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2.1 Finite Fields

A field with only a finite number of elements is called a finite
field. Finite fields are also known as Galois fields after their
Inventor.

Most of the popular linear block codes , such as Hamming
codes. BCH codes and Reed-Solomin codes, are constructed
over the finite fields.

For any positive integer m =1 , there exists a Galois

field of 2™ elements, denoted GF(2™ ) . That is an extension

field of GF(2) which is the binary field.

Construction of GF(2™M )

(1) Begin with a primitive ( irreducible) polynomial p(x) of
degree m with coefficients from the binary field GF(2).

(2) Let a be the root of p(x), 1.e. p(a) =0

(3) Starting from GF(2) ={0,1) and a, we define a
multiplication operator *“. * to introduce a sequence
of power of 2 as follows :



0°0=0; 0°1=1'0=0,
1°1=1,

0 a=a0=0 ;
1'a=a ' 1=a;

a’=a’a

ed=a'a’a

We now have the following set of elements,
F={01,a,a®...}
which is closed under multiplication “”.



= Since q is a root of p(x) and p(x) divides x?"-7 +1, 2 must
also be aroot of x2"-1 +1.Hence a1 +1=0
This implies that @ MY =
As a result , F is finite and consists of following elements
F={0,1, @,a?, .., a*-? }
« Let @ =1.Multiplication is carried out as follows .
For 0 =i , j=2"-1,
gie gl = gt = gk
where k is the remainder resulting from dividing i+j by
o =1,
Since @i e @2 -l =g™i
a? -1 is called the multiplicative inverse of @' and vise
versa .
Also, 27" Fi= g1 o gi = g/

we can use - to denote the multiplicative inverse of ' . 4



= Next, we define “ division * operator as follows :
o-+o =0ao o) =0
» The ° addition “ operator on F is defined as follows .
For 0 =i =< 2m -2, dividing x' by p(x) yields
x'=a(x)px)+b(x)
where b (X) is the remainder and
b(x) =b, + bx+b,x%2 +...+b,  x™
Replacing x by a , we have
o =a(e)p(e) +b(@)=b,+b,a+b,a?+...+
bm-l a m-1

Therefore , each nonzero element in F can be expressed as a
polynomial of a with degree m-1 or less.

The “addition” of o' and o) is defined as
o +a =(by+dy)+(by+d)at+...+(byy + by )x™
where ol =d,+d,a+d,a? +...+d o™ =ak
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= Clearly,ol +o/ =0
Thus , “ subtraction “ is defined as follows.
o—ao =o'+ o
Hence , subtraction is the same as addition

= We conclude that F={0,1, a,0’ ...} together with the
multiplication and addition operators for afield of 2™
elements .

= There are three forms to represent the elements in GF (2™ )
(1) Power form ( easier to perform multiplication )
F=1{01,0,0%...}
(2) Polynomial form
o =by+bja+b,a’+...+b,  a™!
(3) Vector form ( easier to perform addition )
o =(by, by, by, ey byq)



Table B4 The Galois field GF(2*) generated by p;(X) =1+ X + X*

Exp. representation Polynomial representation Vector representation
0 0 0 000
1 | L 090
o o 0100
o’ o 0010
a’ o’ 0 0 01
o | +a L300
o’ @ +o R W
a® +a? 4o’ 04 T 1
a | +a +a? i 1.0 .1
o | +a? Lt e
i o +a? g 10 1
o' | +a +a° 1 110
all a +at +o R A
" | +a +&* +a’ S
ol 1 +a* 4o’ e T R |
au 1 +a3 0 ¢ 1 |




2.2 Primitive Polynomials and Minimal Polynomials

« A irreducible polynomial p(x) of degree m is said to be
primitive if the smallest positive integer n for which p(x)
divides x"+1 is n=2m-1.

« Forexample, 1+ x+x* isa primitive polynomial.
The smallest positive integer n for which 1 + x + x* divides
X"+l i1sn=15.

« For any positive integer m, there exists a primitive polynomial
of degree m .

« Example
M Primitive Polynomial p(x)
2 1+ X+ %2
3 1+ x+x3
4 1+ X+ x*
5 1+ x2+x°
6 1+x+x°
7 1+x3+x7



Consider the Galois field GF (2 ™ ) generated by the primitive
polynomial

PX=py+px+p,x?+..+p,  xm+xm
The element @ , which is a root of p(x) , whose powers

generate all the non-zero elements of GF (2™ ) is called a

primitive element of GF (2™ ). Usually, there may be more
than one primitive elements in a finite field GF (2™ ).

