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2.1   Finite Fields 

 A field is a set of elements F for which  addition, multipication, 
subtraction and division performed with its elements  result in 
another elements of the same set.Addition and multiplication 
operations satisfy the commutative and distributive laws. 

    For example , the system  of real number is a field , called real 
number field . 

 A field with only a finite  number of elements is called a finite  

     field. Finite fields are also known as  Galois fields after their  

     inventor. 

 The set { 0, 1 } together with moduo-2 addition and 
multiplication is called  binary field , denoted GF(2) . 

    Binary field  is a special case of finite field with two elements.. 

 Most of the popular linear block codes , such as Hamming 
codes , BCH codes and Reed-Solomon codes, are constructed 
over the finite fields. 
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2.1.1 Binary Irreducible Polynomials 

 A polynomial with coefficients from the binary field GF(2) 

is called  a binary polynomial. 

 A binary polynomial of degree m is called p(x) is called 

irreducible if it is not divisible by any binary  polynomial 

of degree  less than m and greater than zero . 

     For example , 1 + x + x2   , 1 + x + x3  , and 1 + x + x5  are 

irreducible polynomials. 

 For any positive integer  m ≧ 1 , there exists at least one 

irreducible polynomial of degree m. 

 An irreducible  polynomial  p(x) of degree m is said to be 

primitive if the smallest positive integer n  for which  p(x) 

divides  xn  + 1  is n = 2m  -1 . 
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• For any positive integer m, there exists a primitive 

polynomial of degree m . 

• Example       

            M              Primitive Polynomial  p(x) 

            2                   1 + x + x2  

                   3                   1 + x + x3 

            4                    1 + x + x4 

            5                     1 + x2 + x 5 

            6                    1 + x + x 6 

            7                    1 + x3 + x 7 
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2.1.2  Construction of GF(2m) 
 For any positive integer  m ≧ 1  , there exists a Galois  

     field of   2m  elements , denoted  GF(2m  ) . That is an extension  

     field of GF(2). 

 In general  Galois field  GF(2m  ) can be constructed from 

     binary field as follows. 

     (1)  Begin with a primitive ( irreducible)   polynomial  p(x)  

            of  degree m with coefficients from the binary field GF(2). 

     (2)  Let α be the root of  p(x) , i.e. p(α) = 0 

     (3)  Starting from  GF(2) = { 0 ,1 ) and  α , we define  a   

           multiplication operator “ . “ to introduce a sequence  

           of power of 2  as follows :  
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      0 ˙ 0 = 0  ;   0 ˙ 1 =  1 ˙ 0 = 0 ; 

           1 ˙ 1 = 1 , 

           0 ˙ α = α ˙0 = 0  ; 

           1 ˙ α = α ˙ 1 = α ; 

         α2  = α ˙ α 

         α3  = α ˙ α ˙ α 

                . 

                . 

                . 

        αj  = α ˙ αj -1    ;    αi˙ αj     = αi + j 

 

  We now have the following set of elements , 

        F =  { 0,1 , α ,α2  … } 

  which is closed under  multiplication “˙” .    
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 Next , we define “ division “ operator as follows :  

      αi  ÷ αj   =  αi ˙ α- j   = αi – j 

 The  „ addition “ operator on F  is defined as follows . 

      For  0 ≦ i   ≦ 2m  -2 , dividing  x i  by p(x) yields 

         x i  = a (x ) p(x) + b (x)  

     where b (x) is the remainder and  

        b(x) = b0 + b1x + b2 x 2  + … + bm-1 x m-1 

    Replacing x by α , we have 

       αi  = a(α) p(α) + b (α) = b0 + b1 α + b2 α 2  + … + 

                 bm-1 α m-1  

     Therefore , each nonzero  element  in F can be expressed as  a 
polynomial of α with degree m-1 or less. 

