symmetric random walk then
its mirror image starts at a and performs a simple symmetric random walk. This is not so
interesting.
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What is more interesting is this: Run the particle till it hits a (it will, for sure–Theorem
35) and after that consider its mirror image S̃n = 2a− Sn. In other words, define

S̃n =

{
Sn, n < Ta

2a− Sn, n ≥ Ta,
.

where
Ta = inf{n ≥ 0 : Sn = a}

is the first hitting time of a. Then

Theorem 28. If (Sn) is a simple symmetric random walk started at 0 then so is (S̃n).

Proof. Trivially,

Sn =

{
Sn, n < Ta

a+ (Sn − a), n ≥ Ta
.

By the strong Markov property, the process (STa+m − a,m ≥ 0) is a simple symmetric
random walk, independent of the past before Ta. But a symmetric random walk has the
same law as its negative. So Sn − a can be replaced by a − Sn in the last display and the
resulting process, called (S̃n, n ∈ Z+) has the same law as (Sn, n ∈ Z+).

28.1 Distribution of hitting time and maximum

We can take advantage of this principle to establish the distribution function of Ta:

Theorem 29. Let (Sn, n ≥ 0) be a simple symmetric random walk and a > 0. Then

P0(Ta ≤ n) = 2P0(Sn ≥ a)− P0(Sn = a) = P0(|Sn| ≥ a)− 1

2
P0(|Sn| = a).

Proof. If Sn ≥ a then Ta ≤ n. So:

P0(Sn ≥ a) = P0(Ta ≤ n, Sn ≥ a).

In the last event, we have n ≥ Ta, so we may replace Sn by 2a− Sn (Theorem 28). Thus,

P0(Sn ≥ a) = P0(Ta ≤ n, 2a− Sn ≥ a) = P0(Ta ≤ n, Sn ≤ a).

But

P0(Ta ≤ n) = P0(Ta ≤ n, Sn ≤ a) + P0(Ta ≤ n, Sn > a) = P0(Ta ≤ n, Sn ≤ a) + P0(Sn > a).

The last equality follows from the fact that Sn > a implies Ta ≤ n. Combining the last two
displays gives

P0(Ta ≤ n) = P0(Sn ≥ a) + P0(Sn > a) = P0(Sn ≥ a) + P0(Sn ≥ a)− P0(Sn = a).

Finally, observing that Sn has the same distribution as −Sn we get that this is also equal
to P0(|Sn| ≥ a)− 1

2P0(|Sn| = a).

Define now the running maximum

Mn = max(S0, S1, . . . , Sn),

Then, as a corollary to the above result, we obtain
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Corollary 19.

P0(Mn ≥ x) = P0(Tx ≤ n) = 2P0(Sn ≥ x)− P0(Sn = x) = P0(|Sn| ≥ x)− 1

2
P0(|Sn| = x).

Proof. Observe that Mn ≥ x if and only if Sk ≥ x for some k ≤ n which is equivalent to
Tx ≤ n and use Theorem 29.

We can do more: we can derive the joint distribution of Mn and Sn:

Theorem 30.

P0(Mn < x, Sn = y) = P0(Sn = y)− P0(Sn = 2x− y) , x > y.

Proof. Since Mn < x is equivalent to Tx > n, we have

P0(Mn < x, Sn = y) = P0(Tx > n, Sn = y) = P0(Sn = y)− P0(Tx ≤ n, Sn = y). (31)

If Tx ≤ n, then, by applying the reflection principle (Theorem 28), we can replace Sn by
2x− Sn in the last part of the last display and get

P0(Tx ≤ n, Sn = y) = P0(Tx ≤ n, Sn = 2x− y).

But if x > y then 2x− y > x and so {Sn = 2x− y} ⊂ {Tx ≤ n}, which results into

P0(Tx ≤ n, Sn = y) = P0(Sn = 2x− y).

This, combined with (31), gives the result.

29 Urns and the ballot theorem

Suppose that an urn8 contains n items, of which a are coloured azure and b black; n = a+b.
A sample from the urn is a sequence η = (η1, . . . , ηn), where ηi indicates the colour of the
i-th item picked. The set of values of η contains

(
n
a

)
elements and η is uniformly distributed

in this set.

The original ballot problem, posed in 18879 asks the following: if we start picking the items
from the urn one by one without replacement, what is the probability that the number of
azure items is constantly ahead of the number of black ones? The problem was solved10 in
the same year. The answer is very simple:

Theorem 31. If an urn contains a azure items and b = n−a black items, then the probability
that, during sampling without replacement, the number of selected azure items is always
ahead of the black ones equals (a− b)/n, as long as a ≥ b.

8An urn is a vessel, usually a vase furnished with a foot or pedestal, employed for different purposes,
as for holding liquids, ornamental objects, the ashes of the dead after cremation, and anciently for holding
ballots to be drawn. It is the latter use we are interested in in Probability and Statistics.

9Bertrand, J. (1887). Solution d’un problème. Compt. Rend. Acad. Sci. Paris, 105, 369.
10André, D. (1887). Solution directe du problème résolu par M. Bertrand. Compt. Rend. Acad. Sci.

Paris, 105, 436-437.
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We shall call (η1, . . . , ηn) an urn process with parameters n, a, always assuming (without
any loss of generality) that a ≥ b = n− a.

An urn can be realised quite easily be a random walk:

Theorem 32. Consider a simple symmetric random walk (Sn, n ≥ 0) with values in Z and
let y be a positive integer. Then, conditional on the event {Sn = y}, the sequence (ξ1, . . . , ξn)
of the increments is an urn process with parameters n and a = (n+ y)/2.

Proof. The values of each ξi are ±1, so ‘azure’ items are +1 and ‘black’ items are −1. We
need to show that, conditional on {Sn = y}, the sequence (ξ1, . . . , ξn) is uniformly distributed
in a set with

(
n
a

)
elements. But if Sn = y then, letting a, b be defined by a+b = n, a−b = y,

we have that a out of the n increments will be +1 and b will be −1. So the number of
possible values of (ξ1, . . . , ξn) is, indeed,

(
n
a

)
. It remains to show that all values are equally

likely. Let ε1, . . . , εn be elements of {−1,+1} such that ε1 + · · ·+ εn = y. Then, using the
definition of conditional probability and Lemma 16, we have:

P0(ξ1 = ε1, . . . , ξn = εn | Sn = y) =
P0(ξ1 = ε1, . . . , ξn = εn)

P0(Sn = y)

=
2−n(
n

(n+ y)/2

)
2−n

=
1(
n

a

) .

Thus, conditional on {Sn = y}, (ξ1, . . . , ξn) has a uniform distribution.

Proof of Theorem 31. Since an urn with parameters n, a can be realised by a simple sym-
metric random walk starting from 0 and ending at Sn = y, where y = a− (n− a) = 2a− n,
we can translate the original question into a question about the random walk. Since the
‘azure’ items correspond to + signs (respectively, the ‘black’ items correspond to − signs),
the event that the azure are always ahead of the black ones during sampling is precisely
the event {S1 > 0, . . . , Sn > 0} that the random walk remains positive. But in (30) we
computed that

P0(S1 > 0, . . . , Sn > 0 | Sn = y) =
y

n
.

Since y = a− (n− a) = a− b, the result follows.

30 The asymmetric simple random walk in dimension 1

Consider now a simple random walk with values in Z, but which is not necessarily symmetric.
(The word “asymmetric” will always mean “not necessarily symmetric”.) So

pi,i+1 = p, pi,i−1 = q = 1− p, i ∈ Z.

We have

P0(Sn = k) =

(
n
n+k
2

)
p(n+k)/2q(n−k)/2, −n ≤ k ≤ n.
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30.1 First hitting time analysis

We will use probabilistic + analytical methods to compute the distribution of the hitting
times

Tx = inf{n ≥ 0 : Sn = x}, x ∈ Z,

This random variable takes values in {0, 1, 2, . . .} ∪ {∞}.
Lemma 18. For all x, y ∈ Z, and all t ≥ 0,

Px(Ty = t) = P0(Ty−x = t).

Proof. This follows from the spatial homogeneity of the transition probabilities: to reach y
starting from x, only the relative position of y with respect to x is needed.

In view of this, it is no loss of generality to consider the random walk starting from 0.

Lemma 19. Consider a simple random walk starting from 0. If x > 0, then the summands
in

Tx = T1 + (T2 − T1) + · · ·+ (Tx − Tx−1)

are i.i.d. random variables.

Proof. To prove this, we make essential use of the skip-free property, namely the obvious
fact that a simple random walk starting from 0 must pass through levels 1, 2, . . . , x − 1 in
order to reach x. The rest is a consequence of the strong Markov property.

Corollary 20. Consider a simple random walk starting from 0. The process (Tx, x ≥ 0) is
also a random walk.

In view of Lemma 19 we need to know the distribution of T1. We will approach this using
probability generating functions. Let

ϕ(s) := E0s
T1 .

