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2.1   Finite Fields
 A field with only a finite  number of elements is called a finite 

field. Finite fields are also known as  Galois fields after their 

inventor.

 Most of the popular linear block codes , such as Hamming 
codes. BCH codes and Reed-Solomin codes, are constructed 
over the finite fields.

 For any positive integer  m ≧ 1 , there exists a Galois 

field of   2m elements , denoted  GF(2m ) . That is an extension

field of GF(2) which is  the binary field.

 Construction of  GF(2m  ) 

(1)  Begin with a primitive ( irreducible)   polynomial  p(x)  of 

degree m with coefficients from the binary field GF(2).

(2)  Let α be the root of  p(x) , i.e. p(α) = 0

(3)  Starting from  GF(2) = { 0,1 ) and  α , we define  a  

multiplication operator “ . “ to introduce a sequence 

of power of 2  as follows : 
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0 ˙ 0 = 0  ;   0 ˙ 1 =  1 ˙ 0 = 0 ;

1 ˙ 1 = 1 ,

0 ˙ α = α ˙0 = 0  ;

1 ˙ α = α ˙ 1 = α ;

α2  = α ˙ α

α3  = α ˙ α ˙ α

.

.

.

αj  = α ˙ αj -1    ;    αi˙ αj     = αi + j

We now have the following set of elements ,

F =  { 0,1 , α ,α2  … }

which is closed under  multiplication “˙” .
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 Next , we define “ division “ operator as follows : 

αi  ÷ αj  =  αi ˙ α- j   = αi – j

 The  „ addition “ operator on F  is defined as follows .

For  0 ≦ i   ≦ 2m -2 , dividing  x i by p(x) yields

x i  = a (x ) p(x) + b (x) 

where b (x) is the remainder and 

b(x) = b0 + b1x + b2 x
2  + … + bm-1 x

m-1

Replacing x by α , we have

αi = a(α) p(α) + b (α) = b0 + b1 α + b2 α 2  + … +

bm-1 α m-1

Therefore , each nonzero  element  in F can be expressed as  a 
polynomial of α with degree m-1 or less.

I     The “addition”   of  αi  and αj  is defined as

αi  + αj  = ( b0 + d0 ) + ( b1 + d1 ) α + … + ( bm-1   +  bm-1 ) x m-1

where αj = d0 + d1 α + d2 α 2  + … + dm-1 α m-1    = α k
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 Clearly , αj  + αj  = 0

Thus , “ subtraction “ is defined as follows.

αi – αj = αi + αj  

Hence , subtraction is the same as addition

 We conclude that   F = { 0,1 , α ,α2  … } together with the 
multiplication and addition operators  for a field  of  2 m 

elements . 

 There are three forms to represent the elements in GF (2 m )  

(1 ) Power form ( easier to perform  multiplication )

F =  { 0,1 , α ,α2  … }

(2)  Polynomial form

αi = b0 + b1 α + b2 α 2  + … + bm-1 α m-1 

(3) Vector form ( easier to perform addition )

αi = (  b0 , b1 , b2 , …, bm-1 )
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2.2  Primitive Polynomials and Minimal Polynomials
• A irreducible polynomial  p(x) of degree m is said to be 

primitive if the smallest positive integer n for which  p(x)

divides  x n +1  is  n = 2 m  -1 . 

• For example,  1 + x + x4 is a primitive polynomial. 

The smallest positive integer n for which 1 + x + x4 divides 

x n +1      is  n = 15 . 

• For any positive integer m, there exists a primitive polynomial 
of degree m .

• Example      

M              Primitive Polynomial p(x)

2                   1 + x + x2 

3                   1 + x + x3

4                    1 + x + x4

5                     1 + x2 + x 5

6                    1 + x + x 6

7                    1 + x3 + x 7
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 Theorem 2.2 :

The minimal polynomial ψ(x)  of the element β of the 

Galois field  GF (2 m  ) is a factor of     x2 m + x  

 Example :

The following table  lists the minimal polynomials of all 

elements of  the Galois field GF (2 4  ) generated by 

p(x) = 1+x + x4    .

