## Chapter 2 <br> Finite Field and Linear Block Codes

2.1 Finite Fields
2.2 Primitive Polynomials and Minimal Polynomials
2.3 Linear Block Codes
2.4 Cyclic Codes
2.5 Syndrome Computation

References:
Lin, S. and Costello Jr. D.J. , Error Control Coding , Pearson Prentice Hall , 2004.
Castineira, J., and Farrel, P.G. , Essential of Error-Control Coding , Wiley, 2006

### 2.1 Finite Fields

- A field with only a finite number of elements is called a finite field. Finite fields are also known as Galois fields after their inventor.
- Most of the popular linear block codes , such as Hamming codes. BCH codes and Reed-Solomin codes, are constructed over the finite fields.
- For any positive integer $m \geqq 1$, there exists a Galois field of $2^{m}$ elements, denoted $\operatorname{GF}\left(2^{m}\right)$. That is an extension field of GF(2) which is the binary field.
- Construction of GF( $2^{m}$ )
(1) Begin with a primitive ( irreducible) polynomial $p(x)$ of degree $m$ with coefficients from the binary field GF(2).
(2) Let $\alpha$ be the root of $p(x)$, i.e. $p(\alpha)=0$
(3) Starting from $\mathbf{G F}(2)=\{0,1)$ and $\alpha$, we define a multiplication operator ". " to introduce a sequence of power of 2 as follows :

$$
\begin{aligned}
& 0 \cdot 0=0 ; 0 \cdot 1=1 \cdot 0=0 ; \\
& 1 \cdot 1=1, \\
& 0 \cdot \alpha=a \cdot 0=0 ; \\
& 1 \cdot \alpha=a^{\prime} 1=a ; \\
& a^{2}=a^{\prime} \cdot \alpha \\
& a^{3}=a^{\prime} \cdot a \cdot \alpha
\end{aligned}
$$

$$
\alpha^{j}=a^{\cdot} \alpha^{j-1} ; a^{i} \alpha^{j}=a^{i+j}
$$

We now have the following set of elements,

$$
\mathrm{F}=\left\{0,1, \alpha, \alpha^{2} \ldots\right\}
$$

which is closed under multiplication " ${ }^{\circ}$.

- Since $\alpha$ is a root of $p(x)$ and $p(x)$ divides $x^{2^{m}-1}+1, \alpha$ must also be a root of $\mathbf{x}^{2^{m}-1}+1$. Hence $a^{2^{m}-1}+1=0$
This implies that $\quad \alpha^{2^{m}-1}=1$
As a result, $F$ is finite and consists of following elements

$$
\mathbf{F}=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{2^{m}-2}\right\}
$$

- Let $a^{0}=1$. Multiplication is carried out as follows .

For $0 \leqq i, j \leqq 2^{m}-1$,

$$
a^{i} \cdot a^{j}=a^{i+j}=a^{k}
$$

where $k$ is the remainder resulting from dividing $i+j$ by

$$
2^{m}-1
$$

Since $\quad a^{i} \cdot a^{2^{m}-1-i}=a^{2^{m}-1-i}$,
$a^{2}-I-I$ is called the multiplicative inverse of $a^{i}$ and vise versa.
Also, $a^{2^{m}-1-i}=a^{2^{m}-1} \cdot \alpha^{-i}=\alpha^{-I}$
we can use $\alpha^{\boldsymbol{i}}$ to denote the multiplicative inverse of $\boldsymbol{a}^{\boldsymbol{i}}$. ${ }^{4}$

- Next, we define " division " operator as follows :
$\boldsymbol{\alpha}^{\mathbf{i}} \div \boldsymbol{\alpha}^{\mathbf{j}}=\boldsymbol{\alpha}^{\mathbf{i}} \cdot \boldsymbol{\alpha}^{-\mathbf{j}}=\boldsymbol{\alpha}^{\mathbf{i}-\mathbf{j}}$
- The ' addition " operator on $F$ is defined as follows.

For $0 \leqq i \leqq 2^{m}-2$, dividing $x^{i}$ by $p(x)$ yields

$$
\mathbf{x}^{\mathbf{i}}=\mathbf{a}(\mathbf{x}) p(\mathbf{x})+\boldsymbol{b}(\mathbf{x})
$$

where $b(x)$ is the remainder and

$$
b(\mathbf{x})=b_{0}+b_{1} \mathbf{x}+b_{2} \mathbf{x}^{2}+\ldots+b_{m-1} \mathbf{x}^{m-1}
$$

Replacing $x$ by $\alpha$, we have

$$
\begin{aligned}
\alpha^{\mathrm{i}}= & a(\alpha) p(\alpha)+b(\alpha)=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\ldots+ \\
& b_{m-1} \alpha^{m-1}
\end{aligned}
$$

