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1.1  Introduction 

 Claude Shannon‟s landmark paper published in 1948 is 

the foundation of information theory, which explores the 

theoretical performance limits of optimum  communication 

systems. 

 Knowledge of  information-theoretic limits is useful  for 

system designers because it indicates how far a real system 

could be improved .

 The theory provides answers to two fundamental questions 

(among others):

(i) What is the irreducible complexity below which a signal 

cannot be compressed ?

(ii) What is the ultimate transmission rate for reliable 

communication over a noisy channel ?
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 The history of error-correction coding starts  with 

Shannon‟s work published in 1948. He showed that it is 

possible to transmit data without  errors as long as the bit 

rate  is smaller than the channel capacity. 

 The absence of errors is achieved by the use of “ 

appropriate” codes. Shannon showed that ( infinitely long ) 

random codes achieve capacity. Unfortunately , such codes 

cannot be used in practice due to the enormous effort 

required for their decoding.

 For more than 50 years, the works of coding theorists  

mainly focused  on finding practical codes that come close 

to the  Shannon limits, i.e., allow  communications with  

rates close to the channel capacity.
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 This figure represents one of the great  contributions of “ 
A Mathematical Theory of Communication”   :  the 
architecture and design of communication systems.  It 
demonstrates that any communication system can be 
separated into components, which can be treated 
independently as distinct mathematical models. Thus, it is 
possible to completely separate the design of the source 
from the design of the channel. All of  today‟s 
communication systems are essentially based on this model 
.

 Shannon's Information Theory

Source Coding Theorem

Channel Coding Theorem

Information Capacity Theorem

Rate distortion Theorem



88

Note :

1.  R.V.L. Hartley (1928) had attempted to quantify of information as the 

logarithm of the number of possible message built from a pool of 

symbols. He introduced the concept of “information” as random 

variable and was the first to attempt to define “ a measure of 

information”   ( 1928 : “ Transmission of Information “ in Bell System

Tech. Journal, vol.7, pp. 535-563”) .

2. In 1924,  H.Nyquist published "Certain Factors Affecting Telegraph 

Speed,"  gave an analysis of the relationship between the speed of a 

telegraph system and the number of signal values used by the system.

His 1928 paper "Certain Topics in Telegraph Transmission Theory" 

refined his earlier results and established the principles of sampling

continuous signals to convert them to digital signals. The Nyquist 

sampling theorem showed that the sampling rate must be at least twice

the highest frequency present in the sample in order to reconstruct the 

original signal. 

These two papers by Nyquist, along with one by R.V.L. Hartley, are 

cited in the first paragraph of Claude Shannon's classic essay “A

Mathematical Theory of Communication" (1948), where their seminal 

role in the development of information theory is acknowledged. 
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1.3  Nyquist–Shannon Sampling Theorem

• The Nyquist–Shannon sampling theorem is a fundamental

result in the field of information theory. 

It is often referred to as simply the sampling theorem.

• Sampling is the process of converting a signal (for example, 

a function of continuous time or space) into a numeric

sequence (a function of discrete time or space).

• The theorem states that

“Exact reconstruction of a continuous-time baseband 

signal from its samples is possible if the signal is 

bandlimited and the sampling frequency is greater than

twice the signal bandwidth.”.
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1.4 Discrete Memoryless Source

• Memoryless source : The source is memoryless  if  

successive symbols emitted by the source are  statistically 

independent.

• Entropy of Discrete Memoryless Source :

Assume that the source output is modeled as a discrete 

random variable, which takes on symbols from a fixed 

finite alphabet

S = { s0 , s1 , …, sK-1 }

with probabilities 

p(S = sk ) = pk ,   k = 0,1,2,…, K-1

and Σk =0
K-1 pk = 1
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• The amount of information gained after observing the event

is defined as the logarithmic function

Ik = log2 ( 1/pk)

The entropy of the source is defined as the mean of  
information over source alphabet  , and is given by 

H (S) = E[ I(sk )]

= Σk =0
K-1  pk I(sk ) 

= Σk =0
K-1  pk log2 ( 1/pk)

The entropy is a measure of the average information content 
per source symbol.
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1.5   Source Coding Theorem (Shannon's first theorem)

• The theorem can be stated as follows:

Given a discrete memoryless source of entropy , the 

average code-word length L for any distortionless source 

coding is bounded as

L ≧ H(s)

where H(s) is the entropy of the source

• This theorem provides the mathematical tool for 

assessing data compaction, i.e. lossless data compression, 

of data generated by a discrete memoryless source.