------------------------------------------------------------------

Conjugate roots                   Minimal polynomials

0                                                  x

1                                               1 + x

α ,α2 , α4 , α8                                1 + x + x4  

α3,α6, α9, α12                                   1 + x + x2 + x3+ x4

α5 , α10                                                       1 + x + x2 

α7,α11, α13, α14 1 + x3+ x4    

--------------------------------------------------------------------------------------
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2.3  Linear Block Codes

 Let the message  m = ( m0 , m1 ,…, mk-1 )  be an arbitrary

k-tuple from GF ( 2 )  . The linear ( n, k)  code over GF ( 2)  

is the set 

2 k codewords of row vector form  

c = ( c0 , c1 ,…, cn-1 )  , where   cj ε GF (2)

The generator G of the code  is a k x n  matrix  over GF (2) . 

c =  m ˙ G

The generator matrix can be expressed as 

G = [  g1   g2    … gk ] T

The rows of  G are linearly independent since G is assumed 
to have   rank  k .

 For a  linear block code,  the vector sum of two codewords is  
a codeword.
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 The generator matrix of an  (n ,k ) linear systematic code 

can be expressed as

G = [ Ik  P ] 

where Ik is the  k x k identity matrix  and P is a  k x (n-k) 

matrix.

 An ( n , k ) linear code  C  can also be specified by an ( n-k) 

x k matrix H denoted as  parity –check matrix .

Let c = ( c0 , c1 ,…, cn-1 )  be an n-tuple , then  c is a 

codeword

if and only if   c˙ H =  ( 0  , 0 ,… , 0 )n-k = 0 

The parity-check matrix can be expressed as 

H  =  [ PT I n-k  ]  

It is noted that  many solutions for H  are possible for any 

given generator matrix G .
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Example : Hamming code

 Hamming codes are the first class of binary linear block 
code  discovered by R.W. Hamming in 1950.

 For any positive integer  m ≧ 3 , there exists a Hamming 

code with the following parameters :

block code length  n = 2 m -1 

message length    k = 2 m -1 – m 

minimum Hamming distance   dmin = 3

error-correction capability    t =1 .

For a ( 7 ,4 )  Hamming code 

1000 101                                  1110100

0100 111                    H =  [    0111010   ]

G = [  1101 001     ]                            0010110   

0001 011
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2.4  Cyclic Codes 

 An  (n,k) linear code C  is  called a cyclic code if any cyclic 

shift of a codeword is another codeword .

In polynomial form 

c(x) = c0 + c1x + c2x
2  + … + cn-1x

n-1

c(j) (x) = cn- j + cn-j+1x + cn- j+2 x
2  + … + cn- j-1 x

n-1

Cyclic structure makes the encoding and syndrome 

computation very easy.

2.4.1 Generator Polynomial

 Every nonzero code polynomial c(x) in C must have degree 

at least n-k but not greater than n-1 . There is one and only 

one nonzero generator polynomial g(x) for a cyclic code.
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• It can be shown that the generator polynomial g(x) of an 
(n ,k ) cyclic code is always a polynomial factor of the 
polynomial 

x n – 1 , or  x n +1 .

g(x) =  1 + g1x + g2 x
2  + … + gn-k-1 x

n-k-1  + x n-k

Since g(x) divides  x n – 1 , it follows that

x n – 1 = h(x) g(x)

where  h(x) =  h0 + h1x + h2 x
2  + … + hk x

k 

and   h0 = hk = 1

h(x) is called  the parity polynomial of the  (n , k) cyclic

code.      