(We tacitly assume that S0 = 0.) Then, for x > 0,

E0s
Tx = ϕ(s)x.

Theorem 33. Consider a simple random walk starting from 0. Then the probability gener-
ating function of the first time that level 1 is reached is given by

ϕ(s) = E0s
T1 =

1−
√

1− 4pqs2

2qs
.

Proof. Start with S0 = 0 and watch the process until the first n = T1 such that Sn = 1. If
S1 = 1 then T1 = 1. If S1 = −1 then T1 is the sum of three times: one unit of time spent
to go from 0 to −1, plus a time T ′

1 required to go from −1 to 0 for the first time, plus a
further time T ′′

1 required to go from 0 to +1 for the first time. See figure below.
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T1
’ T1

’’

Sn

0
1

−1
n

If S1 = −1 then, in order to hit 1, the RW must first hit 0 (it takes time
T ′
1 to do this) and then 1 (it takes a further time of T ′′

1 ).

Hence

T1 =

{
1 if S1 = 1

1 + T ′
1 + T ′′

1 if S1 = −1

This can be used as follows:

ϕ(s) = E0[s1(S1 = 1) + s1+T
′

1+T
′′

1 1(S1 = −1)]

= sP (S1 = 1) + sE0[s
T ′

1sT
′′

1 |S1 = −1]P (S1 = −1)

= sp+ sE0[s
T ′

1sT
′′

1 |S1 = −1]q

But, from the strong Markov property, T ′
1 is independent of T ′′

1 conditional on S1 = −1 and
each with distribution that of T1. We thus have

ϕ(s) = ps+ qsϕ(s)2 .

The formula is obtained by solving the quadratic.

Corollary 21. Consider a simple random walk starting from 0. Then the probability gen-
erating function of the first time that level −1 is reached is given by

E0s
T−1 =

1−
√
1− 4pqs2

2ps
.

Proof. The first time n such that Sn = −1 is the first time n such that −Sn = 1. But
note that −Sn is a simple random walk with upward transition probability q and downward
transition probability p. Hence the previous formula applies with the roles of p and q
interchanged.

Corollary 22. Consider a simple random walk starting from 0. Then the probability gen-
erating function of the first time that level x ∈ Z is reached is given by

E0s
Tx =





(
E0s

T1
)x

=

(
1−
√

1−4pqs2

2qs

)x
, if x > 0

(
E0s

T−1
)|x|

=

(
1−
√

1−4pqs2

2ps

)|x|

, if x < 0

(32)

Proof. Use Lemma 19 and the previous formulae of Theorem 33 and Corollary 21.
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30.2 First return to the origin

Now let us ask: If the particle starts at 0, how long will it take till it first returns to 0? We
are talking about the stopping time

T ′
0 := inf{n ≥ 1 : Sn = 0}.

(Pay attention: it is important to write n ≥ 1 inside the set!)

Theorem 34. Consider a simple random walk starting from 0. Then the probability gener-
ating function of the first return time to 0 is given by

E0s
T ′

0 = 1−
√

1− 4pqs2.

Proof. We again do first-step analysis.

E0s
T ′

0 = E0

(
sT

′

0 1(S1 = −1)
)
+ E0

(
sT

′

0 1(S1 = 1)
)

= qE0

(
sT

′

0 | S1 = −1
)
+ pE0

(
sT

′

0 | S1 = 1
)
.

But if S1 = −1 then T ′
0 equals 1 plus the time required for the walk to hit 0 starting from

−1. The latter is, in distribution, the same as the time required for the walk to hit 1 starting
from 0. Similarly, if S1 = 1, then T ′

0 equals 1 plus a time whose distribution that of the
time required for the walk to hit −1 starting from 0.

E0s
T ′

0 = qE0(s
1+T1) + pE0(s

1+T−1)

= qs
1−

√
1− 4pqs2

2qs
+ ps

1−
√
1− 4pqs2

2ps
.

= 1−
√
1− 4pqs2.

30.3 The distribution of the first return to the origin

We wish to find the exact distribution of the first return time to the origin. For a symmetric
random walk, this was found in §30.2: P0(T

′
0 = n) = f(n) = u(n)/(n− 1) is n is even. For

the general case, we have computed the probability generating function E0s
T0–see Theorem

34

The tool we need here is Taylor’s theorem for the function f(x) = (1 + x)α, where α is a
real number. If α = n is a positive integer then

(1 + x)n =
n∑

k=0

(
n

k

)
xk,

by the binomial theorem. If we define
(
n
k

)
to be equal to 0 for k > n, then we can omit the

upper limit in the sum, and simply write

(1 + x)n =
∑

k≥0

(
n

k

)
xk.

92



Recall that (
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
.

It turns out that the formula is formally true for general α, and it looks exactly the same:

(1 + x)α =
∑

k≥0

(
α

k

)
xk,

as long as we define (
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
.

The adverb ‘formally’ is supposed to mean that this formula holds for some x around 0, but
that we won’t worry about which ones.

For example, we will show that

(1− x)−1 = 1 + x+ x2 + x3 + · · ·

which is of course the all too-familiar geometric series. Indeed,

(1− x)−1 =
∑

k≥0

(−1

k

)
(−x)k

But, by definition,

(−1

k

)
=

(−1)(−2) · · · (−1− k + 1)

k!
=

(−1)kk!

k!
= (−1)k,

so
(1− x)−1 =

∑

k≥0

(−1)k(−x)k =
∑

k≥0

(−1)2kxk =
∑

k≥0

xk,

as needed.

As another example, let us compute
√
1− x. We have

√
1− x = (1− x)1/2 =

∑

k≥0

(
1/2

k

)
(−1)kxk.

We can write this in more familiar symbols if we observe that

(
1/2

k

)
(−1)k =

1

2k − 1

(
2k

k

)
4−k,

and this is shown by direct computation. So

√
1− x =

∑

k≥0

1

2k − 1

(
2k

k

)
xk = 1 +

∑

k≥1

1

2k − 1

(
2k

k

)
xk

We apply this to E0s
T ′

0 = 1−
√
1− 4pqs2:

E0s
T ′

0 =
∑

k≥1

1

2k − 1

(
2k

k

)
(pq)ks2k.
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But, by the definition of E0s
T ′

0 ,

E0s
T ′

0 =
∑

n≥0

P0(T
′
0 = n)sn.

Comparing the two ‘infinite polynomials’ we see that we must have n = 2k (we knew that–
the random walk can return to 0 only in an even number of steps) and then

P0(T
′
0 = 2k) =

1

2k − 1

(
2k

k

)
pkqk =

1

2k − 1
P0(S2k = 0).

31 Recurrence properties of simple random walks

Consider again a simple random walk Sn with values in Z with upward probability p and
downward probability q = 1− p. By applying the law of large numbers we have that

P0

(
lim
n→∞

Sn
n

= p− q

)
= 1.

• If p > 1/2 then p − q > 0 and so Sn tends to +∞ with probability one. Hence it is
transient.

• If p < 1/2 then p − q < 0 and so Sn tends to −∞ with probability one. Hence it is
again transient.

• If p = 1/2 then p − q = 0 and the law of large numbers only tells us that the walk
is not positive recurrent. That it is actually null-recurrent follows from Markov chain
theory.

We will see how the results about the generating functions of the hitting and return times
help us answer these questions directly, without appeal to the Markov chain theory. The
key fact needed here is:

P0(Tx <∞) = lim
s↑1

E0s
Tx ,

which is true for any probability generating function. We apply this to (32). The quantity
inside the square root becomes 1− 4pq. But remember that q = 1− p, so

√
1− 4pq =

√
1− 4p+ 4p2 =

√
(1− 2p)2 = |1− 2p| = |p− q|.

So

P0(Tx <∞) =





(
1−|p−q|

2q

)x
, if x > 0

(
1−|p−q|

2p

)|x|

, if x < 0

(33)

This formula can be written more neatly as follows:

Theorem 35.

P0(Tx <∞) =

{(p
q ∧ 1

)x
, if x > 0

( q
p ∧ 1

)|x|
, if x < 0

In particular, if p = q then P0(Tx <∞) = 1 for all x ∈ Z.
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Proof. If p > q then |p− q| = p− q and so (33) gives

P0(Tx <∞) =

{
1, if x > 0
q
p , if x < 0

,

which is what we want. If p < q then |p − q| = q − p and, again, we obtain what we are
looking for.

Corollary 23. The simple symmetric random walk with values in Z is null-recurrent.

Proof. The last part of Theorem 35 tells us that it is recurrent. We know that it cannot be
positive recurrent, and so it is null-recurrent.

31.1 Asymptotic distribution of the maximum

Suppose now that p < 1/2. Then limn→∞ Sn = −∞ with probability 1. This means that
there is a largest value that will be ever attained by the random walk. This value is random
and is denoted by

M∞ = sup(S0, S1, S2, . . .)

