
1

Chapter 2

Finite Field and Linear Block Codes

2.1 Finite Fields

2.2 Primitive Polynomials and Minimal Polynomials

2.3 Linear Block Codes

2.4 Cyclic Codes

2.5 Syndrome Computation

References:
Lin, S. and Costello Jr. D.J. , Error Control Coding , Pearson Prentice Hall , 2004.

Castineira, J., and Farrel, P.G. , Essential of Error-Control Coding , Wiley, 2006

2

2.1 Finite Fields
 A field with only a finite number of elements is called a finite

field. Finite fields are also known as Galois fields after their

inventor.

 Most of the popular linear block codes , such as Hamming
codes. BCH codes and Reed-Solomin codes, are constructed
over the finite fields.

 For any positive integer m ≧ 1 , there exists a Galois

field of 2m elements , denoted GF(2m) . That is an extension

field of GF(2) which is the binary field.

 Construction of GF(2m)

(1) Begin with a primitive (irreducible) polynomial p(x) of

degree m with coefficients from the binary field GF(2).

(2) Let α be the root of p(x) , i.e. p(α) = 0

(3) Starting from GF(2) = { 0,1) and α , we define a

multiplication operator “ . “ to introduce a sequence

of power of 2 as follows :

3

0 ˙ 0 = 0 ; 0 ˙ 1 = 1 ˙ 0 = 0 ;

1 ˙ 1 = 1 ,

0 ˙ α = α ˙0 = 0 ;

1 ˙ α = α ˙ 1 = α ;

α2 = α ˙ α

α3 = α ˙ α ˙ α

.

.

.

αj = α ˙ αj -1 ; αi˙ αj = αi + j

We now have the following set of elements ,

F = { 0,1 , α ,α2 … }

which is closed under multiplication “˙” .

4

5

 Next , we define “ division “ operator as follows :

αi ÷ αj = αi ˙ α- j = αi – j

 The „ addition “ operator on F is defined as follows .

For 0 ≦ i ≦ 2m -2 , dividing x i by p(x) yields

x i = a (x) p(x) + b (x)

where b (x) is the remainder and

b(x) = b0 + b1x + b2 x
2 + … + bm-1 x

m-1

Replacing x by α , we have

αi = a(α) p(α) + b (α) = b0 + b1 α + b2 α 2 + … +

bm-1 α m-1

Therefore , each nonzero element in F can be expressed as a
polynomial of α with degree m-1 or less.

I The “addition” of αi and αj is defined as

αi + αj = (b0 + d0) + (b1 + d1) α + … + (bm-1 + bm-1) x m-1

where αj = d0 + d1 α + d2 α 2 + … + dm-1 α m-1 = α k

6

 Clearly , αj + αj = 0

Thus , “ subtraction “ is defined as follows.

αi – αj = αi + αj

Hence , subtraction is the same as addition

 We conclude that F = { 0,1 , α ,α2 … } together with the
multiplication and addition operators for a field of 2 m

elements .

 There are three forms to represent the elements in GF (2 m)

(1) Power form (easier to perform multiplication)

F = { 0,1 , α ,α2 … }

(2) Polynomial form

αi = b0 + b1 α + b2 α 2 + … + bm-1 α m-1

(3) Vector form (easier to perform addition)

αi = (b0 , b1 , b2 , …, bm-1)

7

8

2.2 Primitive Polynomials and Minimal Polynomials
• A irreducible polynomial p(x) of degree m is said to be

primitive if the smallest positive integer n for which p(x)

divides x n +1 is n = 2 m -1 .

• For example, 1 + x + x4 is a primitive polynomial.

The smallest positive integer n for which 1 + x + x4 divides

x n +1 is n = 15 .

• For any positive integer m, there exists a primitive polynomial
of degree m .

