
1

 Chapter 2

 Finite Field and Linear Block Codes

2.1 Finite Fields

2.2 Primitive Polynomials and Minimal Polynomials

2.3 Linear Block Codes

2.4 Cyclic Codes

2.5 Syndrome Computation

References:
Lin, S. and Costello Jr. D.J. , Error Control Coding , Pearson Prentice Hall , 2004.

Castineira, J., and Farrel, P.G. , Essential of Error-Control Coding , Wiley, 2006

2

2.1 Finite Fields

 A field is a set of elements F for which addition, multipication,
subtraction and division performed with its elements result in
another elements of the same set.Addition and multiplication
operations satisfy the commutative and distributive laws.

 For example , the system of real number is a field , called real
number field .

 A field with only a finite number of elements is called a finite

 field. Finite fields are also known as Galois fields after their

 inventor.

 The set { 0, 1 } together with moduo-2 addition and
multiplication is called binary field , denoted GF(2) .

 Binary field is a special case of finite field with two elements..

 Most of the popular linear block codes , such as Hamming
codes , BCH codes and Reed-Solomon codes, are constructed
over the finite fields.

3

2.1.1 Binary Irreducible Polynomials

 A polynomial with coefficients from the binary field GF(2)

is called a binary polynomial.

 A binary polynomial of degree m is called p(x) is called

irreducible if it is not divisible by any binary polynomial

of degree less than m and greater than zero .

 For example , 1 + x + x2 , 1 + x + x3 , and 1 + x + x5 are

irreducible polynomials.

 For any positive integer m ≧ 1 , there exists at least one

irreducible polynomial of degree m.

 An irreducible polynomial p(x) of degree m is said to be

primitive if the smallest positive integer n for which p(x)

divides xn + 1 is n = 2m -1 .

4

• For any positive integer m, there exists a primitive

polynomial of degree m .

• Example

 M Primitive Polynomial p(x)

 2 1 + x + x2

 3 1 + x + x3

 4 1 + x + x4

 5 1 + x2 + x 5

 6 1 + x + x 6

 7 1 + x3 + x 7

5

2.1.2 Construction of GF(2m)
 For any positive integer m ≧ 1 , there exists a Galois

 field of 2m elements , denoted GF(2m) . That is an extension

 field of GF(2).

 In general Galois field GF(2m) can be constructed from

 binary field as follows.

 (1) Begin with a primitive (irreducible) polynomial p(x)

 of degree m with coefficients from the binary field GF(2).

 (2) Let α be the root of p(x) , i.e. p(α) = 0

 (3) Starting from GF(2) = { 0 ,1) and α , we define a

 multiplication operator “ . “ to introduce a sequence

 of power of 2 as follows :

6

 0 ˙ 0 = 0 ; 0 ˙ 1 = 1 ˙ 0 = 0 ;

 1 ˙ 1 = 1 ,

 0 ˙ α = α ˙0 = 0 ;

 1 ˙ α = α ˙ 1 = α ;

 α2 = α ˙ α

 α3 = α ˙ α ˙ α

 .

 .

 .

 αj = α ˙ αj -1 ; αi˙ αj = αi + j

 We now have the following set of elements ,

 F = { 0,1 , α ,α2 … }

 which is closed under multiplication “˙” .

7

8

9

10

 Next , we define “ division “ operator as follows :

 αi ÷ αj = αi ˙ α- j = αi – j

 The „ addition “ operator on F is defined as follows .

 For 0 ≦ i ≦ 2m -2 , dividing x i by p(x) yields

 x i = a (x) p(x) + b (x)

 where b (x) is the remainder and

 b(x) = b0 + b1x + b2 x 2 + … + bm-1 x m-1

 Replacing x by α , we have

 αi = a(α) p(α) + b (α) = b0 + b1 α + b2 α 2 + … +

 bm-1 α m-1

 Therefore , each nonzero element in F can be expressed as a
polynomial of α with degree m-1 or less.

