Chapter 2

Finite Field and Linear Block Codes

- 2.1 Finite Fields
- 2.2 Primitive Polynomials and Minimal Polynomials
- 2.3 Linear Block Codes
- 2.4 Cyclic Codes
- 2.5 Syndrome Computation

References:

Lin, S. and Costello Jr. D.J., Error Control Coding, Pearson Prentice Hall, 2004. Castineira, J., and Farrel, P.G., Essential of Error-Control Coding, Wiley, 2006

2.1 Finite Fields

- A field with only a finite number of elements is called a finite field. Finite fields are also known as Galois fields after their inventor.
- Most of the popular linear block codes, such as Hamming codes. BCH codes and Reed-Solomin codes, are constructed over the finite fields.
- For any positive integer m ≥ 1, there exists a Galois field of 2^m elements, denoted GF(2^m). That is an extension field of GF(2) which is the binary field.
- Construction of $GF(2^m)$
 - (1) Begin with a primitive (irreducible) polynomial p(x) of degree *m* with coefficients from the binary field GF(2).
 - (2) Let α be the root of p(x), i.e. $p(\alpha) = 0$
 - (3) Starting from GF(2) = { 0,1 } and α, we define a multiplication operator ". " to introduce a sequence of power of 2 as follows :

$$0 \cdot 0 = 0 ; 0 \cdot 1 = 1 \cdot 0 = 0 ;$$

$$1 \cdot 1 = 1 ,$$

$$0 \cdot \alpha = \alpha \cdot 0 = 0 ;$$

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha ;$$

$$\alpha^{2} = \alpha \cdot \alpha$$

$$\alpha^{3} = \alpha \cdot \alpha \cdot \alpha$$

.

$$\alpha^{j} = \alpha \cdot \alpha^{j-1} ; \alpha^{j} \cdot \alpha^{j} = \alpha^{j+j}$$

We now have the following set of elements , $F = \{ 0, 1, \alpha, \alpha^2 \dots \}$

which is closed under multiplication "".

• Since α is a root of p(x) and p(x) divides $x^{2^m - 1} + 1$, α must also be a root of $x^{2^m - 1} + 1$. Hence $\alpha^{2^m - 1} + 1 = 0$ This implies that $\alpha^{2^m - 1} = 1$

As a result, F is finite and consists of following elements

$$\mathbf{F} = \{0, 1, \alpha, \alpha^2, ..., \alpha^{2^m - 2}\}$$

• Let $\alpha^{\theta} = 1$. Multiplication is carried out as follows.

For
$$0 \leq i$$
, $j \leq 2^m - 1$,

$$\alpha^i \bullet \alpha^j = \alpha^{i+j} = \alpha^k$$

where k is the remainder resulting from dividing i+j by $2^m - 1$.

Since $\alpha^i \cdot \alpha^{2^m-1-i} = \alpha^{2^m-1-i}$,

 $\alpha^2 - I - I$ is called the multiplicative inverse of α^i and vise versa.

Also,
$$\alpha^{2^{m}-1-i} = \alpha^{2^{m}-1} \cdot \alpha^{-i} = \alpha^{-1}$$

we can use α^{-i} to denote the multiplicative inverse of α^{i} .

- Next, we define "division "operator as follows : $\alpha^{i} \div \alpha^{j} = \alpha^{i} \cdot \alpha^{-j} = \alpha^{i-j}$
- The 'addition " operator on F is defined as follows.
 For 0 ≤ i ≤ 2^m -2, dividing xⁱ by p(x) yields xⁱ = a (x) p(x) + b (x)

where b (x) is the remainder and

$$b(\mathbf{x}) = b_0 + b_1 \mathbf{x} + b_2 \mathbf{x}^2 + \dots + b_{m-1} \mathbf{x}^{m-1}$$

Replacing x by α , we have

Ι

$$\alpha^{i} = a(\alpha) p(\alpha) + b (\alpha) = b_{0} + b_{1} \alpha + b_{2} \alpha^{2} + \dots + b_{m-1} \alpha^{m-1}$$

Therefore, each nonzero element in F can be expressed as a polynomial of α with degree *m*-1 or less.