• The entropy of a source is a function of the probabilities 

of the source symbols that constitute the alphabet of the 

source.
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1.6  Discrete Memoryless Channel
 A discrete memoryless channel (DMC) is a statistical model 

with an input X and an output Y that is a noisy version of X. 

Both X and Y are  discrete random variables .

X = { x1 , x2 , … , xJ }  , Y = { y1 , y2 , … , yK } 

It is memoryless  if the current output symbol depends only 

the current input symbol and not any previous ones.

 The relation between the output and input can be defined by 

the transition matrix

p ( y1｜ x1 ) p( y2｜ x1 )       … p ( yK｜ x1 )

p ( y1｜ x2 ) p( y2｜ x2)       … p ( yK｜ x2 )

P = [ ]
p ( y1｜ xK) p ( y2｜ xK)       … p ( yK｜ xJ)

with the relation  Σk =1
N   p ( yk｜ xj ) =  1  for j =1,2, …,J
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Discrete memoryless channel Model

(a ) General DMC 

(b) Binary symmetric channel                      ( c ) Binary erasure channel
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• Binary-input, M-ary Output Discrete Channel

Example :  M = 8

Input                                                                        Output
0

0

1

1

Input Output

2
3

4
5

6

7
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 Binary Symmetric Channel  (BSC ) :

A binary symmetric channel (BSC) is the most common 

channel model. In this model , both the input and output 

symbol alphabets are binary symbols ( 0 and 1 ) and the 

output symbols  are dependent only on single input 

symbols . 

The transition probabilities are given by

p ( y=0｜ x = 0 ) = 1- ε ,    p( y=0｜ x=1) = ε

p ( y=1｜ x= 0 ) = ε ,  p( y=1｜ x=1 ) =1- ε
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 Binary Erasure Channel

Fig. ( c) presents a binary symmetric erasure (BEC) 
channel. The output alphabet include 0, 1 and  a third 
symbol denoted as “ e “, called “ erasure “.

The erasure symbol reflects the situation in which the 
receiver is not able to perform detection and decide if the 
received symbol is “ 0 “ or “ 1 “. 

Denoting the a priori probabilities of the input symbols as

p( X =0 ) = α

p (X=1 ) =1- α

we  obtain the probability of  occurrence of  an erasure 

p(e ) = p ( Y = e ) p ( X = 0) + p ( Y = e ) p( X = 1) 

= ε α + ε(1- α) = ε

Note :  The emergence of the Internet promoted the erasure channel into the 

class of “ real world “ channels . Indeed, erasure channels can be used 

to model data networks , where  packets either arrive correctly or are

lost .
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 Binary-Input AWGN Channel 

The binary-input additive white Gaussian noise (BI-

AWGN ) channel can be described by the equation

yi = xi + zi

where  xi is the transmitted symbol , yi  is the received 

symbol and zi  is the additive noise .

The probability density function ( pdf  )  for z is  

p(z) = {1/ √( 2π σ2 ) }   exp (-z2 / 2σ2 )
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1.7 Joint and Conditional Entropy 

 Given the input probabilities  p ( xj) , output probabilities

p( yk ) , the transition probabilities  p( yk｜ xj) , and the 

joint probabilities  p(xj , yk ) , we can define several 

different entropy functions for a channel with J inputs and

K outputs as follows. 

H (X ) = Σj =0
J-1  p(xj ) log2 ( 1/p(xj)

H (Y ) = Σk =0
K-1  p(yk) log2 ( 1/p(yk)

H( X｜Y ) = Σj =0
J-1 Σk =0

K-1  p(xj  , yk  ) log2 ( 1/p(xj｜ yk)

H( X,Y ) = Σj =0
J-1 Σk =0

K-1  p(xj  , yk  ) log2 ( 1/p(xj , yk )

and H( Y｜X ) = Σj =0
J-1 Σk =0

K-1  p(xj  , yk  ) log2 ( 1/p(yk｜ xj)
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 The above entropies  can be easily interpreted. H(X)  is the 

average uncertainty of the source , whereas H (Y) is the 

average uncertainty of the received symbol ( channel 

output )  . The function  H( Y｜X )  is the average 

uncertainty of the received symbol given that X  was 

transmitted .  The joint entropy H (X , Y ) is the average  

uncertainty of the communication system as a whole.