Therefore, each nonzero element in $F$ can be expressed as a polynomial of $\alpha$ with degree $m-1$ or less.
The "addition" of $\alpha^{\mathbf{i}}$ and $\alpha^{\boldsymbol{j}}$ is defined as
$\alpha^{\mathrm{i}}+\alpha^{\mathrm{j}}=\left(b_{0}+d_{0}\right)+\left(b_{1}+d_{1}\right) \alpha+\ldots+\left(b_{m-1}+b_{m-1}\right) \mathrm{x}^{m-1}$
where $\alpha^{j}=d_{0}+d_{1} \alpha+d_{2} \alpha^{2}+\ldots+d_{m-1} \alpha^{m-1}=\alpha^{k}$

- Clearly, $\boldsymbol{\alpha}^{\mathbf{j}}+\boldsymbol{\alpha}^{\mathbf{j}}=\mathbf{0}$

Thus, " subtraction " is defined as follows.

$$
\boldsymbol{\alpha}^{\mathbf{i}}-\boldsymbol{\alpha}^{\mathbf{j}}=\boldsymbol{\alpha}^{\mathbf{i}}+\boldsymbol{\alpha}^{\mathbf{j}}
$$

Hence, subtraction is the same as addition

- We conclude that $F=\left\{0,1, \alpha, \alpha^{2} \ldots\right\}$ together with the multiplication and addition operators for a field of $\mathbf{2}^{\mathbf{m}}$ elements .
- There are three forms to represent the elements in GF (2 ${ }^{m}$ )
(1) Power form ( easier to perform multiplication )

$$
F=\left\{0,1, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{2} \ldots\right\}
$$

(2) Polynomial form

$$
\alpha^{\mathrm{i}}=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\ldots+b_{m-1} \alpha^{m-1}
$$

(3) Vector form ( easier to perform addition )

$$
\boldsymbol{\alpha}^{\mathrm{i}}=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{m-1}\right)
$$

Table B. 4 The Galois field $\mathrm{GF}\left(2^{4}\right)$ generated by $p_{i}(X)=1+X+X^{4}$

| Exp. representation | Polynomial representation |  |  | Vector representation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  | 0 | 0 | 0 | 0 |
| 1 | 1 |  |  | 1 | 0 | 0 | 0 |
| $\alpha$ | $\alpha$ |  |  | 0 | 1 | 0 | 0 |
| $\alpha^{2}$ |  | $\alpha^{2}$ |  | 0 | 0 | 1 | 0 |
| $\alpha^{3}$ |  | $\alpha^{3}$ |  | 0 | 0 | 0 | 1 |
| $\alpha^{4}$ | $1+\alpha$ |  |  | 1 | 1 | 0 | 0 |
| $\alpha^{5}$ | - $\alpha$ | $+\alpha^{2}$ |  | 0 | 1 | 1 | 0 |
| $\alpha^{6}$ |  | $+\alpha^{2}+\alpha^{3}$ |  | 0 | 0 | 1 | 1 |
| $\alpha^{7}$ | $1+\alpha$ | $+\alpha^{3}$ |  |  | 1 | 0 | 1 |
| $\alpha^{8}$ | 1 | $+\alpha^{2}$ |  |  | 0 | , | 0 |
| $\alpha^{9}$ | $\alpha$ | $+\alpha^{3}$ |  |  | 1 | 0 | 1 |
| $\alpha^{10}$ | $1+\alpha$ |  |  | 1 | 1 | 1 | 0 |
| $\alpha^{11}$ |  | $+\alpha^{2}+\alpha^{3}$ |  | 0 | 1 | , | 1 |
| $\alpha^{12}$ | $1+\alpha$ | $+\alpha^{2}+\alpha^{3}$ |  |  | 1 | 1 | 1 |
| $\alpha^{13}$ | 1 | $+\alpha^{2}+\alpha^{3}$ |  |  | 0 | 1 | 1 |
| $\alpha^{14}$ | 1 | + $\alpha^{3}$ | . | 1 | 0 | 0 | 1 |

### 2.2 Primitive Polynomials and Minimal Polynomials

- A irreducible polynomial $p(x)$ of degree $m$ is said to be primitive if the smallest positive integer $n$ for which $p(x)$ divides $x^{n}+1$ is $n=2^{m}-1$.
- For example, $1+x+x^{4}$ is a primitive polynomial.

The smallest positive integer $n$ for which $1+x+x^{4}$ divides
$\mathrm{x}^{\mathrm{n}}+\mathbf{1} \quad$ is $\mathrm{n}=15$.