The "addition" of α^{i} and α^{j} is defined as $\alpha^{i} + \alpha^{j} = (b_{0} + d_{0}) + (b_{1} + d_{1}) \alpha + \dots + (b_{m-1} + b_{m-1}) x^{m-1}$ where $\alpha^{j} = d_{0} + d_{1}\alpha + d_{2}\alpha^{2} + \dots + d_{m-1}\alpha^{m-1} = \alpha^{k}$

5

• Clearly, $\alpha^{j} + \alpha^{j} = 0$

Thus, "subtraction "is defined as follows.

 $\alpha^i\!-\alpha^j\,=\alpha^i\!+\alpha^j$

Hence, subtraction is the same as addition

- We conclude that F = { 0,1, α, α² ... } together with the multiplication and addition operators for a field of 2^m elements .
- There are three forms to represent the elements in GF (2^m)
 (1) Power form (easier to perform multiplication)
 F = { 0,1, α, α² ... }
 - (2) Polynomial form

$$\alpha^{i} = b_{0} + b_{1} \alpha + b_{2} \alpha^{2} + \dots + b_{m-1} \alpha^{m-1}$$

(3) Vector form (easier to perform addition)

$$\alpha^{i} = (b_0, b_1, b_2, ..., b_{m-1})$$

Exp. representation	Polyr	Polynomial representation							Vector representation					
0	0							0	0	0	0			
1	1							1	0	0	0			
α		α						0	1	0	0			
α^2			α^2					0	0	1	0			
α^3				α^3				0	0	0	1			
α^4	1	$+\alpha$						1	1	0	0			
α ⁵		α	$+\alpha^2$					0	1	1	0			
α^6			$+\alpha^2$	$+\alpha^3$				0	0	1	1			
α^7	1	$+\alpha$		$+\alpha^3$				1	1	0	1			
α^8	1	and a second	$+\alpha^2$					1	0	1	0			
a ⁹		α		$+\alpha^3$				0	1	0	1			
α^{10}	1	$+\alpha$	$+\alpha^2$					1	1	1	0			
a ¹¹	in a start	a	$+\alpha^2$	$+\alpha^3$				0	1	1	1			
a ¹²	1	$+\alpha$	$+\alpha^2$	$+\alpha^3$				1	1	1	1			
a ¹³	i		$+\alpha^2$	$+\alpha^3$				1	0	1	1			
α^{14}	i			$+\alpha^3$				1	0	0	1			

Table B.4	The Galois field G	F(24) generated by	$y p_i(X) =$	$1 + X + X^4$
-----------	--------------------	--------------------	--------------	---------------

- 2.2 Primitive Polynomials and Minimal Polynomials
- A irreducible polynomial p(x) of degree m is said to be primitive if the smallest positive integer n for which p(x) divides xⁿ+1 is n = 2^m -1.
- For example, $1 + x + x^4$ is a primitive polynomial. The smallest positive integer *n* for which $1 + x + x^4$ divides $x^n + 1$ is n = 15.
- For any positive integer *m*, there exists a primitive polynomial of degree *m*.
- Example

M	Primitive Polynomial $p(\mathbf{x})$
2	$1 + x + x^2$
3	$1 + x + x^3$
4	$1 + x + x^4$
5	$1 + x^2 + x^5$
6	$1 + x + x^{6}$
7	$1 + x^3 + x^7$

Consider the Galois field GF (2^m) generated by the primitive polynomial

$$p(\mathbf{x}) = p_0 + p_1 \mathbf{x} + p_2 \mathbf{x}^2 + \dots + p_{m-1} \mathbf{x}^{m-1} + \mathbf{x}^m$$

The element α , which is a root of p(x), whose powers generate all the non-zero elements of GF (2^m) is called a primitive element of GF (2^m). Usually, there may be more than one primitive elements in a finite field GF (2^m). For example, α^4 and α^7 are also primitive elements of GF (2^m).