 The following two important  and useful relationships can 

be  obtained directly  from the previously defined  

entropies.

H ( X, Y) = H( X｜Y ) + H (Y) 

H ( X, Y) = H( Y｜X ) + H (X) 
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1.8   Mutual Information 

 As stated before, H( X｜Y ) represents the uncertainty of 

the input  that remains after the observation of the output 

symbol Y , while H(X) represents the uncertainty of the 

input before the observation of Y .  

The difference   H(X) - H( X｜Y )   represents the  average 

amount  of information obtained about the channel input 

symbol  by the observer  . 

The value H(X) - H( X｜Y ) is called an average amount    

of mutual information , and is denoted by  I ( X ; Y ) .

Thus we have

I ( X ; Y ) = H(X) - H( X｜Y ) 
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Using Bayes‟ rule , we can expressed I (X; Y) as

I (X; Y) = Σj =0
J-1  p(xj ) log2 ( 1/p(xj )

- Σj =0
J-1 Σk =0

K-1    p(xj  , yk ) log2 ( 1/p(xj｜ yk)

= Σj =0
J-1 Σk =0

K-1   p(xj  , yk ) log2 [ p(yk｜xj) / p (yk )]

or   I (X; Y) = Σj =0
J-1 Σk =0

K-1  p(xj ) p(yk｜xj) .

log2 [  p(yk｜xj ) /Σk =1
N p(xj) p(yk｜xj)  ]

 It is easy to show mathematically the following properties of mutual 
information :

(1)    I (X;Y ) ≧ 0

(2)   I (Y ;X ) = I (X;Y )     

(3)   I(X;Y) = H(X) + H (Y) – H (X;Y)
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1.9  Channel Capacity of Discrete Memoryless 

Channel

 In a communication channel  with input symbol X and 

output symbol Y , I(X; Y)  represents the  information 

transmitted over the channel .  The value  of  I(X; Y)  is a 

function of the symbol probabilities P( xj ).

For a given  channel , I(X; Y) will be maximum for some set 

of probabilities  p( xj ). The maximum  value is the channel 

capacity  C .

C =  max I(X; Y)        bits per symbol transmitted

p(xi )

Thus, C represents the maximum information thatcan be 

transmitted per symbol over the channel.
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 Example :

Channel capacity of a  binary symmetric channel

p( x1 ) = α     ,        p ( x2) = 1- α

p(y1｜x1) = p(y2｜x2)  = pe

p(y1｜x2) = p(y2｜x2)  = 1- pe

then I (X;Y) = α(1- pe ) log2 [ (1-pe ) / α(1- pe ) +( 1- α) pe ] 

+α pe log2 [pe ) / α pe ) +( 1- α) (1-pe ) ]

+(1-α) pe) log2 [pe ) / α(1- pe ) +( 1- α) pe ) ]

+(1-α)(1- pe ) log2 (1-pe ) / [αpe +( 1- α)(1- pe )]
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If we define  Ω(z) = z log2 (1/z ) + (1-z) log2 ( 1/ (1-z) )

then   

I (X;Y) = Ω[α pe +(1-α)(1- pe ) ]  -Ω(pe )
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For a given  pe  ,the maximum occurs when α= 0.5 .

For this value of α

Ω [α pe +(1-α)(1- pe ) ] = 1

and  C = 1- Ω (pe )  

= 1 – {pe log( 1/ pe ) + (1-pe ) log[ 1/(1- pe ) ] }
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1.10  Channel Coding Theorem (Shannon's  2nd   theorem) 

The channel coding theorem for a discrete memoryless 

channel is stated in two parts as follows:

• Let a discrete memoryless source with an alphabet    have

entropy H(s)  and produce symbols once every Ts seconds. 

Let a discrete memoryless channel have capacity C and 

be used once every Tc seconds. 

If      H(s) / Ts   <  C / Tc

there exists a coding scheme for which the source output 

can be transmitted over the channel and be reconstructed 

with an arbitrarily small probability of error.

 Conversely,

if     H(s)/ Ts  ≧ C / Tc

it is not possible to transmit information over the channel 

and reconstruct it with an arbitrarily small probability of 

error.
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 The theorem specifies the channel capacity  as a 

fundamental limit on the rate at which the transmission of 

reliable error-free message can take place over a discrete 

memoryless channel.

Note : C is defined as the maximum rate of  reliable  

transmission over the channel.