    The “addition”   of  αi  and αj  is defined as 

      αi  + αj   = ( b0 + d0 ) + ( b1 + d1 ) α + … + ( bm-1   +  bm-1   ) x m-1   

      where αj = d0 + d1 α + d2 α 2  + … + dm-1 α m-1    = α k 
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 Clearly , αj  + αj   = 0 
       Thus , “ subtraction “ is defined as follows. 

        αi – αj  = αi + αj   

        Hence , subtraction is the same as addition 

 We conclude that   F = { 0,1 , α ,α2  … } together with the 
multiplication and addition operators  for a field  of  2 m    
elements .  

 There are three forms to represent the elements in GF (2 m  )   

      (1 ) Power form ( easier to perform  multiplication ) 

              F =  { 0,1 , α ,α2  … } 

      (2)  Polynomial form 

             αi  = b0 + b1 α + b2 α 2  + … + bm-1 α m-1  

      (3) Vector form ( easier to perform addition ) 

             αi   = (  b0 , b1 , b2 , …, bm-1 ) 
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Galois field GF ( 24) generated by  p (x) = 1 +x +x4  
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   We assume thatβ is an element in GF(2m ) and  f(x) is a 

polynomial  with coefficients from GF(2).  

    Then for any positive integer λ ≧ 0 ,           is also a root  

     of  f(x) .  

     The elements          are  called conjugates of β. 
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Table   :Minimal polynomials of the elements in GF(24) 
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2.3  Linear Block Codes 

2.3.1 Generation of Linear Block Codes 

 Let the message  m = ( m0 , m1 ,…, mk-1  )  be an arbitrary 

     k-tuple from GF (2 )  .  

     The linear ( n, k)  code over GF ( 2)  is the set of  2 k   

      codewords in row vector form   

         c = ( c0 , c1 ,…, cn-1  )  , where   cj ε GF (2) 

     The generator G of the code  is a  k x n  matrix  over GF (2) .  

         c =  m ˙ G 

     The generator matrix can be expressed as  

         G = [  g1   g2    …       gk ] 
T 

     The rows of  G  are linearly independent since G  is assumed 
to have   rank  k . 

 For a  linear block code,  the vector sum of two codewords is  
a codeword. 
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 The generator matrix of  an  (n ,k ) linear systematic code 

can be expressed as 

          G = [ Ik   P ]  

     where Ik  is the  k x k identity matrix  and P is a  k x (n-k)  

     matrix. 

 An ( n , k ) linear code  C  can also be specified by an ( n-k) 

x k matrix H  denoted as  parity –check matrix . 

    Let  c = ( c0 , c1 ,…, cn-1  )  be an n-tuple , then  c is a 

codeword 

     if and only if   c˙ H =  ( 0  , 0 ,… , 0 )n-k       =  0  

      The parity-check matrix can be expressed as  

            H  =  [ PT   I n-k  ]   

      It is noted that  many solutions for H  are possible for any 

given generator matrix G . 
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2.3.2   Error-Correcting Capability  of Linear  

           Block Codes 

  Hamming weight  

      Let  c = ( c0 , c1 ,…, cn-1  )  be an n-tuple codeword.  

     The Hamming weight of c  denoted byw(c) , is defined as  

     the  number of nonzero components of  c.   

 Hamming distance 

      Let  u anv are two binary n-tuple words, . The hamming 
distance between u and v , denoted by d (u,v) , is defined as 
the number of positions in which they differ from each 
other. 

 Example : 

    If      u= (100110 1)   v = (1101110 ) 

     we have       w (u ) = 4 ,   w (v) = 5 ,             

                          d(u,v) = 3 
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 Minimum distance of a code 

     If we compute the Hamming distances between all possible 

     pairs of  code words, the  smallest value of the Hamming 

    distance for all pairs of  code words is called the minimum 

     distance of the code. 

     The minimum distance , designated  by  dmin  , is defined 

      as follows :  

              dmin = min { d (u,v)  : u ≠ v , u, v ε C } 

 For a (n ,k  ) linear block code  

              dmin ≦ n-k-1  

           In order for an (n ,k ) linear code to correct t errors , we 
must find a code with a minimum distance that satisfies  

            dmin ≧ 2 t +1  

 Any ( n,k)  linear code with minimum distance 2t+1 is 
called a perfect code.  