• Let. β be a non-zero element of GF (2^m).

Consider the powers of β :

 β , β^2 , β^4 , β^8 , ..., $\beta^{2^{\circ}}$,... If e is the smallest nonnegative integer for which $\beta^{2^{\circ}} = \beta$, then the integer "e" is called the exponent of β The minimal polynomial of the element β is defined as $\phi(\mathbf{x}) = (\mathbf{x} + \beta)(\mathbf{x} + \beta^2)(\mathbf{x} + \beta^4)...(\mathbf{x} + \beta^{2^{\circ}} - 1)$ Let f(x) be a polynomial defined over GF GF(2^m). If an element β of GF(2^m) is a root of the polynomial f(x), then for

any positive integer $\lambda \ge 0$, $\beta^{2^{\lambda}}$ is also a root of that polynomial .

The elements $\beta^{2^{n}}$ are called conjugates of β .

Theorem 2.1:

If an element β of GF(2^m) is a root of the polynomial f(x), its conjugates are also elements of the same field and roots of the same polynomial.

• Theorem 2.2 :

The minimal polynomial $\psi(x)$ of the element β of the Galois field GF (2^m) is a factor of $x^{2m} + x$

• Example :

The following table lists the minimal polynomials of all elements of the Galois field GF (2 4) generated by $p(x)=1\!+\!x+x^4$.

Conjugate rootsMinimal polynomials0x11 + x a, a^2, a^4, a^8 $1 + x + x^4$ a^3, a^6, a^9, a^{12} $1 + x + x^2 + x^3 + x^4$ a^5, a^{10} $1 + x + x^2$ $a^7, a^{11}, a^{13}, a^{14}$ $1 + x^3 + x^4$

2.3 Linear Block Codes

- Let the message m = (m₀, m₁,..., m_{k-1}) be an arbitrary k-tuple from GF (2). The linear (n, k) code over GF (2) is the set
 - 2^k codewords of row vector form

 $c = (c_0, c_1, ..., c_{n-1})$, where $c_j \in GF(2)$

The generator G of the code is a k x n matrix over GF (2). c = m G

The generator matrix can be expressed as

 $G = [g_1 g_2 \dots g_k]^T$

The rows of G are linearly independent since G is assumed to have rank k.

• For a linear block code, the vector sum of two codewords is a codeword.

The generator matrix of an (n,k) linear systematic code can be expressed as

G = [I_k P]

where I_k is the $k \ge k$ identity matrix and P is a $k \ge (n-k)$ matrix.

An (n, k) linear code C can also be specified by an (n-k) x k matrix H denoted as parity –check matrix.

Let $C = (c_0, c_1, ..., c_{n-1})$ be an n-tuple, then C is a codeword

if and only if $\mathbf{C} \mathbf{H} = (\boldsymbol{\theta}, \boldsymbol{\theta}, \dots, \boldsymbol{\theta})_{n-k} = \boldsymbol{\theta}$

The parity-check matrix can be expressed as

 $\mathbf{H} = \begin{bmatrix} \mathbf{P}^{\mathsf{T}} & \mathbf{I}_{n-k} \end{bmatrix}$

It is noted that many solutions for ${\bf H}$ are possible for any given generator matrix ${\bf G}$.

Example : Hamming code

- Hamming codes are the first class of binary linear block code discovered by R.W. Hamming in 1950.
- For any positive integer m ≥ 3, there exists a Hamming code with the following parameters :

block code length $n = 2^{m} - 1$ message length $k = 2^{m} - 1 - m$

minimum Hamming distance $d_{min} = 3$ error-correction capability t = 1. For a (7,4) Hamming code

2.4 Cyclic Codes

 An (n,k) linear code C is called a cyclic code if any cyclic shift of a codeword is another codeword.

In polynomial form

 $c(\mathbf{x}) = c_0 + c_1 \mathbf{x} + c_2 \mathbf{x}^2 + \dots + c_{n-1} \mathbf{x}^{n-1}$ $c^{(j)}(\mathbf{x}) = c_{n-j} + c_{n-j+1} \mathbf{x} + c_{n-j+2} \mathbf{x}^2 + \dots + c_{n-j-1} \mathbf{x}^{n-1}$ Cyclic structure makes the encoding and syndrome

computation very easy.