For example, a4 and a7 are also primitive elements of GF
™).
= Let. B be a non-zero element of GF (2™ ).

Consider the powers of S :
B EBA B e oE , o
“lfeis the smallest nonnegatlve Integerfor Wthh ,82 =Bine i
then the integer “ e “ is called the exponentof 3 o

= The minimal polynomial of the element /S is defined as

B =(x+ B)(x+ B2)(x+ BA)..(x+ BZ )




= Let f(x) be a polynomial defined over GF GF(2™ ). If an
element B of GF(2 ™) is a root of the polynomial f{(x),
then for

any positive integer A =0, g 2 is also a root of that
polynomial .

A
The elements S 2 are called conjugates of 5 .

Theorem 2.1:

If an element 8 of GF(2 ™) is a root of the polynomial f(x),
its conjugates are also elements of the same field and roots
of the same polynomial.
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= Theorem2.2:
The minimal polynomial y(x) of the element § of the
Galois field GF (2™ ) is a factor of x°™M+x
« Example:
The following table lists the minimal polynomials of all
elements of the Galois field GF (2 # ) generated by
p(X) = 1+x + x4 .

Conjugate roots Minimal polynomials
0 X
1 1+X
o0, at, ol 1+ x+x?
a3,0°, o, at? 1+ X+ X2+ X3+ x4
o, o'l 1+ X+ X2



2.3 Linear Block Codes
» Letthe message m=(m,, m,,..., m,_, ) be an arbitrary
K-tuple from GF (2) . The linear ( n, k) code over GF ( 2)
IS the set
2 K codewords of row vector form
C=(Cp,Cyseees €y ) » Where c;e GF (2)
The generator G of the code i1sa k x n matrix over GF (2) .
c=m G
The generator matrix can be expressed as
G=[919 - ol'

The rows of G are linearly independent since G is assumed
to have rank k.

= For a linear block code, the vector sum of two codewords Is
a codeword.
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« The generator matrix of an (n ,k) linear systematic code
can be expressed as

G=[l P]
where |, is the k x k identity matrix and P isa k x (n-k)
matrix.

= An(n,k)linear code C can also be specified by an ( n-k)
X k matrix H denoted as parity —check matrix .

Let ¢ =(¢qy, Cyye.ry €1 ) Dean n-tuple, then cisa
codeword

ifandonlyif c H=(0,0,...,0),, =0
The parity-check matrix can be expressed as
H = [ PT | n-k ]
It Is noted that many solutions for H are possible for any
given generator matrix G .
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Example : Hamming code

« Hamming codes are the first class of binary linear block
code discovered by R.W. Hamming in 1950.

« For any positive integer m = 3, there exists a Hamming
code with the following parameters :

block code length n=2™ -1
message length k=2™ -1-m

minimum Hamming distance d_;, =3
error-correction capability t=1.
Fora(7,4) Hamming code
1000 101 1110100
0100 111 H=[ 0111010 ]
G=[ 1101001 ] 0010110

0001 011
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2.4 Cyclic Codes

= An (n,K) linear code C is called a cyclic code if any cyclic
shift of a codeword is another codeword .

In polynomial form
C(X)=Cy+CX+C X2 +... .+ XM
CO(X) =Cpj+ CrjraX + Cpjra X+ oo e XM
Cyclic structure makes the encoding and syndrome
computation very easy.

2.4.1 Generator Polynomial

« Every nonzero code polynomial c(x) in C must have degree
at least n-k but not greater than n-1 . There is one and only
one nonzero generator polynomial g(x) for a cyclic code.
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|t can be shown that the generator polynomial g(x) of an
(n ,k) cyclic code is always a polynomial factor of the

polynomial
XN—1,0r x"+1 .
9(X) = 1+ 0aX + g X% +oon g g X M+ x MK
Since g(x) divides x"—1 , it follows that
x"—1=h(x) g(x)
where h(xX) = hy+ hx +h,x2 +... + h XK
and hy=h,=1
h(x) is called the parity polynomial of the (n, k) cyclic
code.
= The message polynomial is expressed as
m(x) =my+mX+mx2+...+m_ xK?:
Then , the product m(x)g(x) is the polynomial representing
the code word polynomial of degree n-1 or less.
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In general, c¢(x) and ¢ (x) are related by the formula
cl)(x) = x/ ¢(x) mod (x "= 1)