If we let
Mn = max(S0, . . . , Sn),

then we have M∞ = limn→∞Mn. Indeed, the sequence Mn is nondecreasing; every nonde-
creasing sequence has a limit, except that the limit may be ∞; but here it is < ∞, with
probability 1 because p < 1/2.

Theorem 36. Consider a simple random walk with values in Z. Assume p < 1/2. Then
the overall maximum M∞ has a geometric distribution:

P0(M∞ ≥ x) = (p/q)x, x ≥ 0.

Proof.

P0(M∞ ≥ x) = lim
n→∞

P0(Mn ≥ x) = lim
n→∞

P0(Tx ≤ n) = P0(Tx <∞) = (p/q)x, x ≥ 0.

31.2 Return probabilities

Only in the symmetric case p = q = 1/2 will the random walk return to the point where
it started from. Otherwise, with some positive probability, it will never ever return to the
point where it started from. What is this probability?

Theorem 37. Consider a random walk with values in Z. Let

T ′
0 = inf{n ≥ 1 : Sn = 0}

be the first return time to 0. Then

P0(T
′
0 <∞) = 2(p ∧ q).

Unless p = 1/2, this probability is always strictly less than 1.
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Proof. The probability generating function of T ′
0 was obtained in Theorem 34. But

P0(T
′
0 <∞) = lim

s↑1
EsT

′

0 = 1−
√
1− 4pq = 1− |p− q|.

If p = q this gives 1. If p > q this gives 1− (p− q) = 1− (1− q− q) = 2q. And if p < q this
gives 1− (q − p) = 1− (1− p− p) = 2p.

31.3 Total number of visits to a state

If the random walk is recurrent then it visits any state infinitely many times. But if it is
transient, the total number of visits to a state will be finite. The total number of visits to
state i is given by

Ji =
∞∑

n=1

1(Sn = i), (34)

a random variable first considered in Section 10 where it was also shown to be geometric.
We now compute its exact distribution.

Theorem 38. Consider a simple random walk with values in Z. Then, starting from zero,
the total number J0 of visits to state 0 is geometrically distributed with

P0(J0 ≥ k) = (2(p ∧ q))k, k = 0, 1, 2, . . . ,

E0J0 =
2(p ∧ q)

1− 2(p ∧ q) .

Proof. In Lemma 4 we showed that, if a Markov chain starts from a state i then Ji is
geometric. And so

P0(J0 ≥ k) = P0(J0 ≥ 1)k, k = 0, 1, 2, . . .

But J0 ≥ 1 if and only if the first return time to zero is finite. So

P0(J0 ≥ 1) = P0(T
′
0 <∞) = 2(p ∧ q),

where the last probability was computed in Theorem 37. This proves the first formula. For
the second formula we have

E0J0 =
∞∑

k=1

P0(J0 ≥ k) =
∞∑

k=1

(2(p ∧ q))k = 2(p ∧ q)
1− 2(p ∧ q) ,

this being a geometric series.

Remark 1: By spatial homogeneity, we obviously have that the same formulae apply for
any i:

Pi(Ji ≥ k) = (2(p ∧ q))k, k = 0, 1, 2, . . .

EiJi =
2(p ∧ q)

1− 2(p ∧ q) .

Remark 2: The formulae work for all values of p ∈ [0, 1], even for p = 1/2. In the latter
case, Pi(Ji ≥ k) = 1 for all k, meaning that Pi(Ji = ∞) = 1, as already known.

We now look at the the number of visits to some state but if we start from a different state.
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Theorem 39. Consider a random walk with values in Z. If p ≤ 1/2 then

P0(Jx ≥ k) = (p/q)x∨0 (2p)k−1, k ≥ 1

E0Jx =
(p/q)x∨0

1− 2p
.

If p ≥ 1/2 then

P0(Jx ≥ k) = (q/p)(−x)∨0 (2q)k−1, k ≥ 1

E0Jx =
(q/p)(−x)∨0

1− 2q
.

Proof. Suppose x > 0, k ≥ 1. Then

P0(Jx ≥ k) = P0(Tx <∞, Jx ≥ k),

simply because if Jx ≥ k ≥ 1 then Tx < ∞. Apply now the strong Markov property at Tx.
Then

P0(Tx <∞, Jx ≥ k) = P0(Tx <∞)Px(Jx ≥ k − 1).

The reason that we replaced k by k − 1 is because, given that Tx < ∞, there has already
been one visit to state x and so we need at least k − 1 remaining visits in order to have
at least k visits in total. The first term was computed in Theorem 35, and the second in
Theorem 38. So we obtain

P0(Jx ≥ k) =

(
p

q
∧ 1

)x
(2(p ∧ q))k−1.

If p ≤ 1/2 then this gives P0(Jx ≥ k) = (p/q)x(2p)k−1. If p ≥ 1/2 then this gives P0(Jx ≥
k) = (2q)k−1. We repeat the argument for x < 0 and find

P0(Jx ≥ k) =

(
q

p
∧ 1

)|x|

(2(p ∧ q))k−1.

If p ≤ 1/2 then this gives P0(Jx ≥ k) = (2p)k−1. If p ≥ 1/2 then this gives P0(Jx ≥ k) =
(q/p)|x|(2q)k−1.
As for the expectation, we apply E0Jx =

∑∞
k=1 P0(Jx ≥ k) and perform the sum of a

geometric series.

Remark 1: The expectation E0Jx is finite if p 6= 1/2. Consider the case p < 1/2. For
x > 0, then E0Jx drops down to zero geometrically fast as x tends to infinity. But for x < 0,
we have E0Jx = 1/(1−2p) regardless of x. In other words, if the random walk “drifts down”
(i.e. p < 1/2) then, starting from 0, it will visit any point below 0 exactly the same number
of times on the average.

Remark 2: If the initial state is not 0 then use spatial homogeneity to obtain the analogous
formulae, i.e. Py(Jx ≥ k) = P0(Jx−y ≥ k) and EyJx = E0Jx−y.
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32 Duality

Consider random walk Sk =
∑k

i=1 ξi, i.e. a sum of i.i.d. random variables. Fix an integer n.

Then the dual (S̃k, 0 ≤ k ≤ n) of (Sk, 0 ≤ k ≤ n) is defined by

S̃k := Sn − Sn−k.

Theorem 40. (S̃k, 0 ≤ k ≤ n) has the same distribution as (Sk, 0 ≤ k ≤ n).

Proof. Use the obvious fact that (ξ1, ξ2, . . . , ξn) has the same distribution as (ξn, ξn−1, . . . , ξ1).

Thus, every time we have a probability for S we can translate it into a probability for S̃,
which is basically another probability for S, because the two have the same distribution.

Here is an application of this:

Theorem 41. Let (Sk) be a simple symmetric random walk and x a positive integer. Let
Tx = inf{n ≥ 1 : Sn = x} be the first time that x will be visited. Then

P0(Tx = n) =
x

n
P0(Sn = x) .

Proof. Rewrite the ballot theorem terms of the dual:

P0(S̃1 > 0, . . . , S̃n > 0 | S̃n = x) =
x

n
, x > 0.

But the left-hand side is

P0(Sn−Sn−k > 0, 1 ≤ k ≤ n | Sn = x) =
P0(Sk < x, 0 ≤ k ≤ n− 1; Sn = x)

P0(Sn = x)
=
P0(Tx = n)

P0(Sn = x)
.

Pause for reflection: We have been dealing with the random times Tx for simple random walks (symmetric
or asymmetric) from the beginning of the lectures.

In Lemma 19 we observed that, for a simple random walk and for x > 0, Tx is the sum of x i.i.d. random
variables, each distributed as T1, and thus derived the generating function of Tx:

E0s
Tx =

(

1−
√

1− 4pqs2

2qs

)x

.

Specialising to the symmetric case we have

E0s
Tx =

(

1−
√
1− s2

s

)x

. (35)

In Theorem 29 we used the reflection principle and derived the distribution function of Tx for a simple
symmetric random walk:

P0(Tx ≤ n) = P0(|Sn| ≥ x)− 1

2
P0(|Sn| = x). (36)

Lastly, in Theorem 41, we derived using duality, for a simple symmetric random walk, the probabilities

P0(Tx = n) =
x

n
P0(Sn = x). (37)
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We remark here something methodological: It was completely different techniques that led to results about,
essentially, the same thing: the distribution of Tx. This is an important lesson to learn.

Of course, the three formulae should be compatible: the number (37) should be the coefficient of sn in (35);

summing up (37) should give (36), or taking differences in (36) should give (37). But on trying to verify

these things algebraically, the reader will realise that it is not easy.