- For any positive integer $m$, there exists a primitive polynomial of degree $m$.
- Example

| $M$ | Primitive Polynomial $p(x)$ |
| :--- | :---: |
| 2 | $1+x+x^{2}$ |
| 3 | $1+x+x^{3}$ |
| 4 | $1+x+x^{4}$ |
| 5 | $1+x^{2}+x^{5}$ |
| 6 | $1+x^{6}+x^{6}$ |
| 7 | $1+x^{3}+x^{7}$ |

Consider the Galois field GF ( $2^{\mathrm{m}}$ ) generated by the primitive polynomial

$$
p(\mathbf{x})=p_{0}+p_{1} \mathbf{x}+p_{2} \mathbf{x}^{2}+\ldots+p_{m-1} \mathbf{x}^{m-1}+\mathbf{x}^{m}
$$

The element $\alpha$, which is a root of $p(x)$, whose powers generate all the non-zero elements of GF ( 2 m ) is called a primitive element of GF ( $2^{\mathrm{m}}$ ). Usually, there may be more than one primitive elements in a finite field GF ( $2^{\mathrm{m}}$ ).
For example, $\alpha^{4}$ and $\alpha^{7}$ are also primitive elements of GF ( $2^{\mathrm{m}}$ ).

- Let. $\beta$ be a non-zero element of GF ( $2^{\mathrm{m}}$ ).

Consider the powers of $\beta$ :

$$
\beta, \beta^{2}, \beta^{4} \beta^{8}, \ldots, \beta^{2^{i}}
$$

If $e$ is the smallest nonnegative integer for which $\beta^{2^{e}}=\beta$, then the integer " $e$ " is called the exponent of $\beta$

- The minimal polynomial of the element $\beta$ is defined as

$$
\phi(x)=(x+\beta)\left(x+\beta^{2}\right)\left(x+\beta^{4}\right) \ldots\left(x+\beta^{2^{e}-1}\right)
$$

- Let $f(x)$ be a polynomial defined over GF GF( $2^{m}$ ). If an element $\beta$ of $G F\left(2^{m}\right)$ is a root of the polynomial $f(x)$, then for
any positive integer $\lambda \geqq 0, \beta^{2^{\lambda}}$ is also a root of that polynomial.
The elements $\beta^{2^{\lambda}}$ are called conjugates of $\beta$.

Theorem 2.1:
If an element $\beta$ of $\operatorname{GF}\left(2^{m}\right)$ is a root of the polynomial $\mathbf{f}(\mathbf{x})$, its conjugates are also elements of the same field and roots of the same polynomial.

- Theorem 2.2 :

The minimal polynomial $\psi(x)$ of the element $\beta$ of the Galois field GF ( $2^{m}$ ) is a factor of $x^{2 m}+x$

- Example :

The following table lists the minimal polynomials of all elements of the Galois field GF ( $\mathbf{2}^{4}$ ) generated by $\mathbf{p}(\mathbf{x})=1+\mathbf{x}+\mathbf{x}^{4}$.

Conjugate roots 0

$$
1
$$

$$
\boldsymbol{\alpha}, \boldsymbol{\alpha}^{2}, \boldsymbol{\alpha}^{4}, \boldsymbol{\alpha}^{8}
$$

$$
\boldsymbol{a}^{3}, \boldsymbol{\alpha}^{6}, \boldsymbol{\alpha}^{9}, \boldsymbol{\alpha}^{12}
$$

$$
\alpha^{5}, \alpha^{10}
$$

$$
\boldsymbol{\alpha}^{7}, \boldsymbol{a}^{11}, \boldsymbol{a}^{13}, \boldsymbol{a}^{14}
$$

Minimal polynomials
$\mathbf{X}$
$1+\mathbf{x}$
$1+\mathrm{x}+\mathrm{x}^{4}$
$1+x+x^{2}+x^{3}+x^{4}$
$1+\mathrm{x}+\mathrm{x}^{\mathbf{2}}$
$1+x^{3}+x^{4}$

### 2.3 Linear Block Codes

- Let the message $m=\left(m_{0}, m_{1}, \ldots, m_{k-1}\right)$ be an arbitrary $k$-tuple from GF (2). The linear ( $n, k$ ) code over GF (2) is the set
$2^{k}$ codewords of row vector form

$$
\mathrm{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right), \text { where } c_{j} \varepsilon \mathbf{G F}(2)
$$

The generator $G$ of the code is akxn matrix over $\mathbf{G F}$ (2). $c=m \cdot G$
The generator matrix can be expressed as

$$
G=\left[\begin{array}{llll}
g_{1} & g_{2} & \cdots & g_{k}
\end{array}\right]^{T}
$$

The rows of $G$ are linearly independent since $G$ is assumed to have rank $k$.

- For a linear block code, the vector sum of two codewords is a codeword.
- The generator matrix of an $(n, k)$ linear systematic code can be expressed as

$$
G=\left[\begin{array}{ll}
I_{k} & P
\end{array}\right]
$$

where $I_{k}$ is the $k \times k$ identity matrix and $P$ is a $k \times(n-k)$ matrix.