2.4.1 Generator Polynomial

 Every nonzero code polynomial c(x) in C must have degree at least n-k but not greater than n-1. There is one and only one nonzero generator polynomial g(x) for a cyclic code. • It can be shown that the generator polynomial *g*(x) of an (n,k) cyclic code is always a polynomial factor of the polynomial

$$x^{n}-1$$
, or $x^{n}+1$.
 $g(x) = 1 + g_{1}x + g_{2}x^{2} + \dots + g_{n-k-1}x^{n-k-1} + x^{n-k}$
Since $g(x)$ divides $x^{n}-1$, it follows that
 $x^{n}-1 = h(x) g(x)$
where $h(x) = h_{0} + h_{1}x + h_{2}x^{2} + \dots + h_{k}x^{k}$
and $h_{0} = h_{k} = 1$
 $h(x)$ is called the parity polynomial of the (n-k)

h(x) is called the parity polynomial of the (n, k) cyclic code.

• The message polynomial is expressed as $m(\mathbf{x}) = m_0 + m_1 \mathbf{x} + m_2 \mathbf{x}^2 + \dots + m_{k-1} \mathbf{x}^{k-1}$

Then , the product m(x)g(x) is the polynomial representing the code word polynomial of degree n-1 or less.

In general, c(x) and $c^{(j)}(x)$ are related by the formula $c^{(j)}(x) = x^{j} c(x) \mod (x^{n} - 1)$ We can see that

 $c^{(j)}(\mathbf{x}) = x^{j} m(\mathbf{x})g(\mathbf{x}) \mod (\mathbf{x}^{n} - 1) = m^{j}(\mathbf{x}) g(\mathbf{x})$

2.4.2 Encoding of Cyclic Codes

Consider an (n,k) cyclic code with generator polynomial g(x) Suppose m = (m₀, m₁,..., m_{k-1}) is the message to be encoded. m(x) = m₀ + m₁x + m₂x² + ... + m_{k-1}x^{k-1} Multiplying m(x) by x^{n-k} and the dividing by g(x), we obtain x^{n-k} m(x) = q(x) g(x) + p(x) where p(x) = p₀ + p₁x + p₂x² + ... + p_{n-k-1}x^{n-k-1} is the remainder.

Then $p(x) + x^{n-k} m(x) = q(x)g(x)$ is a multiple of g(x) and has degree n-1. Hence it is the code polynomial for the message.

• Note that

$$p(\mathbf{x}) + \mathbf{x}^{n-k} m(\mathbf{x})$$

= $p_0 + p_1 \mathbf{x} + p_2 \mathbf{x}^2 + \dots + p_{n-k-1} \mathbf{x}^{n-k-1} + m_0 \mathbf{x}^{n-k} + m_1 \mathbf{x}^{n-k+1} + \dots + m_{k-1} \mathbf{x}^{k-1}$

The code polynomial is in systematic form where p(x) is the parity-check part .

- The encoding can be implemented by using a division circuit consisting of shift registers and feedback connections based on the generator polynomial g(x) ,as show below Fig.2.1).
- In the figure the right-most symbol is the first symbol to enter the encoder. The gate is turned on until all information digits have been shifted into the circuit.

Fig.2.1 Encoding circuit based on g(x)

Example : Encoding of cyclic (7,4) Hamming code $g(x) = 1+x^2+x^3$, message bits m = (1001)

		After	ith shift					
Shift no. i	Gate	Register contents	Output					
0	On	0 0 0	1					
1	On	101	0 1					
2	On	1 1 1	001					
3	On	1 1 0	1001					
4	Off	1 1 0	01001					
5	Off	0 1 1	101001					
6	Off	001	1101001					

20

- It can be shown that cyclic codes can also be generated by using the parity polynomial h(x), where h(x) = h₀ + h₁x + h₂x² + ... + h_kx^k.
- The k-stage shifter-register encoder based on h(x) is shown in Fig.2.2.