33 Amount of time that a SSRW is positive*

Consider a SSRW (Sn) starting from 0. Define its trajectory as the polygonal line obtained
by joining the points (n, Sn) in the plane, as described earlier. Watch this trajectory up
to time 2n. Let T+(2n) be the number of sides of the polygonal line that are above the
horizontal axis and T−(2n) = 2n − T+(2n) the number of sides that are below. Clearly,
T±(2n) are both even numbers because, if the RW is at 0, it takes an even number of steps
to return to 0. We can think of T+(2n) as the number of leads in 2n coin tosses, where we

0
’T

0

Figure 1: Part of the time the SSRW is positive and part negative. After it returns to 0 at time T ′

0,

it behaves again like a SSRW and is independent of the past.

have a lead at some time if the number of heads till that time exceeds the number of tails.
We are dealing with a fair coin which is tossed 2n times, so the event that the number of
heads equals k has maximum probability when k = n (heads=tails).

Most people take this statement and translate it into a statement about T+(2n) arguing
that P (T+(2n) = m) is maximised when m = n, i.e. when T+(2n) = T−(2n). This is wrong.
In fact, as the theorem below shows, the most likely value of P (T+(2n) = m) is when m = 0
or m = 2n.

Theorem 42 ( distribution of the total time the random walk is positive ).

P (T+(2n) = 2k) = P (S2k = 0)P (S2n−2k = 0) , 0 ≤ k ≤ n.

Proof. The idea is to condition at the first time T ′
0 that the RW returns to 0:

P (T+(2n) = 2k) =

n∑

r=1

P (T+(2n) = 2k, T ′
0 = 2r).
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Between 0 and T ′
0 the random walk is either above the horizontal axis or below; call the first

event A+ and the second A− and write

P (T+(2n) = 2k) =
n∑

r=1

P (A+, T
′
0 = 2r)P (T+(2n) = 2k | A+, T

′
0 = 2r)

+
n∑

r=1

P (A−, T
′
0 = 2r)P (T+(2n) = 2k | A−, T

′
0 = 2r)

In the first case,

P (T+(2n) = 2k | A+, T
′
0 = 2r) = P (T+(2n) = 2k−2r | A+, T

′
0 = 2r) = P (T+(2n−2r) = 2k−2r),

because, if T ′
0 = 2r and A+ occurs then the RW has already spent 2r units of time above

the axis and so T+(2n) is reduced by 2r. Furthermore, we may remove the conditioning
because the future evolution of the RW after T ′

0 is independent of the past. In the second
case, a similar argument shows

P (T−(2n) = 2k | A−, T
′
0 = 2r) = P (T−(2n) = 2k | A−, T

′
0 = 2r) = P (T−(2n− 2r) = 2k).

We also observe that, by symmetry,

P (A+, T
′
0 = 2r) = P (A−, T

′
0 = 2r) =

1

2
P (T ′

0 = 2r) = f2r.

Letting p2k,2n = P (T+(2n) = 2k), we have shown that

p2k,2n =
1

2

k∑

r=1

f2rp2k−2r,2n−2r +
1

2

n−k∑

r=1

f2rp2k,2n−2r

We want to show that p2k,2n = u2ku2n−2k, where u2k = P (S2k = 0). With this hypothesis,
we can start playing with the recursion of the display above and using induction on n we
will realise that

p2k,2n =
1

2
u2n−2k

k∑

r=1

f2ru2k−2r +
1

2
u2k

n−k∑

r=1

f2ru2n−2k−2r.

Explicitly, we have

P (T+(2n) = 2k) =

(
2k

k

)(
2n− 2k

n− k

)
2−2n, 0 ≤ k ≤ n. (38)

With 2n = 100, we plot the function P (T100 = 2k) for 0 ≤ k ≤ 50 below. Notice that it is
maximised at the ends of the interval.
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The arcsine law*

Use of Stirling’s approximation in formula (38) gives

P (T+(2n) = 2k) ∼ 1/π√
k(n− k)

, as k → ∞ and n− k → ∞.

Now consider the calculation of the following probability:

P

(
T+(2n)

2n
∈ [a, b]

)
=

∑

na≤k≤nb

P

(
T+(2n)

2n
=
k

n

)

∼
∑

a≤k/n≤b

1/π√
k(n− k)

=
∑

a≤k/n≤b

1/π√
k
n(n− k

n)

1

n
.

This is easily seen to have a limit as n→ ∞, the limit being
∫ b

a

1/π√
t(1− t)

dt,

because the last sum is simply a Riemann approximation to the last integral. This shows
the celebrated arcsine law:

lim
n→∞

P

(
T+(2n)

2n
≤ x

)
=

∫ x

0

1/π√
t(1− t)

dt =
2

π
arcsin

√
x.

We thus have that the limiting distribution of T+(2n) (the fraction of time that the RW is
positive), as n → ∞, is the distribution function 2

π arcsin
√
x, 0 < x < 1. This is known

as the arcsine law. This distribution function has density 1/π√
x(1−x)

, 0 < x < 1, the plot of

which is amazingly close to the plot of the figure above.

Now consider again a SSRW and consider the hitting times (Tx, x ≥ 0). This is another
random walk because the summands in Tx =

∑x
y=1(Ty − Ty−1) are i.i.d. all distributed as

T1:

P (T1 ≥ 2n) = P (S2n = 0) =

(
2n

n

)
2−2n ∼ 1√

πn
.
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From this, we immediately get that the expectation of T1 is infinity:

ET1 = ∞.

Many other quantities can be approximated in a similar manner.

34 Simple symmetric random walk in two dimensions

Consider a drunkard in a city whose roads are arranged in a rectangular grid. The corners
are described by coordinates (x, y) where x, y ∈ Z. He starts at (0, 0) and, being totally
drunk, he moves east, west, north or south, with equal probability (1/4). When he reaches
a corner he moves again in the same manner, going at random east, west, north or south.

We describe this motion as a random walk in Z
2 = Z×Z: Let ξ1, ξ2, . . . i.i.d. random vectors

such that

P (ξn = (0, 1)) = P (ξn = (−1, 0)) = P (ξn = (1, 0)) = P (ξn = (−1, 0)) = 1/4.

We then let

S0 = (0, 0), Sn =

n∑

i=1

ξi, n ≥ 1.

If x ∈ Z
2, we let x1 be its horizontal coordinate and x2 its vertical. So Sn = (S1

n, S
2
n) =(∑n

i=1 ξ
1
i ,
∑n

i=1 ξ
2
i

)
. We have

Lemma 20. (S1
n, n ∈ Z+) is a random walk. (S2

n, n ∈ Z+) is also a random walk. The two
random walks are not independent.

Proof. Since ξ1, ξ2, . . . are independent, so are ξ11 , ξ
1
2 , . . ., the latter being functions of the

former. They are also identically distributed with

P (ξ1n = 0) = P (ξn = (0, 1)) + P (ξn = (0,−1)) = 1/2,

P (ξ1n = 1) = P (ξn = (1, 0)) = 1/4

P (ξ1n = −1) = P (ξn = (−1, 0)) = 1/4.

Hence (S1
n, n ∈ Z+) is a sum of i.i.d. random variables and hence a random walk. It is not

a simple random walk because there is a possibility that the increment takes the value 0.

Same argument applies to (S2
n, n ∈ Z+) showing that it, too, is a random walk.

However, the two stochastic processes are not independent. Indeed, for each n, the random
variables ξ1n, ξ

2
n are not independent simply because if one takes value 0 the other is nonzero.

Consider a change of coordinates: rotate the axes by 45o (and scale them), i.e. map (x1, x2)
into (x1 + x2, x1 − x2). So let

Rn = (R1
n, R

2
n) := (S1

n + S2
n, S

1
n − S2

n).

We have:
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Lemma 21. (Rn, n ∈ Z+) is a random walk in two dimensions. (R1
n, n ∈ Z+) is a random

walk in one dimension. (R2
n, n ∈ Z+) is a random walk in one dimension. The last two are

independent.

Proof. We have R1
n =

∑n
i=1(ξ

1
i + ξ2i ), R

2
n =

∑n
i=1(ξ

1
i − ξ2i ). So Rn =

∑n
i=1 ηn where ηn is

the vector ηn = (ξ1n+ ξ2n, ξ
1
n− ξ2n). The sequence of vectors η1, η2, . . . is i.i.d., being obtained

by taking the same function on the elements of the sequence ξ1, ξ2, . . . Hence (Rn, n ∈ Z+)
is a random walk in two dimensions. Similar argument shows that each of (R1

n, n ∈ Z+),
(R2

n, n ∈ Z+) is a random walk in one dimension. To show that the last two are independent,
we check that η1n = ξ1n + ξ2n, η

2
n = ξ1n − ξ2n are independent for each n. The possible values

of each of the η1n, η
2
n are ±1. We have

P (η1n = 1, η2n = 1) = P (ξn = (1, 0)) = 1/4

P (η1n = −1, η2n = −1) = P (ξn = (−1, 0)) = 1/4

P (η1n = 1, η2n = −1) = P (ξn = (0, 1)) = 1/4

P (η1n = −1, η2n = 1) = P (ξn = (0,= 1)) = 1/4.