    Hamming codes and Golay codes are perfect codes.               
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2.3.3  Hamming Codes and Golay Codes 

 Hamming codes are the first class of binary linear block  

    code  discovered by R.W. Hamming in 1950. 

    For any positive integer  m ≧ 3 , there exists a Hamming 

code with the following parameters : 

       block code length  n = 2 m  -1  

        message length    k = 2 m  -1 – m  

        minimum Hamming distance   dmin   = 3 

       error-correction capability    t =1 . 

    For a ( 7 ,4 )  Hamming code  

 

               1000 101                                  1110100 

               0100 111                     H =  [    0111010   ] 

     G = [  1101 001     ]                            0010110    

                0001 011 
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 The Golay code , introduced in 1949 by the Swiss  

mathematician Marcel Golay  , is a  triple-error-correcting 

binary linear  code (23 ,12 )  with  dmin  = 7 . 

    The generator polynomial of the (23,12 ) Golay  code is   

           g(x) = 1+ x + x5+ x6+ x7+ x9 + x11 

 The (23, 12 ) Golay code can be extended by adding an 

overall  parity-check bit such that each codeword has even 

parity. This extension results in a (24,12 ) code with  

    dmin  = 8 . This code is capable of correcting all patterns of 

three or fewer errors  and detecting all error patterns of 

four errors. 
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2.4  Cyclic Codes  

 An  (n,k) linear code C  is  called a cyclic code if any cyclic 

shift of a codeword is another codeword . 

     In polynomial form  

          c(x) = c0 + c1x + c2x 2  + … + cn-1x n-1 

          c(j) (x) = cn- j + cn-j+1x + cn- j+2 x 2  + … + cn- j-1 x n-1 

    Cyclic structure makes the encoding and syndrome 

computation very easy. 

 

2.4.1 Generator Polynomial 

 Every nonzero code polynomial c(x) in C must have degree 

at least n-k  but not greater than n-1 . There is one and 

only one nonzero generator polynomial g(x) for a cyclic 

code. 
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• It can be shown that the generator polynomial g(x) of an 
(n ,k ) cyclic code is always a polynomial factor of the 
polynomial  

       x n – 1 , or  x n +1  . 

       g(x) =  1 + g1x + g2 x 2  + … + gn-k-1 x n-k-1  + x n-k 

     Since g(x) divides  x n – 1  , it follows that 

        x n – 1 = h(x) g(x) 

      where  h(x) =  h0 + h1x + h2 x 2  + … + hk x k  

       and   h0 = hk = 1 

     h(x) is called  the parity polynomial of the  (n , k) cyclic 

     code.       

 The message polynomial  is expressed as 

      m(x) = m0 + m1x + m2x 2  + … + mk-1 x k -1  

     Then , the product  m(x)g(x) is the polynomial representing 
the code word polynomial of degree n-1 or less. 
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  In general, c(x) and c(j) (x) are related  by the formula 

          c(j) (x) = x j  c(x) mod (x n – 1 ) 

    We can see that 

          c(j) (x) = x j  m(x)g(x)  mod (x n – 1 ) =  m j  (x)  g(x) 

 

2.4.2   Encoding of Cyclic Codes 

 Consider an ( n ,k ) cyclic code with generator polynomial g(x)  
Suppose   m = ( m0 , m1 ,…, mk-1  )  is the message  to be encoded. 

         m(x) = m0 + m1x + m2x 2  + … + mk-1 x k -1  

     Multiplying m(x)  by  x n-k   and the dividing by g(x) ,  we obtain  

         x n-k  m(x) = q(x) g(x) + p(x)  

       where   p(x) =  p0 + p1x + p2 x 2  + … + pn-k-1 x n-k -1   

           is the remainder . 