2.5 Syndrome Computation

 Let c(x)and r(x) be the transmitted code polynomial and received polynomial, respectively.

Dividing r(x) by the generator polynomial g(x), we have

 $r(\mathbf{x}) = q(\mathbf{x}) g(\mathbf{x}) + s(\mathbf{x})$

where s(x) is the remainder and

$$s(\mathbf{x}) = s_0 + s_1 x + s_2 x^2 + \dots + s_{n-k-1} x^{n-k-1}$$

Then s(x) is the syndrome polynomial of r(x).

The received polynomial r(x) is a code polynomial if and only if s(x) = 0.

• Syndrome computation can be done by a division circuit shown in Fig.2.3 .

As soon as the entire r(x) has been shifted into the register, the contents in the register form the s(x).

Fig. 2.3 Syndrome Computation Circuit

Example : Syndrome circuit for a (7,4) cyclic code with $g(x) = 1 + x + x^3$ Received sequence r = (1001000)

		Register contents
Shift no.	Input	s ₀ , s ₁ , s ₂
Sinte no.		0 0 0
0	0	0 0 0
1	0	0 0 0
2	0	0 0 0
3	0	1 0 0
4	1	0 1 0
5	0	
6	0	
7	1	0 1 0
9	0	0 0 1
0	0	1 1 0
9	0	0 1 1
10	0	1 1 1
11	0	1 0 1
12	0	

• Since $r(\mathbf{x}) = c(\mathbf{x}) + e(\mathbf{x})$ and also $r(\mathbf{x}) = q(\mathbf{x}) g(\mathbf{x}) + s(\mathbf{x})$ we have $e(\mathbf{x}) = r(\mathbf{x}) + c(\mathbf{x})$ $= q(\mathbf{x})g(\mathbf{x}) + s(\mathbf{x}) + c(\mathbf{x})$ $= q(\mathbf{x}) g(\mathbf{x}) + s(\mathbf{x}) + m(\mathbf{x}) g(\mathbf{x})$ $= [q(\mathbf{x}) + m(\mathbf{x})] g(\mathbf{x}) + s(\mathbf{x})$ or $s(\mathbf{x}) = e(\mathbf{x}) \mod g(\mathbf{x})$

Hence the syndrome polynomial s(x) is also the remainder that results from dividing e(x) by g(x).

Table 2.1

Galois field $GF(2^5)$ constructed by using the primitive polynomial $p(x) = 1 + x^2 + x^5$

Field element (polynomial notation)	5-tuple representation						
0	0	0	0	0	0		
	1	0	0	0	0		
1	0	1	0	0	0		
2	0	0	1	0	0		
3	0	0	0	1	0		
	0	0	0	0	1		
$\frac{1}{6} = 1 + \alpha^2$	1	0	1	0	0		
$a^{-1} + a^{-3}$	0	1	0	1	0		
$7 = a^{2} + a^{4}$	0	0	1	0	1		
$a^{8} = 1 + a^{2} + a^{3}$	1	0	1	1	0		
$a^{9} = a^{3} + a^{4}$	0	1	0	1	1		
$10 = 1 + a^4$	1	0	0	0	1		
$11 = 1 + \alpha + \alpha^2$	1	1	1	0	0		
$\frac{12}{12} = \alpha \pm \alpha^2 \pm \alpha^3$	0	1	1	1	0		
$13 - a^2 + a^3 + a^4$	0	0	1	1	1		
$14 - 1 + a^2 + a^3 + a^4$	1	0	1	1	1		
$15 - 1 + a + a^2 + a^3 + a^4$	1	1	1	1	1		
$16 - 1 + a + a + a^3 + a^4$	ĩ	1	0	1	1		
$17 - 1 + \alpha + \alpha^4$	ĩ	1	0	0	1		
18 - 1 + a	1	1	0	0	0		
$\frac{19}{19} = -\frac{1}{2} + \frac{1}{2}$	ō	1	1	0	0		
$= a + a^{2}$	õ	õ	1	1	0		
21	0	õ	0	1	1		
$\frac{22}{2} - 1 + \frac{2}{2} + \frac{4}{2}$	1	0	1	o	1		
$\frac{1}{23} = 1 + a + a^2 + a^3$	1	1	1	1	0		
$\frac{1}{24} = \frac{1}{24} + \frac{1}{24} $	ô	1	1	1	1		
	1	õ	õ	1	1		
$26 - 1 + a + a^2$	i	1	1	õ	1		
$=1+\alpha+\alpha$ + α	î	1	õ	1	0		
$=1+\alpha$ $+\alpha$	â	i	1	ò	1		
a + a + a + a	1	â	â	1	0		
10 = 1 + a	â	1	0	ô	1		