Hence P (η1n = 1) = P (η1n = −1) = 1/2, Hence P (η2n = 1) = P (η2n = −1) = 1/2. And so
P (η1n = ε, η2n = ε′) = P (η1n = ε)P (η2n = ε′) for all choices of ε, ε′ ∈ {−1,+1}.
Lemma 22.

P (S2n = 0) =

(
2n

n

)2

2−4n.

Proof.

P (S2n = 0) = P (R2n = 0) = P (R1
2n = 0, R2

2n = 0) = P (R1
2n = 0)(R2

2n = 0),

where the last equality follows from the independence of the two random walks. But (R1
n)

is a simple symmetric random walk. So P (R1
2n = 0) =

(
2n
n

)
2−2n. The same is true for (R2

n).

Corollary 24. The two-dimensional simple symmetric random walk is recurrent.

Proof. By Lemma 5, we need to show that
∑∞

n=0 P (Sn = 0) = ∞. But by the previous
lemma, and by Stirling’s approximation, P (S2n = 0) ∼ c

n , in the sense that the ratio of the
two sides goes to 1, as n→ ∞, where c is a positive constant.

35 Skorokhod embedding*

We take a closer look at the gambler’s ruin problem for a simple symmetric random walk
in one dimension. Let a < 0 < b. Recall, from Theorem 7, that for a simple symmetric
random walk (started from S0 = 0),

P (Tb < Ta) =
−a
b− a

, P (Ta < Tb) =
b

b− a
.

We can read this as follows:

P (STa∧Tb = b) =
−a
b− a

, P (STa∧Tb = a) =
b

b− a
.
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This last display tells us the distribution of STa∧Tb . Note, in particular, that ESTa∧Tb = 0.

Conversely, given a 2-point probability distribution (p, 1 − p), such that p is rational, we
can always find integers a, b, a < 0 < b such that pa + (1 − p)b = 0. Indeed, if p = M/N ,
M < N , M,N ∈ N, choose, e.g. a = M −N , b = N . This means that we can simulate the
distribution by generating a simple symmetric random walk starting from 0 and watching
it till the first time it exits the interval [a, b]. The probability it exits it from the left point
is p, and the probability it exits from the right point is 1− p.

How about more complicated distributions? Let suppose we are given a probability distri-
bution (pi, i ∈ Z). Can we find a stopping time T such that ST has the given distribution?
The Skorokhod embedding theorem tells us how to do this.

Theorem 43. Let (Sn) be a simple symmetric random walk and (pi, i ∈ Z) a given proba-
bility distribution on Z with zero mean:

∑
i∈Z ipi = 0. Then there exists a stopping time T

such that
P (ST = i) = pi, i ∈ Z.

Proof. Define a pair of random variables (A,B) taking values in {(0, 0)} ∪ (N×N) with the
following distribution:

P (A = i, B = j) = c−1(j − i)pipj , i < 0 < j,

P (A = 0, B = 0) = p0,

where c−1 is chosen by normalisation:

P (A = 0, B = 0) +
∑

i<0

∑

j>0

P (A = i, B = j) = 1.

This leads to:

c−1
∑

j>0

jpj
∑

i<0

pi + c−1
∑

i<0

(−i)pi
∑

j>0

pj = 1− p0

Since
∑

i∈Z ipi = 0, we have
∑

i<0(−i)pi =
∑

i>0 ipi and, using this, we get that c is precisely
this common value:

c =
∑

i<0

(−i)pi =
∑

i>0

ipi.

Letting Ti = inf{n ≥ 0 : Sn = i}, i ∈ Z, and assuming that (A,B) are independent of (Sn),
we consider the random variable

Z = STA∧TB .

The claim is that
P (Z = k) = pk, k ∈ Z.

To see this, suppose first k = 0. Then Z = 0 if and only if A = B = 0 and this has
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probability p0, by definition. Suppose next k > 0. We have

P (Z = k) = P (STA∧TB = k)

=
∑

i<0

∑

j>0

P (STi∧Tj = k)P (A = i, B = j)

=
∑

i<0

P (STi∧Tk = k)P (A = i, B = k)

=
∑

i<0

−i
k − i

c−1(k − i)pipk

= c−1
∑

i<0

(−i)pi pk = pk.

Similarly, P (Z = k) = pk for k < 0.
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PART III: APPENDICES

This section contains some sine qua non elements from standard Mathematics, as taught in
high schools or universities. They are not supposed to replace textbooks or basic courses;
they merely serve as reminders.

Arithmetic

Arithmetic deals with integers. The set N of natural numbers is the set of positive integers:

N = {1, 2, 3, . . .}.

The set Z of integers consists of N, their negatives and zero. Zero is denoted by 0.

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, · · · }.

Given integers a, b, with b 6= 0, we say that b divides a if there is an integer k such that
a = kb. We write this by b | a. If c | b and b | a then c | a. If a | b and b | a then a = b.

Now, if a, b are arbitrary integers, with at least one of them nonzero, we can define their
greatest common divisor d = gcd(a, b) as the unique positive integer such that

(i) d | a, d | b;
(ii) if c | a and c | b, then d | c.

(That it is unique is obvious from the fact that if d1, d2 are two such numbers then d1 would
divide d2 and vice-versa, leading to d1 = d2.) Notice that:

gcd(a, b) = gcd(a, b− a).

Indeed, let d = gcd(a, b). We will show that d = gcd(a, b−a). But d | a and d | b. Therefore
d | b − a. So (i) holds. Now suppose that c | a and c | b − a. Then c | a + (b − a), i.e.
c | b. Because c | a and c | b, and d = gcd(a, b), we have c | d. So (ii) holds, and we’re done.
This gives us an algorithm for finding the gcd between two numbers: Suppose 0 < a < b are
integers. Replace b by b− a. If b− a > a, replace b− a by b− 2a. Keep doing this until you
obtain b− qa < a. Then interchange the roles of the numbers and continue. For instance,

gcd(120, 38) = gcd(82, 38) = gcd(44, 38) = gcd(6, 38)

= gcd(6, 32) = gcd(6, 26) = gcd(6, 20) = gcd(6, 14) = gcd(6, 8) = gcd(6, 2)

= gcd(4, 2) = gcd(2, 2) = 2.

But in the first line we subtracted 38 exactly 3 times. But 3 is the maximum number of
times that 38 “fits” into 120. Indeed 4 × 38 > 120. In other words, we may summarise
the first line by saying that we replace the largest of the two numbers by the remainder of
the division of the largest with the smallest. Similarly, with the second line. So we work
faster, if we also invoke Euclid’s algorithm (i.e. the process of long division that one learns
in elementary school).
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The theorem of division says the following: Given two positive integers b, a, with a > b, we
can find an integer q and an integer r ∈ {0, 1, . . . , a− 1}, such that

a = qb+ r.

Its proof is obvious. The long division algorithm is a process for finding the quotient q and
the remainder r. For example, to divide 3450 with 26 we do

132
——

26 | 3450
26
—
85
78
—
70
52
—
18

and obtain q = 26, r = 18.

Here are some other facts about the greatest common divisor:

First, we have the fact that if d = gcd(a, b) then there are integers x, y such that

d = xa+ yb.

To see why this is true, let us follow the previous example again:

gcd(120, 38) = gcd(6, 38)

= gcd(6, 2)

= 2.

In the process, we used the divisions

120 = 3× 38 + 6

38 = 6× 6 + 2.

Working backwards, we have

2 = 38− 6× 6

= 38− 6× (120− 3× 38)

= 19× 38− 6× 120.

Thus, gcd(38, 120) = 38x+ 120y, with x = 19, y = 6. The same logic works in general.

Second, we can show that, for integers a, b ∈ Z, not both zero, we have

gcd(a, b) = min{xa+ yb : x, y ∈ Z, xa+ yb > 0}.

To see this, let d be the right hand side. Then d = xa + yb, for some x, y ∈ Z. Suppose
that c | a and c | b. Then c divides any linear combination of a, b; in particular, it divides
d. This shows (ii) of the definition of a greatest common divisor. We need to show (i), i.e.
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that d | a and d | b. Suppose this is not true, i.e. that d does not divide both numbers, say,
e.g., that d does not divide b. Since d > 0, we can divide b by d to find

b = qd+ r,

for some 1 ≤ r ≤ d− 1. But then

b = q(xa+ yb) + r,

yielding
r = (−qx)a+ (1− qy)b.

So r is expressible as a linear combination of a and b and is strictly smaller than d (being
a remainder). So d is not minimum as claimed; and this is a contradiction; so r = 0; so d
divides both a and b.

The greatest common divisor of 3 integers can now be defined in a similar manner. Finally,
the greatest common divisor of any subset of the integers also makes sense.