29

1.11  Channel Capacity of  AWGN Channel

1.11.1  Discrete-Time  Channel
 Let X and  Y denote the  channel input and output , 

respectively. The additive white Gaussian is denoted as n .

Y = X +  n 

The samples are expressed by

Yk = Xk +  nk       k =1,2,…, K

where  nk 
„s are iid zero-mean Gaussian random variables 

with  variance σ 2 .

The input X is subject to the power constraint

E[X2] ≦ P

 If the number of samples, K , is very large , the noise power 

can be calculated as the average of the noise samples : 

(1/K) Σk =1
K nk 

2   =  (1/K) Σk =1
K ｜Y-X｜ 2    ≦ σ 2

which  means   that ｜Y-X｜ 2    ≦ K σ 2
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 Thus, if  X is transmitted, with high probability the 

vector 

Y will be inside an   K-dimensional sphere of radius

√ (K σ 2 ) and centered at  X .

The maximum number of spheres of radius √ (K σ 2 ) that 

can be packed in a sphere of radius √K(P+ σ 2 )   is the 

ratio  of the volumes of the spheres .
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 For a K-dimensional hypersphere of radius  Re the volume 

is equal to

VK =  BK  Re
K

where BK  is a constant .

Therefore, the maximum number of message symbols that 

can be transmitted and still resolvable at the receiver is

M =  {BK (√K(P+ σ 2 ) )K } / {BK (√K(σ 2 ) )K } 

=  ( 1 +  P/σ 2 )K/2

 The channel capacity , the number of possible signal that 

can be transmitted reliably , is given by

Cs = (1/K) log2 M  

= (1/2 ) log2 ( 1 +  P/σ 2 )     bits per transmission
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1.11.2   Band-Limited Continuous-Time Channel

 In the band-limited continuous –time channel model , the 

channel bandwidth is B Hz , the power spectral density of 

the noise is  N0/2 .

The noise power is equal to

Pn = (N0/2 ) (2B) = N0B 

Then 

Cs = (1/2 ) log2 ( 1 +  P/ N0B )     bits per transmission

 The channel capacity  ,number of  bits transmitted per 

second ) is calculated by multiplying Cs  by the number of 

samples per second of the signal :

C = 2B (1/2 ) log2 ( 1 +  P/ N0B ) 

= B log2 ( 1 +  P/ N0B ) 
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1.12 Information Capacity Theorem

 Information Capacity Theorem , also known as Shannon-
Hartley law , can be stated as follows :

The information capacity of a continuous channel of 
bandwidth  B Hz , perturbed by additive white Gaussian 
noise of power spectral density  N0 /2 and limited in 
bandwidth to  B , is given by

C = B log2 ( 1 + Pav /N0 B)     bits/ second

where Pav is the average transmitted power.

• This theorem implies that, for given average transmitted 
power  and channel bandwidth , we can transmit 
information at the rate C bits per second, with arbitrarily 
small probability of error by employing sufficiently 
complex encoding systems..
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• Shannon‟s Information Capacity Theorem can also be 

expressed as , for digital communications) as 

C = B  log2 ( 1+ Eb R / N0 B )

where Eb =  bit energy of the transmitted signal in  joules 

R     =  data rate  in bits/s

N0 /2 =  single-sided noise power spectral 

density

 In digital communications , we more often use  Eb / N0  ,   a 

normalized version of  SNR , as a figure of merit .

Eb / N0 =  S Tb / (N/B) =  (S/N) (B/ R )
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 Shannon limit :
• For an ideal system that transmits data at a rate 

Rb = C

Then    P = Rb Eb = C Eb

C/B = log2 {1 + (Eb / (N0 ) (C/B ) }

Therefore

Eb / N0  =  (2C/B -1) / (C/B)

• For infinite bandwidth, the  approaches the limiting value

(Eb / N0 ) ∞ = lim (Eb / N0 ) = ln 2 = 0.693 = - 1.6 dB
B → ∞

• This value is called Shannon limit.

There exists a limiting value of  Eb/N0 below which there can be 

no error-free communication at any information rate.
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Example

A communication system  is to transmit data at a rate of  38.4 k 

bits/second over a telephone line  with a bandwidth  of  4 kHz.

What  Eb / N0  is required to achieve a communication 

reliability  of one error or less in 103  transmitted bits ?