 The message polynomial  is expressed as

m(x) = m0 + m1x + m2x 2  + … + mk-1 x
k -1 

Then , the product  m(x)g(x) is the polynomial representing 
the code word polynomial of degree n-1 or less.
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In general, c(x) and c(j) (x) are related  by the formula

c(j) (x) = x j c(x) mod (x n – 1 )

We can see that

c(j) (x) = x j m(x)g(x)  mod (x n – 1 ) =  m j (x) g(x)

2.4.2   Encoding of Cyclic Codes

 Consider an ( n ,k ) cyclic code with generator polynomial g(x)  
Suppose   m = ( m0 , m1 ,…, mk-1 )  is the message  to be encoded.

m(x) = m0 + m1x + m2x
2  + … + mk-1 x k -1 

Multiplying m(x)  by  x n-k   and the dividing by g(x) , we obtain

x n-k m(x) = q(x) g(x) + p(x) 

where   p(x) =  p0 + p1x + p2 x
2  + … + pn-k-1 x

n-k -1  

is the remainder .

Then p(x) +x n-k m(x)  = q(x)g(x)  is a multiple of g(x) and has 
degree  n-1.  Hence it is the code polynomial for the message.
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 Note that 

p(x) + x n-k m(x)  

= p0 + p1x + p2x 2  + … + pn-k-1x
n-k -1 + 

m0x
n-k + m1x

n-k+1 + … + mk-1x
k -1 

The code polynomial  is in systematic form where p(x) is the   

parity-check part .

 The encoding can be implemented by using a division circuit 

consisting of shift registers and feedback connections  based on 

the  generator polynomial g(x) ,as show below Fig.2.1) .

 In the figure the right-most symbol is the first symbol to enter the

encoder. The gate is turned on until all information digits have 

been shifted into the circuit.
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Fig.2.1  Encoding circuit based on g(x)
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Example : Encoding of  cyclic  (7,4) Hamming code
g(x) = 1+x 2+x 3                    , message bits   m =   (1001)
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 It can be shown that cyclic codes can also be generated by using 

the parity polynomial  h(x) , where  h(x) =  h0 + h1x + h2 x 2  + … 

+ hk x k .

 The k-stage  shifter-register encoder based on h(x) is shown in 

Fig.2.2 .

hk-1gate 2



h0h1





gate 1

hk-2

m0m1...mk-1

c0c1...cn-1
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2.5   Syndrome Computation

 Let c(x)and  r(x) be the transmitted code polynomial and 

received  polynomial, respectively.

Dividing  r(x) by the generator polynomial g (x) , we have 

r(x) = q(x) g(x) + s(x)

where   s(x) is  the remainder  and

s(x) =  s0 + s1x + s2x
2  + … + sn-k-1x n-k -1

Then  s(x)  is the syndrome polynomial of  r(x).

The received polynomial r(x) is a code polynomial if and 

only if  s(x) = 0.

 Syndrome computation can be done by a division circuit 

shown in Fig.2.3 .  

As soon as the  entire r(x) has been shifted into the  

register , the contents  in the register form the  s(x) .
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Fig. 2.3  Syndrome Computation Circuit
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Example  : Syndrome circuit  for a (7,4) cyclic code    with g(x) = 1+ x +x3

Received sequence   r = ( 1001000 )
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 Since   r(x) = c(x) + e(x)

and also r(x) = q(x) g(x) + s(x)

we have  e(x) = r(x)  + c(x)

=  q(x)g(x) + s(x) +c(x)

=  q(x) g(x) + s(x) + m(x) g(x)

= [ q(x) + m(x) ] g(x) + s(x)

or              s(x) = e(x) mod g(x) 

Hence the syndrome polynomial s(x)  is also the remainder 

that results from dividing e(x) by g(x) .
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Table 2.1

Galois field  GF(25) constructed by using the primitive polynomial  

p(x) = 1 +x2 + x5
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Table 2.2 Minimal polynomials of the elements in GF(26)



28

Table 2.3

Galois field  GF(26) constructed by using the primitive polynomial 

p(x) = 1 +x + x6
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Appen.:  Division circuit for dividing  X(D)  by G(D)

X(D) = x0+  x1D + x2D
2 + …+ xn-1D

n-1

G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k
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Divider circuit using linear feedback shift register  structure