Relations

A relation on a set A is a mathematical notion that establishes a way of pairing elements
of A. For example, the relation < between real numbers can be thought of as consisting of
pairs of numbers (x, y) such that x is smaller than y. In general, a relation can be thought of
as a set of pairs of elements of the set A. A relation is called reflexive if it contains pairs
(x, x). The relation < is not reflexive. The equality relation = is reflexive. A relation is
called symmetric if it cannot contain a pair (x, y) without contain its symmetric (y, x). The
equality relation is symmetric. The relation < is not symmetric. A relation is transitive
if when it contains (x, y) and (y, z) it also contains (x, z). Both < and = are transitive. If
we take A to be the set of students in a classroom, then the relation “x is a friend of y” is
symmetric, it can be thought as reflexive (unless we do not want to accept the fact that one
may not be afriend of oneself), but is not necessarily transitive. A relation which possesses
all the three properties is called equivalence relation. Any equivalence relation splits
a set into equivalence classes: the equivalence class of x contains all y that are related (are
equivalent) to x.

We encountered the equivalence relation i! j (i communicates with j) in Markov chain
theory.

Functions

We a function f from a set X into a set Y is denoted by f : X → Y . The range of f is the
set of its values, i.e. the set {f(x) : x ∈ X}. A function is called one-to-one (or injective)
if two different x1, x2 ∈ X have different values f(x1), f(x2). A function is called onto (or
surjective) if its range is Y . If B ⊂ Y then f−1(B) consists of all x ∈ X with f(x) ∈ B.
The set of functions from X to Y is denoted by Y X .

Counting

Let A,B be finite sets with n,m elements, respectively.
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The number of functions from A to B (i.e. the cardinality of the set BA) is mn. Indeed, we
may think of the elements of A as animals and those of B as names. A function is then an
assignment of a name to each animal. (The same name may be used for different animals.)
So the first animal can be assigned any of the m available names; so does the second; and
the third, and so on. Hence the total number of assignments is

m×m× · · · ×m︸ ︷︷ ︸
n times

Suppose now we are not allowed to give the same name to different animals. To be able
to do this, we need more names than animals: n ≤ m. Each assignment of this type is a
one-to-one function from A to B. Since the name of the first animal can be chosen in m
ways, that of the second in m− 1 ways, and so on, the total number of one-to-one functions
from A to B is

(m)n := m(m− 1)(m− 2) · · · (m− n+ 1).

In the special case m = n, we denote (n)n also by n!; in other words, n! stands for the
product of the first n natural numbers:

n! = 1× 2× 3× · · · × n.

Incidentally, a one-to-one function from the set A into A is called a permutation of A.
Thus, n! is the total number of permutations of a set of n elements.

Any set A contains several subsets. If A has n elements, the number of subsets with k
elements each can be found by designating which of the n elements of A will be chosen. The
first element can be chosen in n ways, the second in n− 1, and so on, the k-th in n− k + 1
ways. So we have (n)k = n(n− 1)(n− 2) · · · (n− k + 1) ways to pick k elements if we care
about their order. If we don’t then we divide by the number k! of permutations of the k
elements concluding that the number of subsets with k elements of a set with n elements
equals

(n)k
k!

=:

(
n

k

)
,

where the symbol
(
n
k

)
is merely a name for the number computed on the left side of this

equation. Clearly, (
n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
.

Since there is only one subset with no elements (it is the empty set ∅), we have

(
n

0

)
= 1.

The total number of subsets of A (regardless of their number of elements) is thus equal to

n∑

k=0

(
n

k

)
= (1 + 1)n = 2n,

and this follows from the binomial theorem. We thus observe that there are as many subsets
in A as number of elements in the set {0, 1}n of sequences of length n with elements 0 or 1.
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We shall let
(
n
k

)
= 0 if n < k.

Also, by convention, if x is a real number, we define

(
x

m

)
=
x(x− 1) · · · (x−m+ 1)

m!
.

If y is not an integer then, by convention, we let
(
n
y

)
= 0.

The Pascal triangle relation states that

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

Indeed, in choosing k animals from a set of n + 1 ones, consider a specific animal, the pig,
say. If the pig is not included in the sample, we choose k animals from the remaining n
ones and this can be done in

(
n
k

)
ways. If the pig is included, then there are k− 1 remaining

animals to be chosen and this can be done in
(
n
k−1

)
ways. Since the sentences “the pig

is included” and “the pig is not included” cannot be simultaneously true, we add the two
numbers together in order to find the total number of ways to pick k animals from n + 1
animals.

Maximum and minimum

The minimum of two numbers a, b is denoted by

a ∧ b = min(a, b).

Thus a ∧ b = a if a ≤ b or = b if b ≤ a.

The maximum is denoted by
a ∨ b = max(a, b).

Note that −(a ∨ b) = (−a) ∧ (−b) and (a ∧ b) + c = (a+ c) ∧ (b+ c).

In particular, we use the following notations:

a+ = max(a, 0), a− = −min(a, 0).

Both quantities are nonnegative; a+ is called the positive part of a; and a− is called the
negative part of a. Note that it is always true that

a = a+ − a−.

The absolute value of a is defined by

|a| = a+ + a−.

The notation extends to more than one numbers. For example,

a ∨ b ∨ c

refers to the maximum of the three numbers a, b, c, and we don’t care to put parantheses
because the order of finding a maximum is irrelevant.
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Indicator function

1A stands for the indicator function of a set A, meaning a function that takes value 1
on A and 0 on the complement Ac of A. We also use the notation 1(clause) for a number
that is 1 whenever the clause is true or 0 otherwise. This is very useful notation because
conjunction of clauses is transformed into multiplication. It is easy to see that

1A∩B = 1A1B, 1− 1A = 1Ac .

Several quantities of interest are expressed in terms of indicators. For instance, if A1, A2, . . .
are sets or clauses then the number

∑
n≥1 1An is the number true clauses.

Thus, if I go to a bank N times and Ai is the clause “I am robbed the i-th time” then∑N
n=1 1Ai

is the total number of times I am robbed.

If A is an event then 1A is a random variable. It takes value 1 with probability P (A) and
0 with probability P (Ac). Therefore its expectation is

E1A = 1× P (A) + 0× P (Ac) = P (A).

It is worth remembering that.

An example of its application: Since

1A∪B = 1− 1(A∪B)c = 1− 1Ac∩Bc = 1− 1Ac1Bc

= 1− (1− 1A)(1− 1B) = 1A + 1B − 1A1B,= 1A + 1B − 1A∩B,

we have
E[1A∪B] = E[1A] + E[1B]− E[1A∩B],

which means
P (A ∪B) = P (A) + P (B)− P (A ∩B).

Another example: Let X be a nonnegative random variable with values in N = {1, 2, . . .}.
Then

X =
X∑

n=1

1 (the sum of X ones is X).

So
X =

∑

n≥1

1(X ≥ n).

So
E[X] =

∑

n≥1

E1(X ≥ n) =
∑

n≥1

P (X ≥ n).

Matrices

Let Rd be the set of vectors with d components. A linear function ϕ from R
n to R

m is such
that

ϕ(αx+ βy) = αϕ(x) + βϕ(y),
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for all x, y ∈ R
n, and all α, β ∈ R. Let u1, . . . , un be a basis for Rn. Then any x ∈ R

n can
be uniquely written as

x =
n∑

j=1

xjuj ,

where x1, . . . , xn ∈ R. The column



x1

...
xn


 is a column representation of x with respect to

the given basis. Then, because ϕ is linear,

y := ϕ(x) =

n∑

j=1

xjϕ(uj).

But the ϕ(uj) are vectors in R
m. So if we choose a basis v1, . . . , vm in R

n we can express
each ϕ(uj) as a linear combination of the basis vectors:

ϕ(uj) =
m∑

i=1

aijvi.

Combining, we have

ϕ(x) =
m∑

i=1

vi

n∑

j=1

aijx
j .

Let

yi :=
n∑

j=1

aijx
j , i = 1, . . . ,m.

The column



y1

...
ym


 is a column representation of y := ϕ(x) with respect to the given basis

v1, . . . , vm. The matrix A of ϕ with respect to the choice of the two basis is defined by

A :=



a11 · · · a1n
· · · · · · · · ·
am1 · · · amn




It is a m× n matrix. The relation between the column representation of y and the column
representation of x is written as



y1

...
ym


 =



a11 · · · a1n
· · · · · · · · ·
am1 · · · amn






x1

...
xn




Suppose that ψ,ϕ are linear functions:

R
n ψ−→ R

m ϕ−→ R
ℓ

Then ϕ ◦ ψ is a linear function:

R
n ϕ◦ψ−−→ R

ℓ
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Fix three sets of basis on R
n, Rm and R

ℓ and let A,B be the matrix representations of ϕ, ψ,
respectively, with respect to these bases. Then the matrix representation of ϕ ◦ ψ is AB,
where

(AB)ij =
m∑

k=1

AikBkj , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ n.

So A is a ℓ×m matrix, B is a m× n matrix, and AB is a ℓ× n matrix.