Solution :

R /B =  38.4/4 = 9.6

By information capacity theorem

38.4 = 4  log2 {1 + (Eb / (N0 )  (38.4/4) }

Thus  Eb / N0   =     80.73   =  19 dB

If we use enough transmitter power to obtain  Eb / N0   = 19  dB

or more , error correction can be used to obtain  arbitrarily low error rate.
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1.13  Channel Capacity of a Nonideal  Linear 

Filter Channel

 Recall that the capacity of an ideal , band-limited, AWGN 
channel is 

C = B log2 ( 1 + Pav/(N0 B) )     bits/ second

where Pav  is the average transmitted power .

 In a multicarrier system , with  Δf  sufficiently small the 
subchannel has capacity

Ci  = Δf  log2 {1 + [ Δf   P(fi ) ｜H(fi ) ｜2 / Δf Snn (fi ) ] }

where H(f ) is the frequency of the channel .

Hence the total capacity of the channel is

C =Σn =1 
N   Ci 

= Δf Σn =1 
N    log2 {1 + [P(fi ) ｜H(fi ) ｜

2 / Snn (fi ) ] }
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 In the limit as  Δf  --> 0 , we obtain the capacity  of the 
overall channel in bits/second as 

C = ∫B log2 {1 + [P(fi ) ｜H(fi ) ｜2 / Snn (fi ) ] }df

Under the constraint on P(f) given

∫B P (f) df ≦ Pav

the choice of  P(f) that maximizes C may be determined 
by maximizing the intrgral 

∫B log2 {1 + [P(fi ) ｜H(fi ) ｜
2 / Snn (fi ) ]

+ λ P (f) } df 

where λis a Lagrange multiplier, which is chosen to satisfy 
the  constraint, P(f) distribution as a function of frequency.

The optimum distribution of  P(f) is obtained from the 
solution to the equation

1 + λ{P(f) + Snn (f ) /｜H(fi ) ｜2 }  = 0
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 Therefore  , {P(f) + Snn (f ) /｜H(fi ) ｜
2 }  must be a 

constant , whose value is adjusted to satisfy the average 
[power constraint,. That is ,

K- Snn (f ) /｜H(f ) ｜2             f εW

P(f) = {

0                                 f is out of  W 

Note : This expression is due to Holsinger (1964 )

 The result shows that  the signal power should be high  when 
the channel‟s SNR , ｜H(f ) ｜2 / Snn (f ) ,  is high .

 The transmitted power distribution is  illustrated in Fig. 
1.XX.    If Snn (f ) /｜H(f ) ｜2  is interpreted as the bottom of a

bowl of unit depth , and we pour an amount of water equal 

to  Pav into the bowl , the water will distributed itself in the 
bowl so as to achieve capacity. This is called the water-filling 
interpretation of the optimum power distribution as a 
function of frequency.
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!.14   Rate –Distortion Theorem ( Lossy source coding)

1.14.1  Rate Distortion Function

 By applying  the sampling theorem , the output of an analog 
source can be converted to an equivalent discrete-time 
sequence of samples.  If the  samples are quantized  in 
amplitude and encoded  as a sequence of binary  digits , some  
distortion may be introduced , A loss of signal fidelity will be 
found during  waveform reconstruction.

 Here we are to study the fundamental  limits  on lossy source 
coding given by the  rate distortion  function.

Now , consider the message samples { xk } from the analog 

source . The quantized samples are denoted as { xkˆ } .

By the term  distortion , we mean some measure of  the 

difference between { xkˆ } and { xk } . For example ,  a 
commonly used distortion measure is the squared-error 
distortion , defined as

d (xk , xkˆ ) =  ( xk , xkˆ )
2    
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 If d (xk , xkˆ ) is the distortion measure per letter , the 

distortion between a sequence of n samples   xk , k=1,..,n

and the corresponding  quantized  values  xkˆ , k=1,…,n , is 

the average over the  n source samples, i.e.,

d (Xn , Xnˆ ) =  (1/n ) Σk =1 
n  d (xk , xkˆ )

Since the source output is a random process , and hence 

the n samples in  Xn are random variables . Its  ensemble 

average is defined as the distortion D , i.e., 

D = E[d (Xn , Xnˆ ) ] = (1/n ) Σk =1 
n  d (Xk , Xkˆ )

= E[d (X , Xˆ ) ]

where the last step  follows from the assumption that the  

source output  process is stationary .