- An ( $n, k$ ) linear code $C$ can also be specified by an ( $n-k$ ) xk matrix H denoted as parity -check matrix .
Let $\mathrm{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be an $n$-tuple, then c is a codeword
if and only if $c^{\cdot} \mathbf{H}=(0,0, \ldots, 0)_{n-k}=0$
The parity-check matrix can be expressed as

$$
H=\left[\begin{array}{ll}
P^{\top} & I_{n-k}
\end{array}\right]
$$

It is noted that many solutions for H are possible for any given generator matrix $G$.

Example : Hamming code

- Hamming codes are the first class of binary linear block code discovered by R.W. Hamming in 1950.
- For any positive integer $m \geqq 3$, there exists a Hamming code with the following parameters :
block code length $n=2^{m}-1$
message length $k=2{ }^{\mathrm{m}}-1-\mathrm{m}$
minimum Hamming distance $d_{\text {min }}=3$
error-correction capability $\mathbf{t}=\mathbf{1}$.
For a ( 7,4 ) Hamming code

$$
G=\left[\begin{array}{c}
1000101 \\
0100111 \\
1101001 \\
0001011
\end{array}\right]
$$

1110100
$\mathrm{H}=\left[\begin{array}{ll}0111010 \text { ] }\end{array}\right.$
0010110

### 2.4 Cyclic Codes

- An (n,k) linear code $C$ is called a cyclic code if any cyclic shift of a codeword is another codeword .
In polynomial form

$$
\begin{aligned}
& c(\mathbf{x})=c_{0}+c_{1} \mathbf{x}+c_{2} \mathbf{x}^{2}+\ldots+c_{n-1} \mathbf{x}^{n-1} \\
& c^{(j)}(\mathbf{x})=c_{n-j}+c_{n-j+1} \mathbf{x}+c_{n-j+2} \mathbf{x}^{2}+\ldots+c_{n-j-1} \mathbf{x}^{n-1}
\end{aligned}
$$

Cyclic structure makes the encoding and syndrome computation very easy.
2.4.1 Generator Polynomial

- Every nonzero code polynomial $\mathbf{c}(\mathbf{x})$ in $\mathbf{C}$ must have degree at least $n$-k but not greater than $n-1$. There is one and only one nonzero generator polynomial $g(x)$ for a cyclic code.
- It can be shown that the generator polynomial $g(x)$ of an ( $\mathrm{n}, \mathrm{k}$ ) cyclic code is always a polynomial factor of the polynomial

$$
\begin{aligned}
& \mathbf{x}^{n}-1, \text { or } \mathbf{x}^{n}+1 . \\
& g(x)=1+g_{1} \mathrm{x}+g_{2} \mathrm{x}^{2}+\ldots+g_{n-k-1} \mathrm{x}^{n-k-1}+\mathrm{x}^{n-k}
\end{aligned}
$$

Since $g(x)$ divides $x^{n}-1$, it follows that

$$
\mathbf{x}^{n}-1=h(\mathbf{x}) g(\mathbf{x})
$$

where $h(x)=h_{0}+h_{1} \mathrm{x}+h_{2} \mathrm{x}^{2}+\ldots+h_{k} \mathrm{x}^{k}$

$$
\text { and } h_{0}=h_{k}=1
$$

$h(\mathbf{x})$ is called the parity polynomial of the $(\mathbf{n}, \mathrm{k})$ cyclic code.

- The message polynomial is expressed as

$$
m(\mathbf{x})=m_{0}+m_{1} \mathbf{x}+m_{2} \mathbf{x}^{2}+\ldots+m_{k-1} \mathbf{x}^{k-1}
$$

Then, the product $m(x) g(x)$ is the polynomial representing the code word polynomial of degree $\mathbf{n - 1}$ or less.

In general, $c(x)$ and $c^{(j)}(x)$ are related by the formula

$$
c^{(i)}(x)=x^{j} c(x) \bmod \left(x^{n}-1\right)
$$

We can see that

$$
c^{(j)}(\mathbf{x})=x^{j} m(\mathbf{x}) g(\mathbf{x}) \bmod \left(\mathrm{x}^{n}-1\right)=m^{j}(\mathbf{x}) g(\mathbf{x})
$$

### 2.4.2 Encoding of Cyclic Codes

- Consider an ( $\mathbf{n}, \mathrm{k}$ ) cyclic code with generator polynomial $g(\mathbf{x})$ Suppose $\mathrm{m}=\left(\boldsymbol{m}_{0}, m_{1}, \ldots, m_{k-1}\right)$ is the message to be encoded.

$$
m(\mathbf{x})=m_{0}+m_{1} \mathbf{x}+m_{2} \mathbf{x}^{2}+\ldots+m_{k-1} \mathbf{x}^{k-1}
$$