A matrix A is called square if it is a n× n matrix. If we fix a basis in R
n, a square matrix

represents a linear transformation from R
n to R

n, i.e. it is its matrix representation with
respect to the fixed basis.

Usually, the choice of the basis is the so-called standard basis. The standard basis in R
d

consists of the vectors

e1 =




1
0
...
0


 , e2 =




0
1
...
0


 , . . . , ed =




0
0
...
1


 .

In other words, eij = 1(i = j).

Supremum and infimum

When we have a set of numbers I (for instance, a sequence a1, a2, . . . of numbers) then the
minimum of I is denoted by min I and refers to a number c ∈ I such that c ≤ x for all the
numbers x ∈ I. Similarly, we define max I. This minimum (or maximum) may not exist.
For instance I = {1, 1/2, 1/3, . . .} has no minimum. In these cases we use the notation inf I,
standing for the “infimum” of I, defined as the maximum of all the numbers y with the
property y ≤ x for all x ∈ I. A property of real numbers says that if the set I is bounded
from below then this maximum of all lower bounds exists, and it is this that we called
infimum. Likewise, we define the supremum sup I to be the minimum of all upper bounds.
If I has no lower bound then inf I = −∞. If I has no upper bound then sup I = +∞. If I
is empty then inf ∅ = +∞, sup ∅ = −∞.

inf I is characterised by: inf I ≤ x for all x ∈ I and, for any ε > 0, there is x ∈ I with
x ≤ ε+ inf I. sup I is characterised by: sup I ≥ x for all x ∈ I and, for any ε > 0, there is
x ∈ I with x ≥ ε+ inf I.

Limsup and liminf

If x1, x2, . . . is a sequence of numbers then inf{x1, x2, . . .} ≤ inf{x2, x3, . . .} ≤ inf{x3, x4, . . .}
≤ · · · and, since any increasing sequence has a limit (possibly +∞) we take this limit and call
it lim supxn (limit superior) of the sequence. So lim supxn = limn→∞ inf{xn, xn+1, xn+2, · · · }.
Similarly, we define lim supxn. We note that lim inf(−xn) = − lim supxn. The sequence xn
has a limit ℓ if and only if lim supxn = lim inf xn = ℓ.
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Probability Theory

I do not require11 knowledge of axiomatic Probability Theory (with Measure Theory). But
I would like the reader to keep in mind one thing: Every mathematical system has a set
of axioms from which we can prove (useful) theorems, derive formulae, and apply them.
Probability Theory is exceptionally simple in terms of its axioms, for (besides P (Ω) = 1)
there is essentially one axiom , namely:

If A1, A2, . . . are mutually disjoint events, then P


⋃

n≥1

An


 =

∑

n≥1

P (An).

Everything else, in these notes, and everywhere else, follows from this axiom. That is why
Probability Theory is very rich. In contrast, Linear Algebra that has many axioms is more
‘restrictive’. (That is why Probability Theory is very rich. In contrast, Linear Algebra that
has many axioms is more ‘restrictive’.)

If A,B are disjoint events then P (A ∪ B) = P (A) + P (B). This can be generalised to any
finite number of events. If the events A,B are not disjoint then P (A∪B) = P (A)+P (B)−
P (A ∩B). This is the inclusion-exclusion formula for two events.

If A is an event then 1A or 1(A) is the indicator random variable, i.e. the function that
takes value 1 on A and 0 on Ac. Therefore, E1A = P (A). Note that 1A1B = 1A∩B, and
1Ac = 1− 1A.

If An are events with P (An) = 0 then P (∪nAn) = 0. Indeed, P (∪nAn) ≤ ∑
n P (An).

Similarly, if An are events with P (An) = 1 then P (∩nAn) = 1.

Usually, showing that P (A) ≤ P (B) is more of a logical problem than a numerical one: we
need to show that A implies B (i.e. A is a subset of B). Similarly, to show that EX ≤ EY ,
we often need to argue that X ≤ Y . For example, Markov’s inequality for a positive
random variable X states that P (X > x) ≤ EX/x. This follows from the logical statement
X1(X > x) ≤ X, which holds since X is positive.

In Markov chain theory, we work a lot with conditional probabilities. Recall that P (B|A) is
defined by P (A∩B)/P (A) and is a very motivated definition. Often, to compute P (A∩B)
we read the definition as P (A ∩ B) = P (A)P (B|A). This is generalisable for a number of
events:

P (A1 ∩A2 ∩A3) = P (A1)P (A2|A1)P (A3|A1 ∩A2)

If we interchange the roles of A,B in the definition, we get P (A ∩ B) = P (A)P (B|A) =
P (B)P (A|B) and this is called Bayes’ theorem.

Quite often, to compute P (A), it is useful to find disjoint events B1, B2, . . . such that
∪nBn = Ω, in which case we write

P (A) =
∑

n

P (A ∩Bn) =
∑

n

P (A|Bn)P (Bn).

If the events A1, A2, . . . are increasing with A = ∪nAn then P (A) = limn→∞ P (An). Sim-
ilarly, if he events A1, A2, . . . are decreasing with A = ∩nAn then P (A) = limn→∞ P (An).

11Of course, by not requiring this, I do sometimes “cheat” from a strict mathematical point of view, but
not too much...
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An application of this is:
P (X <∞) = lim

x→∞
P (X ≤ x).

In Markov chain theory, we encounter situations where P (X = ∞) may be positive, so it is
useful to keep this in mind.

The expectation of a nonnegative random variable X may be defined by

EX =

∫ ∞

0
P (X > x)dx.

The formula holds for any positive random variable. For a random variable which takes
positive and negative values, we define X+ = max(X, 0), X− = −min(X, 0), which are
both nonnegative and then define

EX = EX+ − EX−,

which is motivated from the algebraic identity X = X+ −X−. This definition makes sense
only if EX+ < ∞ or if EX− < ∞. In case the random variable is discrete, the formula
reduces to the known one, viz., EX =

∑
x xP (X = x). In case the random variable is

absoultely continuous with density f , we have EX =
∫∞
−∞ xf(x)dx. For a random variable

that takes values in N we can write EX =
∑∞

n=1 P (X ≥ n). This is due to the fact that
P (X ≥ n) = E1(X ≥ n).

Generating functions

A generating function of a sequence a0, a1, . . . is an infinite polynomial having the ai
as coefficients:

G(s) = a0 + a1s+ a2s
2 + · · · .

We do not a priori know that this exists for any s other than, obviously, for s = 0 for which
G(0) = 0. If it exists for some s1 then it exists uniformly for all s with |s| < |s1| (and this
needs a proof, taught in calculus courses).

As an example, the generating function of the geometric sequence an = ρn, n ≥ 0 is

∞∑

n=0

ρnsn =
1

1− ρs
, (39)

as long as |ρs| < 1, i.e. |s| < 1/|ρ|.
Note that |G(s)| ≤ ∑n |an||s|n and this is ≤ ∑n |an| if s ∈ [−1, 1]. So if

∑
n an < ∞ then

G(s) exists for all s ∈ [−1, 1], making it a useful object when the a0, a1, . . . is a probability
distribution on Z+ = {0, 1, 2, . . .} because then

∑
n an = 1.

Suppose now that X is a random variable with values in Z+ ∪ {+∞}. The generating
function of the sequence

pn = P (X = n), n = 0, 1, . . .

is called probability generating function of X:

ϕ(s) = EsX =
∞∑

n=0

snP (X = n)
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This is defined for all −1 < s < 1. Note that

∞∑

n=0

pn ≤ 1,

and

p∞ := P (X = ∞) = 1−
∞∑

n=0

pn.

We do allow X to, possibly, take the value +∞. Since the term s∞p∞ could formally appear
in the sum defining ϕ(s), but, since |s| < 1, we have s∞ = 0.

Note that ϕ(0) = P (X = 0), while

ϕ(1) =
∞∑

n=0

P (X = n) = P (X < +∞),

We can recover the probabilities pn from the formula

pn =
ϕ(n)(0)

n!
,

as follows from Taylor’s theorem, and this is why ϕ is called probability generating function.
Also, we can recover the expectation of X from

EX = lim
s→1

ϕ′(s),

something that can be formally seen from

d

ds
EsX = E

d

ds
sX = EXsX−1,

and by letting s = 1.

Generating functions are useful for solving linear recursions. As an example, consider the
Fibonacci sequence defined by the recursion

xn+2 = xn+1 + xn, n ≥ 0, with x0 = x1 = 1.

If we let
X(s) =

∑

n≥0

xns
n

be the generating of (xn, n ≥ 0) then the generating function of (xn+1, n ≥ 0) is

∑

n≥0

xn+1s
n = s−1(X(s)− x0)

and the generating function of (xn+2, n ≥ 0) is

∑

n≥0

xn+2s
n = s−2(X(s)− x0 − sx1).
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From the recursion xn+2 = xn+1 + xn we have (and this is were linearity is used) that
the generating function of (xn+2, n ≥ 0) equals the sum of the generating functions of
(xn+1, n ≥ 0) and (xn, n ≥ 0), namely,

s−2(X(s)− x0 − sx1) = s−1(X(s)− x0) +X(s).