    Then  p(x) +x n-k  m(x)  = q(x)g(x)  is a multiple of g(x) and has 
degree  n-1.  Hence it is the code polynomial for the message. 
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 Note that  

     p(x) + x n-k  m(x)   

      = p0 + p1x + p2x 2  + … + pn-k-1x n-k -1 +  

         m0x
n-k  + m1x

n-k+1 + … + mk-1x k -1  

      

    The code polynomial  is in systematic form where  p(x) is the   

parity-check part . 

 The encoding can be implemented by using a division circuit 

consisting of shift registers and feedback connections  based on 

the  generator polynomial g(x) ,as show below Fig.2.1) . 

 In the figure the right-most symbol is the first symbol to enter the 

encoder. The gate is turned on until all information digits have 

been shifted into the circuit. 
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Fig.2.1  Encoding circuit based on g(x) 
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   Example : Encoding of  cyclic  (7,4) Hamming code 
                           g(x) = 1+x 2+x 3                    , message bits   m =   (1001) 
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 It can be shown that cyclic codes can also be generated by using 

the parity polynomial  h(x) , where  h(x) =  h0 + h1x + h2 x 2  + … 

+ hk x k . 

 The k-stage  shifter-register encoder based on h(x) is shown in 

Fig.2.2 . 
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2.5   Syndrome Computation 

 Let c(x)and  r(x) be the transmitted code polynomial and 

received  polynomial, respectively. 

     Dividing  r(x) by the generator polynomial g (x) , we have  

          r(x) = q(x) g(x) + s(x) 

     where   s(x) is  the remainder  and 

          s(x) =  s0 + s1x + s2x 2  + … + sn-k-1x n-k -1  

    Then  s(x)  is the syndrome polynomial of  r(x). 

    The received polynomial r(x) is a code polynomial if and 

only if  s(x) = 0. 

 Syndrome computation can be done by a division circuit 

shown in Fig.2.3 .   

    As soon as the  entire r(x) has been shifted into the  

register , the contents  in the register form the   s(x) . 
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Fig. 2.3  Syndrome Computation Circuit 
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  Example  : Syndrome circuit  for a (7,4) cyclic code    with g(x) = 1+ x +x3 

                           Received sequence   r = ( 1001000 ) 
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 Since   r(x) = c(x) + e(x) 

    and also  r(x) = q(x) g(x) + s(x) 

     we have  e(x) = r(x)  + c(x) 

                            =  q(x)g(x) + s(x) +c(x) 

                            =  q(x) g(x) + s(x) + m(x) g(x) 

                            = [ q(x) + m(x) ] g(x) + s(x) 

      or              s(x) = e(x) mod g(x)  

    Hence the syndrome polynomial s(x)  is also the remainder 

that results from dividing e(x) by g(x) . 
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Table 2.1 

      Galois field  GF(25) constructed by using the primitive polynomial   

      p(x) = 1 +x2 + x5 
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Table 2.2   Minimal polynomials of the elements in GF(26) 
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    Table 2.3 

    Galois field  GF(26) constructed by using the primitive polynomial  

    p(x) = 1 +x + x6 
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Appen.:  Division circuit for dividing  X(D)  by G(D) 

     X(D) = x0+  x1D + x2D
2 + …+ xn-1D

n-1 

        G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k 
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Divider circuit using linear feedback shift register  structure 
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Binary primitive polynomials of degree m 

 

   m                            minimal polynomial        

   2                             x2+x + 1 

   3                             x3+x + 1  , x3+x2 + 1 

   4                             x4+x + 1 ,  x4 +x3 + 1 , x4 +x3+x2+x + 1 

   5                             x5 +x2+ 1 , x5 +x2+ 1 , x5 + x4 +x3+x2+ 1 

   6                             x6 +x+ 1 , x6 +x3+ 1 ,   x6 +x5+ 1 ,   

   7                             x7 +x3+ 1  

   8                             x8+ x4 +x3+x2+ 1 

   9                             x9 +x4+ 1  

   10                           x10+x3+ 1  

 

 

 