Multiplying $m(x)$ by $x^{n-k}$ and the dividing by $g(x)$, we obtain

$$
x^{n-k} m(\mathbf{x})=q(\mathbf{x}) g(\mathbf{x})+p(\mathbf{x})
$$

where $p(\mathrm{x})=p_{0}+p_{1} \mathrm{x}+p_{2} \mathrm{x}^{2}+\ldots+p_{n-k-1} \mathrm{x}^{n-k-1}$ is the remainder .
Then $p(x)+\mathrm{x}^{n-k} \boldsymbol{m}(\mathbf{x})=\boldsymbol{q}(\mathbf{x}) g(\mathrm{x})$ is a multiple of $\mathrm{g}(\mathrm{x})$ and has degree $\mathbf{n - 1}$. Hence it is the code polynomial for the message.

- Note that

$$
\begin{aligned}
& p(\mathbf{x})+\mathbf{x}^{n-k} m(\mathbf{x}) \\
&= p_{0}+p_{1} \mathbf{x}+p_{2} \mathbf{x}^{2}+\ldots+p_{n-k-1} \mathbf{x}^{n-k-1}+ \\
& \quad m_{0} \mathbf{x}^{n-k}+m_{1} \mathbf{x}^{n-k+1}+\ldots+m_{k-1} \mathbf{x}^{k-1}
\end{aligned}
$$

The code polynomial is in systematic form where $p(x)$ is the parity-check part .

- The encoding can be implemented by using a division circuit consisting of shift registers and feedback connections based on the generator polynomial $g(x)$, as show below Fig.2.1) .
- In the figure the right-most symbol is the first symbol to enter the encoder. The gate is turned on until all information digits have been shifted into the circuit.

Fig.2.1 Encoding circuit based on $\mathrm{g}(\mathrm{x})$


## Example : Encoding of cyclic $(7,4)$ Hamming code

$$
g(x)=1+x^{2}+x^{3} \quad, \text { message bits } m=(1001)
$$



After $i$ th shift

| Shift no. $i$. | Gate | Register contents | Output |
| :---: | :---: | :---: | :---: |
| 0 | On | 000 | 1 |
| 1 | On | 101 | 01 |
| 2 | On | 111 | $\begin{array}{llll}0 & 0 & 1\end{array}$ |
| 3 | On | 110 | 1001 |
| 4 | Off | 110 | 01001 |
| 5 | Off | 011 | 101001 |
| 6 | Off | 001 | 11001001 |

- It can be shown that cyclic codes can also be generated by using the parity polynomial $h(x)$, where $h(x)=h_{0}+h_{1} x+h_{2} x^{2}+\ldots$ $+h_{k} x^{k}$.
- The k-stage shifter-register encoder based on $h(x)$ is shown in Fig. 2. 2.



### 2.5 Syndrome Computation

- Let $\mathbf{c}(\mathbf{x})$ and $\mathbf{r}(\mathbf{x})$ be the transmitted code polynomial and received polynomial, respectively.
Dividing $r(x)$ by the generator polynomial $g(x)$, we have

$$
r(\mathbf{x})=q(\mathbf{x}) g(\mathbf{x})+s(\mathbf{x})
$$

where $s(x)$ is the remainder and

$$
s(\mathbf{x})=s_{0}+s_{1} x+s_{2} \mathbf{x}^{2}+\ldots+s_{n-k-1} \mathbf{x}^{n-k-1}
$$

Then $s(x)$ is the syndrome polynomial of $r(x)$.
The received polynomial $r(x)$ is a code polynomial if and only if $s(x)=0$.

- Syndrome computation can be done by a division circuit shown in Fig.2.3 .
As soon as the entire $r(x)$ has been shifted into the register, the contents in the register form the $s(x)$.

Fig. 2.3 Syndrome Computation Circuit


Example : Syndrome circuit for a (7,4) cyclic code with $g(x)=1+x+x^{3}$ Received sequence $\mathrm{r}=(1001000)$


| Shift ro. | Input | Fegister contents |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $s{ }_{0}$ | $s_{1}$ | $s_{z}$ |
| 0 | - | 0 | $\bigcirc$ | $0$ |
| 1 2 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 2 | 0 | 0 | 0 | 0 |
| 3 | 1. | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 |
| 6 | 0 | $\bigcirc$ | 0 | 1 |
| 7 | 1. | $\bigcirc$ | 1 | O |
| 8 | $\bigcirc$ | 1 | 1 | 0 |
| 19 | 0 | O | 1 | 1 |
| 10 | $\bigcirc$ | 1 | 1 | 1 |
| 12 | 0 | 1 | O | 1 |