We can see that
cW (x) = xI m(x)g(x) mod (x"—=1)= m! (x) g(x)

2.4.2 Encoding of Cyclic Codes

» Consider an ( n ,k) cyclic code with generator polynomial g(x)
Suppose m = (mgy, my,..., m,_, ) IS the message to be encoded.

m(x) =my+mX+mX?2+...+m x*1
Multiplying m(x) by x ™k and the dividing by g(x) , we obtain
X M m(x) = q(x) g(x) + p(x)
where p(X) = pg+ pX+pP,X2+...+p, XK
IS the remainder .
Then p(x) +x "« m(x) =g(x)g(x) is a multiple of g(x) and has
degree n-1. Hence it is the code polynomial for the message.
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= Note that
p(x) +x ™ m(x)
= Po+ PX+PX 2+ AP X R+
MX"™ K + mxnk + L+ my  x K-

The code polynomial is in systematic form where p(x) is the
parity-check part .

« The encoding can be implemented by using a division circuit
consisting of shift registers and feedback connections based on
the generator polynomial g(x) ,as show below Fig.2.1) .

= In the figure the right-most symbol is the first symbol to enter the
encoder. The gate is turned on until all information digits have
been shifted into the circuit.
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Fig.2.1 Encoding circuit based on g(x)

g —’Q? g —’Q? o1 —’Q? CoC1++Cat

gatfe
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Example : Encoding of cyclic (7,4) Hamming code
g(x) = 1+x 2+x 3 , message bits m = (1001)

Information bits

-

—— i ———— + 1
Code word
_::rz
Gate (=
After ith shift
Shift no. i Gate Register contents Output
0 On 000 1
1 On 101 01
2 On 1 11 001
3 On 110 1001
4 Off 110 01001
5 Off 011 301001
6 Off 001 1 1201001




= It can be shown that cyclic codes can also be generated by using
the parity polynomial h(x),where h(x) = hy+hx+h,x? +...
+h, xk,

= The k-stage shifter-register encoder based on h(x) is shown in
Fig.2.2.

——» C(CpeCpy
mym,...m, ,

—> gate 1 ——%—> > > o — >

2] Ba~®  ham® o B Ren
! & . S 3
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2.5 Syndrome Computation

» Letc(x)and r(x) be the transmitted code polynomial and
received polynomial, respectively.

Dividing r(x) by the generator polynomial g (x) , we have
r(x) = q(x) g(x) + s(x)

where s(x) is the remainder and
S(X) = Sp+ S X+S,X2 + ... +s,, XK1

Then s(x) Is the syndrome polynomial of r(x).

The received polynomial r(x) is a code polynomial if and

only if s(x) =0.

= Syndrome computation can be done by a division circuit
shown in Fig.2.3.

As soon as the entire r(x) has been shifted into the
register , the contents in the register form the s(x) .
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Fig. 2.3 Syndrome Computation Circuit

S0

r(@—»@—»

i

g0=1—>®

g~

g, >

gate
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Example : Syndrome circuit for a (7,4) cyclic code with g(x) = 1+ x +x3
Received sequence r=(1001000)

Gate

2

T T

So S, S5

Register contents

» S22

4
$
0

Input

Shift no.

NHOORNANAWN-O
C0000KOONO00 |
MROMOOOONMO000
ORMMOMONOO000
MEROMOMOO0000

o o




= Since r(Xx) =c(x) +e(x)
and also r(x) = q(x) g(x) + s(x)
we have e(X) =r(x) + c(x)
= q(x)g(x) + s(x) +c(x)
= q(x) g(x) + s(x) + m(x) g(X)
= [ a(x) + m(x) ] g(x) + s(x)
or s(X) = e(x) mod g(x)
Hence the syndrome polynomial s(x) is also the remainder
that results from dividing e(x) by g(x) .
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Table 2.1

Galois field GF(2°) constructed by using the primitive polynomial

1+x2+x°

p(x)

5-tuple representation

Field element (polynomial notation)