Table 2.2 Minimal polynomials of the elements in GF(2⁶)

Elements	Minimal polynomials
$\alpha, \alpha^2, \alpha^4, \alpha^{16}, \alpha^{32}$	$1 + X + X^{6}$
$\alpha^3, \alpha^6, \alpha^{12}\alpha^{24}, \alpha^{48}\alpha^{33}$	$1 + X + X^2 + X^4 + X^6$
$\alpha^{5}, \alpha^{10}, \alpha^{20}, \alpha^{40}, \alpha^{17}, \alpha^{34}$	$1 + X + X^2 + X^5 + X^6$
$\alpha^{7}, \alpha^{14}, \alpha^{28}, \alpha^{56}, \alpha^{49}, \alpha^{35}$	$1 + X^3 + X^6$
$\alpha^9, \alpha^{18}, \alpha^{36}$	$1 + X^2 + X^3$
$\alpha^{11}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50}, \alpha^{37}$	$1 + X^2 + X^3 + X^5 + X^6$
$\alpha^{13}, \alpha^{26}, \alpha^{52}, \alpha^{41}, \alpha^{19}, \alpha^{38}$	$1 + X + X^3 + X^4 + X^6$
$\alpha^{15}, \alpha^{30}, \alpha^{60}, \alpha^{57}, \alpha^{51}, \alpha^{39}$	$1 + X^2 + X^4 + X^5 + X^6$
α^{21}, α^{42}	$1 + X + X^2$
$\alpha^{23}, \alpha^{46}, \alpha^{29}, \alpha^{58}, \alpha^{53}, \alpha^{43}$	$1 + X + X^4 + X^5 + X^6$
$\alpha^{27}, \alpha^{54}, \alpha^{45}$	$1 + X + X^3$
$\alpha^{31}, \alpha^{62}, \alpha^{61}, \alpha^{59}, \alpha^{55}, \alpha^{47}$	$1 + X^5 + X^6$

Table 2.3

Galois field $GF(2^6)$ constructed by using the primitive polynomial $p(x) = 1 + x + x^6$

0	0										(00000)
1	1										(10000)
α			α								(01000)
α^2					α^2						(00100)
α^3							α^3				(000100)
α^4								α^4			(000010)
α^5										α^5	(000001)
α^6	1	+-	α								(110000)
α^7			α	+-	α^2						(011000)
α^8					α^2	+	α^3				(001100)
α^9							α^3	$+ \alpha^4$			(000110)
α^{10}								α^4	+	α^5	(000011)
α^{11}	1	+	α						+	α^5	(110001)
α^{12}	1			+-	α^2						(101000)
α^{13}			α				α^3				(010100)
α^{14}					α^2			$+ \alpha^4$			(001010)
α^{15}							α^3		+	α^5	(000101)
α^{16}	1	+	α					$+ \alpha^4$			(110010)
α^{17}			α	-+-	α^2				+	α^5	(011001)
α^{18}	1	+	α	+	α^2		α^3				(111100)
α^{19}			α	+	α^2	4	α^3	$+ \alpha^4$			(011110)
α^{20}				•	α^2	÷	α^3	$+ \alpha^4$	+	α^5	(001111)
							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				