- Since $r(\mathbf{x})=c(\mathbf{x})+e(\mathbf{x})$
and also $r(x)=q(x) g(x)+s(x)$
we have $e(\mathrm{x})=r(\mathrm{x})+c(\mathrm{x})$

$$
\begin{aligned}
& =q(\mathbf{x}) g(\mathbf{x})+s(\mathbf{x})+c(\mathbf{x}) \\
& =\mathbf{q}(\mathbf{x}) g(\mathbf{x})+s(\mathbf{x})+m(\mathbf{x}) g(\mathbf{x}) \\
& =[q(\mathbf{x})+m(\mathbf{x})] g(\mathbf{x})+s(\mathbf{x})
\end{aligned}
$$

or

$$
s(\mathbf{x})=e(\mathbf{x}) \bmod g(\mathbf{x})
$$

Hence the syndrome polynomial $s(x)$ is also the remainder that results from dividing $e(x)$ by $g(x)$.

## Table 2.1

Galois field $\mathbf{G F}\left(2^{5}\right)$ constructed by using the primitive polynomial

$$
p(x)=1+x^{2}+x^{5}
$$

Field element (polynomial notation)

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |

## Table 2.2 Minimal polynomials of the elements in GF( $\mathbf{2}^{6}$ )

Elements

| $\alpha, \alpha^{2}, \alpha^{4}, \alpha^{16}, \alpha^{32}$ | $1+X+X^{6}$ |
| :--- | :--- |
| $\alpha^{3}, \alpha^{6}, \alpha^{12} \alpha^{24}, \alpha^{48} \alpha^{33}$ | $1+X+X^{2}+X^{4}+X^{6}$ |
| $\alpha^{5}, \alpha^{10}, \alpha^{20}, \alpha^{40}, \alpha^{17}, \alpha^{34}$ | $1+X+X^{2}+X^{5}+X^{6}$ |
| $\alpha^{7}, \alpha^{14}, \alpha^{28}, \alpha^{56}, \alpha^{49}, \alpha^{35}$ | $1+X^{3}+X^{6}$ |
| $\alpha^{9}, \alpha^{18}, \alpha^{36}$ | $1+X^{2}+X^{3}$ |
| $\alpha^{11}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50}, \alpha^{37}$ | $1+X^{2}+X^{3}+X^{5}+X^{6}$ |
| $\alpha^{13}, \alpha^{26}, \alpha^{52}, \alpha^{41}, \alpha^{19}, \alpha^{38}$ | $1+X+X^{3}+X^{4}+X^{6}$ |
| $\alpha^{15}, \alpha^{30}, \alpha^{60}, \alpha^{57}, \alpha^{51}, \alpha^{39}$ | $1+X^{2}+X^{4}+X^{5}+X^{6}$ |
| $\alpha^{21}, \alpha^{42}$ | $1+X+X^{2}$ |
| $\alpha^{23}, \alpha^{46}, \alpha^{29}, \alpha^{58}, \alpha^{53}, \alpha^{43}$ | $1+X+X^{4}+X^{5}+X^{6}$ |
| $\alpha^{27}, \alpha^{54}, \alpha^{45}$ |  |
| $\alpha^{31}, \alpha^{62}, \alpha^{61}, \alpha^{59}, \alpha^{55}, \alpha^{47}$ | $1+X+X^{3}$ |

## Table 2.3

Galois field GF( $2^{6}$ ) constructed by using the primitive polynomial

$$
p(x)=1+x+x^{6}
$$

| 0 | 0 |  |  |  |  |  |  |  |  |  | (000000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  |  |  |  |  |  |  | (100000) |
| $\alpha$ |  |  | $\alpha$ |  |  |  |  |  |  |  | (010000) |
| $\alpha^{2}$ |  |  |  |  | $\alpha^{2}$ |  |  |  |  |  | (001000) |
| $\alpha^{3}$ |  |  |  |  |  |  | $\alpha^{3}$ |  |  |  | (000100) |
| $\alpha^{4}$ |  |  |  |  |  |  |  | $\alpha^{4}$ |  |  | (000010) |
| $\alpha^{5}$ |  |  |  |  |  |  |  |  |  | $\alpha^{5}$ | (000001) |
| $\alpha^{6}$ | 1 | $+$ | $\alpha$ |  |  |  |  |  |  |  | (110000) |
| $\alpha^{7}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ |  |  |  |  |  | (011000) |
| $\alpha^{8}$ |  |  |  |  | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  |  | (001100) |
| $\alpha^{9}$ |  |  |  |  |  |  | $\alpha^{3}$ | $+\alpha^{4}$ |  |  | (000110) |
| $\alpha^{10}$ |  |  |  |  |  |  |  | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | (000011) |
| $\alpha^{11}$ | 1 | $+$ | $\alpha$ |  |  |  |  |  | $+$ | $\alpha^{5}$ | (110001) |
| $\alpha^{12}$ | 1 |  |  | $+$ | $\alpha^{2}$ |  |  |  |  |  | (101000) |
| $\alpha^{13}$ |  |  | $\alpha$ |  |  |  | $\alpha^{3}$ |  |  |  | (010100) |
| $\alpha^{14}$ |  |  |  |  | $\alpha^{2}$ |  |  | $+\alpha^{4}$ |  |  | (001010) |
| $\alpha^{15}$ |  |  |  |  |  |  | $\alpha^{3}$ |  | $+$ | $\alpha^{5}$ | (000101) |
| $\alpha^{16}$ | 1 | $+$ | $\alpha$ |  |  |  |  | $+\alpha^{4}$ |  |  | (110010) |
| $\alpha^{17}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ |  |  |  | + | $\alpha^{5}$ | (011001) |
| $\alpha^{18}$ | 1 | $+$ | $\alpha$ | + | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  |  | (1111100) |
| $\alpha^{19}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+\alpha^{4}$ |  |  | (01111110) |
| $\alpha^{20}$ |  |  |  |  | $\alpha^{2}$ | + | $\alpha^{3}$ | $+\alpha^{4}$ | + | $\alpha^{5}$ | (001111) |