33
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 Now  suppose we have a memoryless source with a 

continuous-amplitude output X that has  a PDF  p(x) , 

a quantized amplitude alphabet  X ˆ and a per letter 

distortion measure  d (x , xˆ ) . Then  the minimum rate

in  bits per source output that is required to represent the 

output x of the memoryless source with a distortion less

than or equal to D is called the  rate distortion function 

R(D) and  is defined  as

R(D) =   min    I(X, X ˆ )  
p(x｜ xˆ )

subject to   E[d (X , X ˆ ) ] ≦ D ,  where  I(X, X ˆ ) is the 

mutual information between X and  X ˆ  .

In general , the rate  R(D)  decreases as  D increases.
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 The rate distortion R (D)  is associated with the following 

fundamental source coding theorem  .

Shannon’s Third Theorem

( Source  Coding  with a Fidelity Criterion , 1959)

A memoryless source X can be encoded at rate  R for a 

distortion not exceeding D  if  R > R(D) .

 Example : The rate distortion function  of a Gaussian source  with 

square-error distortion .

Rg (D) =  ½   log2 (σ2/D )      0 ≦ D ≦ σ2

0                               D > σ2

where σ2 is the variance of the source.
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Rate distortion function for a continuous amplitude , 

memoryless Gaussian source

.
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Appendix  A:    Differential Entropy

 For a discrete random variable X  taking the values  x1 , x2 , 
… , xJ  with probabilities  P(x1 ), P(x2 ), … , P(xJ ) ,the 
entropy H(X) was defined as

H (X) = Σj=0
J-1  pj log2 ( 1/pj)

 For analog data , we have to deal with continuous random 
variables or vectors . Therefore we extend the definition of 
entropy to continuous random variables.

The probability distribution function (PDF ) of the 
random variable X is denoted as PX(x), which will be 
abbreviated as  P(x) in the following discussions.

The we introduce the following definition for differential 
entropy :

h (X) = ∫- ∞
∞ p(x)  log2( 1/p(x) )  dx

= E[ I (x ) ]
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 Conditional Entropy 

h (X｜Y) = ∫- ∞
∞ ∫- ∞

∞   p(x,y) log2{1/p(x,y)} dx dy  

Mutual  information

I (X:Y)  =∫- ∞
∞ ∫- ∞

∞p(x,y) log2{p(x,y)/ p(x)p(y)} dx dy

and  

I (X:Y)  = h (X) – h (X｜Y ) 

= h (Y) – h (Y｜X )  

We also define 

Cs = max I (X;Y)

p(x,y)

 We can derived the information capacity equation

Cs = (1/2) log2 ( 1+S/N )       bits per transmission

C = B log2 ( 1+S/N )   bits /sec



Example :

For a random variable X with Gaussian distribution 

pdf  of X is given by

p(x) =1/ √(2πσ2 )   exp { - x2 / 2σ2  }

h (X) = ∫- ∞
∞ p(x)  log2( 1/p(x) )  dx

= ….

= ( ½ ) log2( 17.1σ2  )
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1.15   Error-Correction Coding Principle

Error- correction coding is achieved by adding properly 

designed redundant digits (bits) to each message. These 

redundant digits (bits) are used for detecting and/or 

correcting transmission (or storage) errors.

The  redundant digits are selected in such a way that the 

transmitted message could be easily distinguished from 

other messages that could  potentially be transmitted
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Digital Communication System Block Diagram
communications, coding is used for controlling 

transmission errors induced by channel noise or other 

impairments, such as fading and interference, so that error-

free communication can be achieved.

Information
source
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Destination
Source
decoder

noise
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15.1.1  Types of Codes
In structure, error-correcting codes can be classified into 
two types : Block codes and Convolutional codes.

• Block Coding:

A message of k digits is mapped into a structured sequence 
of n  digits, called a codeword.              

The mapping operation is called encoding. Each encoding 
operation is independent of the past encoding, i.e. 
memoryless. The collection of all codeword is called a 
"block code".

Examples : Hamming codes, Golay codes , CRC codes, 

BCH codes, Reed-Solomon codes.

k digits n digits
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• Convolutional Coding:

An information sequence is divided into (short) blocks of k 

digits each. Each k-digit message is encoded into an n-digit 

coded block. The n-digit coded block depends not only the 

corresponding k-digit message block but also on m previous 

message blocks. That is, the encoder has memory of order 

m.  The encoder has k inputs and n outputs.