CO000HOOHMOMMOOMMMMMOOOHHO MM MO~ w
COCOHOOMOMHOOHMMAMMOOOMMOMMMO MO MO
COOHMOOHOMMOO MMM MMOOOMHCHMMEmMOMEO
COMHOOOO MO OO MHMOO M MMM MOOOM™MO mmm® -

01000010010110011111000110111010

A
4a 4a 4o 40 qa ca 4o 4a ca - 4a 4a .a ca ca
=+=u+ B i o TR
ne n n"
¢ ut aoaea " aaa CI
. A u+ +++++ bkt 4 4
2 NN N LR
© 0 "oy 8% 0 0% % %
L X T LR X S
¢ ¥ Bs¥  sEEul CRC
' 44 44
-~ ~ o Ll R o o -

fARbronnennennngbnsrnsnnny
nonveenanlitqraenaogannzatiagg

Olaaaaaaaaaaaaaaua&aacaaaaaaaaaa




Table 2.2 Minimal polynomials of the elements in GF(2°)

Elements Minimal polynomials

a, o2, ot al0, o2 14X 4%

Ol3, Ot6 a12a24’ Ot480133 14+ X4 X2 i X4 s X6

Ots, O110’ a20’ 0140, 0117,0134 T Xk X2 e XS o X6

0(7, 0{14, C228, a56, a49, 0135 ¥k X3 4 X6

o, o8, o3 I+ Xep %

Otll, C¥22, (X44, a25’ CYSO, a37 A X2 ek X3 % X5 - X6
(X13, C¥26, a52’ Ol4l, a19, a38 ] A X3 5 X4 T X6

alS,a30’ 0160, 0157, aSl’ 0139 14 X2 e X4 i XS =% X6
a2l o% 14 ¥4 X5

a23’ a46’ O[29,(158, OlS3, Ol43 1 d X s X4 . XS o X6

Ot27, a54, a45 1 L ¥ X3

Bl g6 Gl B s Ty
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Table 2.3

Galois field GF(2°) constructed by using the primitive polynomial
pP(X) =1 +x + x°

0 (000000)
1 (100000)
o (010000)

a? (001000)

a3 (000100)

ot (000010)

o (000001)

1 4+ « (110000)
2 | (011000)
a? 4+ o (001100)
a® +at (000110)

5 (000011)
o’ (110001)
(101000)

3 (010100)
(001010)
a3 o (000101)
+ ot (110010)

4+ & (011001)

3 (111100)
a® 4ot (011110)
a? +a*t 4+ @ (001111)

VN LA WD
R
4
R

RRRRRRRRR O

5
R
PN
+ +
R

0
ok
.I.
R

—
\.}
-
+
R
8]

oy
W

R

R

e
wnh &
R
)
.+_
R
I

A
.
+ 4
R R R R
+ 4+ +

QQHQQQQQQQQQ
\O

R RRR

NN NN

+ 4+
R

[\
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: (continued)

TABLE 6.2

)))))))))))))))
100101101110110

1101000111001001011011101100
1010001110010010110111011001
0100011100100101101110110011
1000111001001011011101100110
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Agpen.: Division circuit for dividing X(D) by G(D)

X(D) =

G(D) =

Xo+ XD +x,D?+ ...+ x D™
dot 94D +g,D*+ ...+ g, D™

Output
q (D)

- oW .
Bo £, g5 g? 85 &gn-k—l#\gn -k
in—k

=% 2 L—’@" 3 + ooo—»@—'

Input

Xgr -+

re X2 0 X1
1) Input high order coefficients first
2) First output is coefficient of D"~ ! of quotient ( always equal to zero but mentioned

here to associate outputs with correct power of D in quotient) and is present before
first shift register clock pulse

3) First non- zero output occurs after (n—k)'™ clock pulse and is coefficient of D" % in
quotient

4) Last term of quotient appears at output after (n—1 )8 clock pulse and is coefficient
of D% in quotient

5) Shift register contains coefficients of remainder r(D) = ry+ r, D, .. .r"__k_lD""‘"1
from left to right after n'" clock pulse
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Divider circuit using linear feedback shift register structure

G(D):: C(D) - a0+alD+agD2—+—-..+anDn

(23)

M(D)F 1+le+f2D2+...+ann
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