					Г	ABL	E 6.2:	(contin	nued)		
a21	1	+	α			+	α^3	$+\alpha^4$	+	α^5	V.	(110111)
α^{22}	1			+	α^2			$+ \alpha^4$	+	α^5		(101011)
α^{23}	1					+	α^3		+	α^5		(100101)
α^{24}	1							$+ \alpha^4$				(100010)
a25			α						+	α^5		(010001)
α^{26}	1	+	α	+	α^2							(111000)
a27			α	+	α^2	+	α^3					(011100)
α^{28}					α^2	+	α^3	$+\alpha^4$				(001110)
α^{29}							α^3	$+ \alpha^4$	+	α^5		(000111)
α^{30}	1	+	α									(110011)
α^{31}	1			+	α^2					+	α^5	(101001)
α^{32}	1					+	α^3					(100100)
a33			α						α^4			(010010)
α^{34}					α^2					+	α^5	(001001)
a35	1	+	a			+	α^3					(110100)
a 36	-	•	a	+	α^2			+	α^4			(011010)
a37		2			α^2		α^3			+	α^5	(001101)
a 38	1	+	a		-	+	α^3	+	α^4			(110110)
39	-		a	+	α^2	•		+	α^4	+	α^5	(011011)
a 40	1	+	a	+	α^2	+	a3	•		+	a5	(111101)
a 41	1		u	+	a2	+	a3	+	α^4			(101110)
~42	-		~		-	+	~3		a4	+	a5	(010111)
~43	1	-1-	~	-	~2	•	-	÷	a4	+	a5	(111011)
~44	1		u	+	~2	+	~3		-	+	a5	(101101)
~45	1				u	+	~3	+	x4			(100110)
~46	-		~				u		a4	+	a5	(010011)
47	1	-	a	-	~2				u	+	~5	(111001)
.48	1	+	u	-	~2	-	~3				u	(101100)
49	Т		~	-	u	-	~3	al.	~4			(010110)
			a		~2	-	u	-	~4		~5	(0,0,1,0,1,1)
	1				a		3	+	u		~5	(110101)
52	1	+	α		2	+	a		-4	+	u	(101010)
53	1			+	α-			+	a		5	(1010101)
54			α		2	+	α^{-}		4	+	α	(1110101)
55	1	+	α	+	2		3	+	α			(111010)
α 55 56	-		α	+	2	+	α3		4	+	a	(011101)
250	1	+	α	+	a2	+	α3	+	a		5	(111110)
59		-	α	+	a2	+	α3	+	a	+	α5	
a 50	1	+	α	+	α-2	+	α3	+	a	+	α5	(11111)
a 59	1			+	α2	+	as	+	a	+	α5	(101111)
200	1					+	as	+	a	+	as	(100111)
201	1							+	α*	+	as	(100011)
x 02	1								-	+	a	(100001)
									a	⁶³ =	1	

Appen.: Division circuit for dividing X(D) by G(D)

 $X(D) = x_0 + x_1 D + x_2 D^2 + \dots + x_{n-1} D^{n-1}$ $G(D) = g_0 + g_1 D + g_2 D^2 + \dots + g_{n-k} D^{n-k}$

- 1) Input high order coefficients first
- 2) First output is coefficient of Dⁿ⁻¹ of quotient (always equal to zero but mentioned here to associate outputs with correct power of D in quotient) and is present before first shift register clock pulse
- 3) First non-zero output occurs after (n-k)th clock pulse and is coefficient of D^{n-k} in quotient
- 4) Last term of quotient appears at output after $(n-1)^{\text{th}}$ clock pulse and is coefficient of D⁰ in quotient
- 5) Shift register contains coefficients of remainder $r(D) = r_0 + r_1 D + \dots + r_{n-k-1} D^{n-k-1}$ from left to right after n^{th} clock pulse

ີ 1

Divider circuit using linear feedback shift register structure

$$G(D) = \frac{C(D)}{M(D)} = \frac{a_0 + a_1 D + a_2 D^2 + \dots + a_n D^n}{1 + f_1 D + f_2 D^2 + \dots + f_n D^n}$$
(28)