An information is encoded into a coded sequence. The 

collection of all possible code sequences is called an (n, k, m) 

convolutional code.

Normally,

1 ≦ k ≦ 8     ,    2 ≦ n ≦ 9

k/ n = code rate
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1.15.2  Type of Errors and Channels

 Types of errors :

Random errors and burst errors.

 Types of Channel :

(1) Random error channels:

Deep space channel, satellite channels, 

line of sight transmission channel, etc.

(2) Burst error channels:

Radio links, terrestrial microwave links, wire and cable 

transmission channels, etc.
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1.15.3  Decoding

 Suppose a codeword corresponding to a message is 

transmitted over a noisy channel.

Let     be the received sequence. Based on     , the encoding 

rules and the noise characteristics of the channel, the receiver 

(or decoder) makes a decision which message was actually 

transmitted. 

This decision making operation is called “decoding”. The 

device which performing the decoding operation is called a 

“decoder”.

 Two fundamentally different types  of decoding are used : 

hard  and soft . 

With hard decoding , the receiver first make hard decisions 

about the transmitted symbols  using a memoryless slicer . 

The hard decoder  operates on these hard decisions .

r r
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 A soft decoder , by contrast , operates directly on the 

incoming continuous-valued signal  without making 

intermediate decisions about the transmitted  symbols , as 

illustrated in Fig. 1.xx
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 Decoding techniques can also be classified as algebraic 

decoding and probabilistic decoding .

--The algebraic coding and decoding dominated the first  

several decades of the field of channel coding.

Over a BSC  , the optimal decoding rule  for a (n,k) block 

code is to decode  to the codeword closest in Hamming 

distance to the received n-tuple.  With this rule , a code with 

minimum distance d can correct  (d-1)/2   or fewer channel 

errors ( assuming that  d is odd ), but can not correct some 

patterns containing  a greater number of errors. This is also 

known as  bounded- distance decoding.

-- Probabilistic coding and decoding  was more directing 

inspired by Shannon‟s probabilistic approach to coding.

Probabilistic decoder typically use soft-decision ( reliability ) 

information, both as input 9from the channel outputs ), and at 

intermediate stages of the decoding process.
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1.16  MAP Decoding and ML Decoding

 Suppose the codeword   c    corresponding to a certain 
message  m   is transmitted. 

Let  r   be the corresponding output of the demodulator.

• The decoder produces an estimate  of the message m^ based 
on  r    .

• An optimum decoding rule is that minimize the probability

of a decoding error. That is,  p( c^≠ c｜r ) is minimized. 

Or, equivalently, maximizing  p(c^ = c｜r ) .

• The decoding error is minimized for a given   r   by choosing 
c^  to be a codeword  c  that maximizes

p( c｜r ) = p( r｜c ) p( c ) / p( r )

• That is,  c^ is chosen to be the most likely codeword, given 
that   r  is received.

If knowledge or an estimation of  P( c )   is used for decoding, 

the technique is called MAP decoding.
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• Suppose all the messages are equally likely. An optimum 

decoding can be done as follows:

For every codeword cj , compute the conditional 

probability p( r｜ cj )

The codeword cj with the largest conditional probability is 

chosen as the estimate  c^ for the transmitted codeword  c    . 

This decoding rule is called the Maximum Likelihood 

decoding (MLD).
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Remark :

Bounded Distance Decoding

• Given a received word  r  , a t-error correcting, bounded 

distance decoder selects that codeword    which minimizes 

dH(r,c)    if and only if there exists  c ^ such that

dH(r, c ^ ) ≦ t . 

If no such  c   exists, then a decoding  failure is declared.

• The bounded distance decoding is usually an “incomplete 
decoding” since it decodes only those received words lying in 

a radius-t sphere about a codeword.

r

cc

t)( c,rdH
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History of error-correction codes

 The field of channel coding started with Shannon’s 1948  

landmark paper.

 The first nontrivial  code to appear  in the literature was ( 7, 4 ,3 ) 

Hamming code , mentioned by Shannon in his 1948 paper. 

Richard Hamming  was  a colleague of Shannon at Bell Labs.

Hamming developed a class of single-error correcting binary 

linear block codes.

R.W. Hamming, “ Error detecting and error correcting codes ,” Bell Sys. Tech. 

vol.29 ,pp.147-160, 1950 .