TABLE 6.2: (continued)

| $\alpha^{21}$ | 1 | $+$ | $\alpha$ |  | $\alpha^{2}$ | + | $\alpha^{3}$ | $+\alpha^{4}$ $+\alpha^{4}$ | + + + | $\alpha^{5}$ |  | $\left(\begin{array}{llllll} 1 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  | $+$ | $\alpha^{2}$ |  |  |  | $+$ | $\alpha^{5}$ |  | $\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1\end{array}\right)$ |
| $\alpha^{23}$ | 1 |  |  |  |  | $\pm$ | $\alpha^{3}$ |  | $+$ | $\alpha^{5}$ |  | $\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1\end{array}\right)$ |
| $\alpha^{24}$ $\alpha^{25}$ | 1 |  | $\alpha$ |  |  |  |  | $+\alpha^{4}$ | + | $\alpha^{5}$ |  | $\left.\begin{array}{ll}(1 & 0\end{array} 0000100\right)$ |
| $\alpha^{26}$ | 1 | $+$ | $\alpha$ | + | $\alpha^{2}$ |  |  |  |  |  |  | (11110000) |
| $\alpha^{27}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  |  |  | ( $\left.\begin{array}{l}0\end{array} 111111000\right)$ |
| $\alpha^{28}$ |  |  |  |  | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+\alpha^{4}$ |  |  |  | (00011110) |
| $\alpha^{29}$ |  |  |  |  |  |  | $\alpha^{3}$ | $+\alpha^{4}$ | $+$ | $\alpha^{5}$ |  | (0000 01111$)$ |
| $\alpha^{30}$ | 1 | $+$ | $\alpha$ |  |  |  |  |  |  |  |  | (1100011) |
| $\alpha^{31}$ | 1 |  |  | $+$ | $\alpha^{2}$ |  |  |  |  | $+$ | $\alpha^{5}$ | (101001) |
| $\alpha^{32}$ | 1 |  |  |  |  | $+$ | $\alpha^{3}$ |  |  |  |  | (100100) |
| $\alpha^{33}$ |  |  | $\alpha$ |  |  |  |  |  | $\alpha^{4}$ |  |  | (0100010) |
| $\alpha^{34}$ |  |  |  |  | $\alpha^{2}$ |  |  |  |  | $+$ | $\alpha^{5}$ | (001001) |
| $\alpha^{35}$ | 1 | $+$ | $\alpha$ |  |  | $+$ | $\alpha^{3}$ |  |  |  |  | $\left(\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$ |
| $\alpha^{36}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ |  |  | $\pm$ | $\alpha^{4}$ |  |  | ( 01011100100$)$ |
| $\alpha^{37}$ |  |  |  |  | $\alpha^{2}$ |  | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | (0 01111001$)$ |
| $\alpha^{38}$ | 1 | $+$ | $\boldsymbol{\alpha}$ |  |  | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ |  |  | $\left(\begin{array}{lllllll}1 & 1 & 0 & 1 & 1 & 0\end{array}\right)$ |
| $\alpha^{39}$ |  |  | $\boldsymbol{\alpha}$ | $+$ | $\alpha^{2}$ |  |  | $+$ | $\alpha^{4}$ | $\pm$ | $\alpha^{5}$ | (0 $\left.1 \begin{array}{lllllll}0 & 1 & 0 & 1 & 1\end{array}\right)$ |
| $\alpha^{40}$ | 1 | $+$ | $\boldsymbol{\alpha}$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | $\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 1\end{array}\right)$ |
| $\alpha^{41}$ | 1 |  |  | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ |  |  | $\left(\begin{array}{llllll}1 & 0 & 1 & 1 & 1 & 0\end{array}\right)$ |
| $\alpha^{42}$ |  |  | $\alpha$ |  |  | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | (0100111) |
| $\alpha^{43}$ | 1 | $+$ | $\alpha$ | $+$ | $\alpha^{2}$ |  |  | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | (11110011) |
| $\alpha^{44}$ | 1 |  |  | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | (101101) |
| $\alpha^{45}$ | 1 |  |  |  |  | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ |  |  | (100110) |
| $\alpha^{46}$ |  |  | $\alpha$ |  |  |  |  | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | ( 011000111$)$ |
| $\alpha^{47}$ | 1 | $\pm$ | $\alpha$ | $+$ | $\alpha^{2}$ |  |  |  |  | $+$ | $\alpha^{5}$ | (1111001) |
| $\alpha^{48}$ | 1 |  |  | + | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  |  |  | (1011100) |
| $\alpha^{49}$ |  |  | $\alpha$ |  |  | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ |  |  | (01101110) |
| $\alpha^{50}$ |  |  |  |  | $\alpha^{2}$ |  |  | $+$ | $\alpha^{4}$ |  | $\alpha^{5}$ | (001011) |
| $\alpha^{51}$ | 1 | $+$ | $\alpha$ |  |  | $+$ | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | $\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 1\end{array}\right)$ |
| $\alpha^{52}$ | 1 |  |  | $+$ | $\alpha^{2}$ |  |  | $+$ | $\alpha^{4}$ |  |  | $\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right)$ |
| $\alpha^{53}$ |  |  | $\alpha$ |  |  | $+$ | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | (01001001) |
| $\alpha^{54}$ | 1 | $+$ | $\alpha$ | $+$ | $\alpha^{2}$ |  |  | $+$ | $\alpha^{4}$ |  |  | $\left(\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0\end{array}\right)$ |
| $\alpha^{55}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ |  |  | $+$ | $\alpha^{5}$ | ( $\left.\begin{array}{l}0 \\ 0\end{array} 111110001\right)$ |
| $\alpha^{56}$ | 1 | $\pm$ | $\alpha$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ |  |  | $\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$ |
| $\alpha^{57}$ |  |  | $\alpha$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ | $\pm$ | $\alpha^{5}$ | $\left(\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$ |
| $\alpha^{58}$ | 1 | $+$ | $\boldsymbol{\alpha}$ | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | $\left(\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$ |
| $\alpha^{59}$ | 1 |  |  | $+$ | $\alpha^{2}$ | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | $\left(\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 1\end{array}\right)$ |
| $\alpha^{60}$ | 1 |  |  |  |  | $+$ | $\alpha^{3}$ | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$ |
| $\alpha^{61}$ | 1 |  |  |  |  |  |  | $+$ | $\alpha^{4}$ | $+$ | $\alpha^{5}$ | (100011) |
| $\alpha^{62}$ | 1 |  |  |  |  |  |  |  |  |  | $\alpha^{5}$ | (100001) |
|  |  |  |  |  |  |  |  |  | $\alpha$ | $=$ |  |  |