• Example

M Primitive Polynomial p(x)

2 1 + x + x2

3 1 + x + x3

4 1 + x + x4

5 1 + x2 + x 5

6 1 + x + x 6

7 1 + x3 + x 7

9

10

11

 Theorem 2.2 :

The minimal polynomial ψ(x) of the element β of the

Galois field GF (2 m) is a factor of x2 m + x

 Example :

The following table lists the minimal polynomials of all

elements of the Galois field GF (2 4) generated by

p(x) = 1+x + x4 .

--

Conjugate roots Minimal polynomials

0 x

1 1 + x

α ,α2 , α4 , α8 1 + x + x4

α3,α6, α9, α12 1 + x + x2 + x3+ x4

α5 , α10 1 + x + x2

α7,α11, α13, α14 1 + x3+ x4

--

12

2.3 Linear Block Codes

 Let the message m = (m0 , m1 ,…, mk-1) be an arbitrary

k-tuple from GF (2) . The linear (n, k) code over GF (2)

is the set

2 k codewords of row vector form

c = (c0 , c1 ,…, cn-1) , where cj ε GF (2)

The generator G of the code is a k x n matrix over GF (2) .

c = m ˙ G

The generator matrix can be expressed as

G = [g1 g2 … gk] T

The rows of G are linearly independent since G is assumed
to have rank k .

 For a linear block code, the vector sum of two codewords is
a codeword.

13

 The generator matrix of an (n ,k) linear systematic code

can be expressed as

G = [Ik P]

where Ik is the k x k identity matrix and P is a k x (n-k)

matrix.

 An (n , k) linear code C can also be specified by an (n-k)

x k matrix H denoted as parity –check matrix .

Let c = (c0 , c1 ,…, cn-1) be an n-tuple , then c is a

codeword

if and only if c˙ H = (0 , 0 ,… , 0)n-k = 0

The parity-check matrix can be expressed as

H = [PT I n-k]

It is noted that many solutions for H are possible for any

given generator matrix G .

14

Example : Hamming code

 Hamming codes are the first class of binary linear block
code discovered by R.W. Hamming in 1950.

 For any positive integer m ≧ 3 , there exists a Hamming

code with the following parameters :

block code length n = 2 m -1

message length k = 2 m -1 – m

minimum Hamming distance dmin = 3

error-correction capability t =1 .

For a (7 ,4) Hamming code

1000 101 1110100

0100 111 H = [0111010]

G = [1101 001] 0010110

0001 011

15

2.4 Cyclic Codes

 An (n,k) linear code C is called a cyclic code if any cyclic

shift of a codeword is another codeword .

In polynomial form

c(x) = c0 + c1x + c2x
2 + … + cn-1x

n-1

c(j) (x) = cn- j + cn-j+1x + cn- j+2 x
2 + … + cn- j-1 x

n-1

Cyclic structure makes the encoding and syndrome

computation very easy.

2.4.1 Generator Polynomial

 Every nonzero code polynomial c(x) in C must have degree

at least n-k but not greater than n-1 . There is one and only

one nonzero generator polynomial g(x) for a cyclic code.

16

• It can be shown that the generator polynomial g(x) of an
(n ,k) cyclic code is always a polynomial factor of the
polynomial

x n – 1 , or x n +1 .

g(x) = 1 + g1x + g2 x
2 + … + gn-k-1 x

n-k-1 + x n-k

Since g(x) divides x n – 1 , it follows that

x n – 1 = h(x) g(x)

where h(x) = h0 + h1x + h2 x
2 + … + hk x

k

and h0 = hk = 1

h(x) is called the parity polynomial of the (n , k) cyclic

code.

 The message polynomial is expressed as

m(x) = m0 + m1x + m2x 2 + … + mk-1 x
k -1

Then , the product m(x)g(x) is the polynomial representing
the code word polynomial of degree n-1 or less.