 Shortly after the publication of Shannon’s paper , the Swiss  

mathematician Marcel Golay published a half-page paper with a “ 

perfect” binary linear (23 ,12 ,7) triple-error

correcting code.
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 Another  early class of error-correcting code was the  Reed-

Muller (RM) codes, which were introduced in 1954 by David 

Muller and then reintroduced shortly thereafter with an efficient 

decoding algorithm by Irving Reed.

 In the 1960s , research in channel coding was dominated by the 

development of algebraic block codes, particularly cyclic codes.

Cyclic codes are codes that are invariant under cyclic  shifts of 

a n-tuple codewords. They were first investigated by Eugene 

Prange in 1957.

E.Prange, “ Cyclic error-correcting codes in two symbols ,” Air Force  Cambridge 

Res. Center, Cambridge, MA, Tech. Note AFCRC-TN-57-103, Sep.1957.

Cyclic  have a nice algebraic theory and attractively simple 

encoding and decoding procedures based on cyclic shift-

register implementation
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 The BCH codes are, first discovered  by A. Hocquenghem in  

1959  and  independently by R.C. Bose and D. K. Ray-

Chaudhuri in 1960. 

The first decoding algorithm for binary BCH codes was 

devised by  W.w. Peterson  in 1960.

Since then Peterson’s algorithm  has been refined by Elwyn 

Berlekamp, J.L.Massey , R.Chien , G.D.Forney and   many 

others.

BCH codes are a large class of multiple random error-

correcting codes.

 The RS codes were discovered in 1960  by I. Reed and G. 

Solomon at MIT .  They are nonbinary cyclic codes with code 

symbols from a Galois  field. 

 An important property of RS and BCH codes is that they can be 

efficiently decoded by algebraic decoding .
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Convolutional Codes

 Elias’ invention of convolutional codes :

In 1955  , Peter Elias invented the convolutional codes . These 

codes are simpler to encode than general linear block codes. 

Elias showed that convolutional have the same average 

performance as randomly chosen codes.

The Fano’s sequential  decoding  algorithm  for convolutional 

codes was introduced by R.M. Fano in 1963.

Subsequently  ,J.L. Massey proposed a threshold decoding 

method for convolutional codes in 1963.

 In 1967, Andy Viterbi introduced what became known as  the 

Viterbi algorithm (VA)  as an ”asymptotically optimal “ decoding 

algorithm for convolutional codes. It was quickly recognized 

that VA was actually an optimal decoding algorithm.
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Product Codes and Concatenated Codes

 Before inventing convolutional codes, Elias had invented another 

class of codes known as product codes(1954).

P.Elias, “ Error-free coding , “ IRE Trans. Inform. Theory , vol.IT-4 ,pp.29-37, Sep.1954 .

 In 1966, G.D. Forney introduced  concatenated codes which involves a 

serial cascade of two linear block codes.

G.D. Forney, Jr. , Concatenated codes, Cambridge, MA : MIT Press,1988

Trellis –Coded Modulation

 In 1982, G.Ungerboeck introduced trellis-code modulation for 

bandwidth-limited channel .

Ungerboeck relized that  in the bandwidth-limited regime , the redundancy needed 

for  coding should be obtained by expanding the signal constellation while keeping

the bandwidth fixed. From capacity calculation , he showed that doubling the signal 

constellation should suffice.
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Iterative Error Correction  --- The Turbo Revolution

 In 1972, L.R. Bahl, J.Cocke, F. Jelinek , and J. Raviv introduced  

BCJR algorithm .

 In 1989 , J. Hagenauer and P. Hoeher introduce soft- output 

Viterbi Algorithm (SOVA ) for  decoding convolutional codes .

 In 1993 , at  ICC of   IEEE  in Geneva , C. Berrou , A.Glavieux , 

and  P.Thitimajshima stunned the coding research community 

by introducing a new class  of turbo codes which can achieve 

near-Shannon-limit performance with modest decoding 

complexity.

Comments to the effect  of  “ It can’t be true ; they must have made a 3 dB 

error” were widespread. However , within the next year various laboratories 

confirmed these astonishing results, and the  “ turbo revolution “ was 

launched.
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 1n 1995, D.J.C. MacKay and R.M. Neal re-discovered the low-

density parity-check  (LDPC) codes.

MacKay showed that in practice moderate-length LDPC codes ( 

103 – 104 bits ) could attain near-Shannon-limits performance .

The results kicked off a similar explosion of research on LDPC 

codes, which are currently seen as competitors to turbo codes 

in practice.