Since x0 = x1 = 1, we can solve for X(s) and find

X(s) =
−1

s2 + s− 1
.

But the polynomial s2 + s− 1 has two roots:

a = (
√
5− 1)/2, b = −(

√
5 + 1)/2.

Hence
s2 + s− 1 = (s− a)(s− b),

and so

X(s) =
1

a− b

( 1

s− b
− 1

s− a

)
=

1

b− a

( 1

b− s
− 1

a− s

)
.

But (39) tells us that ρn has generating function 1
1−ρs = 1/ρ

(1/ρ)−s . Thus 1
(1/ρ)−s is the

generating function of ρn+1. This tells us that 1
s−b is the generating function of (1/b)n+1

and that 1
s−a is the generating function of (1/a)n+1. Hence X(s) is the generating function

of

xn =
1

b− a
((1/b)n+1 − (1/a)n+1).

Noting that ab = −1, we can also write this as

xn =
(−a)n+1 − (−b)n+1

b− a
.

is the solution to the recursion, i.e. the n-th term of the Fibonacci sequence. Despite the
square roots in the formula, this number is always an integer (it has to be!)

Distribution or law of a random object

When we speak of the “distribution” or “law” of a random variable X with values in Z

or R or Rn or even in a much larger space, we speak of some function which enables us to
specify the probabilities of the form

P (X ∈ B)

where B is a set of values of X.

So, for example, if X is a random variable with values in R, then the so-called distribution
function, i.e. the function

P (X ≤ x), x ∈ R,

is such an example. But I could very well use the function

P (X > x),
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or the 2-parameter function
P (a < X < b).

If X is absolutely continuous, I could use its density

f(x) =
d

dx
P (X ≤ x).

All these objects can be referred to as “distribution” or “law” of X. Even the generating
function

EsX

of a Z+-valued random variable X is an example, for it does allow us to specify the prob-
abilities P (X = n), n ∈ Z+. Warning: the verb “specify” should not be interpreted as
“compute” in the sense of existence of an analytical formula or algorithm.

We frequently encounter random objects which belong to larger spaces, for example they
could take values which are themselves functions. For instance, we encountered the concept
of an excursion of a Markov chain from a state i. Such an excursion is a random object
which should be thought of as a random function. Specifying the distribution of such an
object may be hard, but using or merely talking about such an object presents no difficulty
other than overcoming a psychological barrier.

Large products: Stirling’s formula

If we want to compute n! = 1× 2× · · · × n for large n then, since the number is so big, it’s
better to use logarithms:

n! = elog n = exp

n∑

k=1

log k.

Now, to compute a large sum we can, instead, compute an integral and obtain an approxi-
mation. Since log x does not vary too much between two successive positive integers k and
k + 1 it follows that ∫ k+1

k
log x dx ≈ log k.

Hence
n∑

k=1

log k ≈
∫ n

1
log x dx.

Since d
dx(x log x− x) = log x, it follows that

∫ n

1
log x dx = n logn− n+ 1 ≈ n log n− n.

Hence we have
n! ≈ exp(n logn− n) = nne−n.

We call this the rough Stirling approximation. It turns out to be a good one. But there
are two problems: (a) We do not know in what sense the symbol ≈ should be interpreted.
(b) The approximation is not good when we consider ratios of products. For example (try
it!) the rough Stirling approximation give that the probability that, in 2n fair coin tosses
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we have exactly n heads equals
(
2n
n

)
2−2n ≈ 1, and this is terrible, because we know that the

probability goes to zero as n→ ∞.

To remedy this, we shall prove Strirling’s approximation:

n! ∼ nne−n
√
2πn

where the symbol an ∼ bn means that an/bn → 0, as n→ ∞.

The geometric distribution

We say that the random variable X with values in Z+ is geometric if it has the memoryless
property:

P (X − n ≥ m | X ≥ n) = P (X ≥ m), 0 ≤ n ≤ m.

If we think of X as the time of occurrence of a random phenomenon, then X is such that
knowledge that X has exceeded n does not make the distribution of the remaining time
X − n any different from X.

We have already seen a geometric random variable. That was the random variable J0 =∑∞
n=1 1(Sn = 0), defined in (34). It was shown in Theorem 38 that J0 satisfies the mem-

oryless property. In fact it was shown there that P (J0 ≥ k) = P (J0 ≥ 1)k, a geometric
function of k.

The same process shows that a geometric random variable has a distribution of the form

P (X ≥ n) = λn, n ∈ Z+,

where λ = P (X ≥ 1). We baptise this geometric(λ) distribution.

Markov’s inequality

Arguably this is the most useful inequality in Probability, and is based on the concept of
monotonicity. Surely, you have seen it before, so this little section is a reminder.

Consider an increasing and nonnegative function g : R → R+. We can case both properties
of g neatly by writing

For all x, y ∈ R g(y) ≥ g(x)1(y ≥ x).

Indeed, if y ≥ x then 1(y ≥ x) = 1 and the display tells us g(y) ≥ g(x), expressing
monotonicity. And if y < x then 1(y < x) = 0 and the display reads g(y) ≥ 0, expressing
non-negativity. Let X be a random variable. Then, for all x,

g(X) ≥ g(x)1(X ≥ x),

and so, by taking expectations of both sides (expectation is an increasing operator),

Eg(X) ≥ g(x)P (X ≥ x) .

This completely trivial thought gives the very useful Markov’s inequality.
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2. Brémaud P (1999) Markov Chains. Springer.

3. Chung, K L and Aitsahlia F (2003) Elementary Probability Theory (With Stochas-
tic Processes and an Introduction to Mathematical Finance). Springer.

4. Feller, W (1968) An Introduction to Probability Theory and its Applications. Wiley.

5. Grinstead, C M and Snell, J L (1997) Introduction to Probability. Amer. Math.
Soc.
Also available at: http://www.dartmouth.edu/~chance/teaching_aids/books_articles/
/probability_book/amsbook.mac.pdf

6. Norris, J R (1998) Markov Chains. Cambridge University Press.

7. Parry, W (1981) Topics in Ergodic Theory. Cambridge University Press.

120



Index

absorbing, 17
Aloha, 68
aperiodic, 18
arcsine law, 101
axiom of Probability Theory, 114

balance equations, 10
ballot theorem, 84
bank account, 3
branching process, 65

Catalan numbers, 82
Cesaro averages, 45
Chapman-Kolmogorov equation, 7
closed, 17
communicates with, 16
communicating classes, 16
convolution, 77
coupling, 47
coupling inequality, 48
cycle formula, 44

degree, 61
detailed balance equations, 58
digraph (directed graph), 15
distribution, 117
division, 18
dual, 98
dynamical system, 1

equivalence classes, 16
equivalence relation, 16, 108
ergodic, 51
essential state, 17
Ethernet, 68

Fatou’s lemma, 53
Fibonacci sequence, 116
first-step analysis, 20
function of a Markov chain, 63

Galton-Watson process, 65
generating function, 115
geometric distribution, 119
Google, 70
greatest common divisor, 106
ground state, 35

Helly-Bray Lemma, 53
hitting time, 20

increments, 77
indicator, 111
inessential state, 17
infimum, 113
initial distribution, 7
invariant distribution, 10
irreducible, 17

Kolmogorov’s loop criterion, 59

law, 117
leads to, 15
Loynes’ method, 73

Markov chain, 6
Markov property, 6
Markov’s inequality, 119
matrix, 111
maximum, 110
meeting time, 48
memoryless property, 119
minimum, 110
mixing, 51
Monte Carlo, 2

nearest neighbour random walk, 76
neighbours, 61
null recurrent, 34

PageRank, 70
period, 18
permutation, 109
positive recurrent, 34
probability flow, 13
probability generating function, 115

random walk on a graph, 61
recurrent, 29
reflection, 81
reflection principle, 86
reflexive, 15, 108
relation, 108
ruin probability, 26
running maximum, 87

121



semigroup property, 7
simple random walk, 76
simple symmetric random walk, 77
skip-free property, 76
Skorokhod embedding, 104
states, 6
statespace, 6
stationary, 9
stationary distribution, 10
steady-state, 13
stopping time, 27
storage chain, 73
strategy of the gambler, 24
Strirling’s approximation, 119
strong Markov property, 27
subordination, 62
subsequence of a Markov chain, 62
supremum, 113
symmetric, 16, 108

time-homogeneous, 7
time-reversible, 58
transient, 29
transition diagram:, 2
transition probability, 7, 8
transition probability matrix, 3, 8
transitive, 16, 108
tree, 60

urn, 88

watching a chain in a set, 62
Wright-Fisher model, 71

122