17

In general, c(x) and c(j) (x) are related by the formula

c(j) (x) = x j c(x) mod (x n – 1)

We can see that

c(j) (x) = x j m(x)g(x) mod (x n – 1) = m j (x) g(x)

2.4.2 Encoding of Cyclic Codes

 Consider an (n ,k) cyclic code with generator polynomial g(x)
Suppose m = (m0 , m1 ,…, mk-1) is the message to be encoded.

m(x) = m0 + m1x + m2x
2 + … + mk-1 x k -1

Multiplying m(x) by x n-k and the dividing by g(x) , we obtain

x n-k m(x) = q(x) g(x) + p(x)

where p(x) = p0 + p1x + p2 x
2 + … + pn-k-1 x

n-k -1

is the remainder .

Then p(x) +x n-k m(x) = q(x)g(x) is a multiple of g(x) and has
degree n-1. Hence it is the code polynomial for the message.

18

 Note that

p(x) + x n-k m(x)

= p0 + p1x + p2x 2 + … + pn-k-1x
n-k -1 +

m0x
n-k + m1x

n-k+1 + … + mk-1x
k -1

The code polynomial is in systematic form where p(x) is the

parity-check part .

 The encoding can be implemented by using a division circuit

consisting of shift registers and feedback connections based on

the generator polynomial g(x) ,as show below Fig.2.1) .

 In the figure the right-most symbol is the first symbol to enter the

encoder. The gate is turned on until all information digits have

been shifted into the circuit.

19

Fig.2.1 Encoding circuit based on g(x)

g
1

g
2

g
n-k-1

gate

c
0
c

1
...c

n-1

m0m1...mk-1

20

Example : Encoding of cyclic (7,4) Hamming code
g(x) = 1+x 2+x 3 , message bits m = (1001)

21

 It can be shown that cyclic codes can also be generated by using

the parity polynomial h(x) , where h(x) = h0 + h1x + h2 x 2 + …

+ hk x k .

 The k-stage shifter-register encoder based on h(x) is shown in

Fig.2.2 .

hk-1gate 2

h0h1

gate 1

hk-2

m0m1...mk-1

c0c1...cn-1

22

2.5 Syndrome Computation

 Let c(x)and r(x) be the transmitted code polynomial and

received polynomial, respectively.

Dividing r(x) by the generator polynomial g (x) , we have

r(x) = q(x) g(x) + s(x)

where s(x) is the remainder and

s(x) = s0 + s1x + s2x
2 + … + sn-k-1x n-k -1

Then s(x) is the syndrome polynomial of r(x).

The received polynomial r(x) is a code polynomial if and

only if s(x) = 0.

 Syndrome computation can be done by a division circuit

shown in Fig.2.3 .

As soon as the entire r(x) has been shifted into the

register , the contents in the register form the s(x) .

23

Fig. 2.3 Syndrome Computation Circuit

g1 g2 gn-k-1

gate

g0 = 1

s0 s1
sn-k-1

)(xr

24

Example : Syndrome circuit for a (7,4) cyclic code with g(x) = 1+ x +x3

Received sequence r = (1001000)

25

 Since r(x) = c(x) + e(x)

and also r(x) = q(x) g(x) + s(x)

we have e(x) = r(x) + c(x)

= q(x)g(x) + s(x) +c(x)

= q(x) g(x) + s(x) + m(x) g(x)

= [q(x) + m(x)] g(x) + s(x)

or s(x) = e(x) mod g(x)

Hence the syndrome polynomial s(x) is also the remainder

that results from dividing e(x) by g(x) .

26

Table 2.1

Galois field GF(25) constructed by using the primitive polynomial

p(x) = 1 +x2 + x5

27

Table 2.2 Minimal polynomials of the elements in GF(26)

28

Table 2.3

Galois field GF(26) constructed by using the primitive polynomial

p(x) = 1 +x + x6

29

30

31

Appen.: Division circuit for dividing X(D) by G(D)

X(D) = x0+ x1D + x2D
2 + …+ xn-1D

n-1

G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k

32

Divider circuit using linear feedback shift register structure