## Appen.: Division circuit for dividing X(D) by G(D)

$\mathrm{X}(\mathrm{D})=\mathrm{x}_{0}+\mathrm{x}_{1} \mathrm{D}+\mathrm{x}_{2} \mathrm{D}^{2}+\ldots+\mathrm{x}_{\mathrm{n}-1} \mathrm{D}^{\mathrm{Dn}-1}$
$G(D)=g_{0}+g_{1} D+g_{2} D^{2}+\ldots+g_{n-k} D^{n-k}$


1) Input high order coefficients first
2) First output is coefficient of $D^{n-1}$ of quotient (always equal to zero but mentioned here to associate outputs with correct power of $D$ in quotient) and is present before first shift register clock pulse
3) First non-zero output occurs after $(n-k)^{\text {th }}$ clock pulse and is coefficient of $D^{n-k}$ in quotient
4) Last term of quotient appears at output after $(n-1)^{\text {th }}$ clock pulse and is coefficient of $\mathrm{D}^{\circ}$ in quotient
5) Shift register contains coefficients of remainder $r(D)=r_{0}+r_{1} D+\ldots r_{n-k-1} D^{n-k-1}$ from left to right after $n^{\text {th }}$ clock pulse

## Divider circuit using linear feedback shift register structure

$$
\begin{equation*}
G(D)=\frac{C(D)}{M(D)}=\frac{a_{0}+a_{1} D+a_{2} D^{2}+\cdots+a_{n} D^{n}}{1+f_{1} D+f_{2} D^{2}+\cdots+f_{n} D^{n}} \tag{28}
\end{equation*}
$$