 The “addition” of αi and αj is defined as

 αi + αj = (b0 + d0) + (b1 + d1) α + … + (bm-1 + bm-1) x m-1

 where αj = d0 + d1 α + d2 α 2 + … + dm-1 α m-1 = α k

11

 Clearly , αj + αj = 0
 Thus , “ subtraction “ is defined as follows.

 αi – αj = αi + αj

 Hence , subtraction is the same as addition

 We conclude that F = { 0,1 , α ,α2 … } together with the
multiplication and addition operators for a field of 2 m
elements .

 There are three forms to represent the elements in GF (2 m)

 (1) Power form (easier to perform multiplication)

 F = { 0,1 , α ,α2 … }

 (2) Polynomial form

 αi = b0 + b1 α + b2 α 2 + … + bm-1 α m-1

 (3) Vector form (easier to perform addition)

 αi = (b0 , b1 , b2 , …, bm-1)

12

Galois field GF (24) generated by p (x) = 1 +x +x4

13

14

 We assume thatβ is an element in GF(2m) and f(x) is a

polynomial with coefficients from GF(2).

 Then for any positive integer λ ≧ 0 , is also a root

 of f(x) .

 The elements are called conjugates of β.

15

Table :Minimal polynomials of the elements in GF(24)

16

2.3 Linear Block Codes

2.3.1 Generation of Linear Block Codes

 Let the message m = (m0 , m1 ,…, mk-1) be an arbitrary

 k-tuple from GF (2) .

 The linear (n, k) code over GF (2) is the set of 2 k

 codewords in row vector form

 c = (c0 , c1 ,…, cn-1) , where cj ε GF (2)

 The generator G of the code is a k x n matrix over GF (2) .

 c = m ˙ G

 The generator matrix can be expressed as

 G = [g1 g2 … gk]
T

 The rows of G are linearly independent since G is assumed
to have rank k .

 For a linear block code, the vector sum of two codewords is
a codeword.

17

 The generator matrix of an (n ,k) linear systematic code

can be expressed as

 G = [Ik P]

 where Ik is the k x k identity matrix and P is a k x (n-k)

 matrix.

 An (n , k) linear code C can also be specified by an (n-k)

x k matrix H denoted as parity –check matrix .

 Let c = (c0 , c1 ,…, cn-1) be an n-tuple , then c is a

codeword

 if and only if c˙ H = (0 , 0 ,… , 0)n-k = 0

 The parity-check matrix can be expressed as

 H = [PT I n-k]

 It is noted that many solutions for H are possible for any

given generator matrix G .

18

2.3.2 Error-Correcting Capability of Linear

 Block Codes

 Hamming weight

 Let c = (c0 , c1 ,…, cn-1) be an n-tuple codeword.

 The Hamming weight of c denoted byw(c) , is defined as

 the number of nonzero components of c.

 Hamming distance

 Let u anv are two binary n-tuple words, . The hamming
distance between u and v , denoted by d (u,v) , is defined as
the number of positions in which they differ from each
other.

 Example :

 If u= (100110 1) v = (1101110)

 we have w (u) = 4 , w (v) = 5 ,

 d(u,v) = 3

19

 Minimum distance of a code

 If we compute the Hamming distances between all possible

 pairs of code words, the smallest value of the Hamming

 distance for all pairs of code words is called the minimum

 distance of the code.

 The minimum distance , designated by dmin , is defined

 as follows :

 dmin = min { d (u,v) : u ≠ v , u, v ε C }

 For a (n ,k) linear block code

 dmin ≦ n-k-1

 In order for an (n ,k) linear code to correct t errors , we
must find a code with a minimum distance that satisfies

 dmin ≧ 2 t +1

 Any (n,k) linear code with minimum distance 2t+1 is
called a perfect code.

 Hamming codes and Golay codes are perfect codes.

20

2.3.3 Hamming Codes and Golay Codes

 Hamming codes are the first class of binary linear block

 code discovered by R.W. Hamming in 1950.

 For any positive integer m ≧ 3 , there exists a Hamming

code with the following parameters :

 block code length n = 2 m -1

 message length k = 2 m -1 – m

 minimum Hamming distance dmin = 3

 error-correction capability t =1 .

 For a (7 ,4) Hamming code

 1000 101 1110100

 0100 111 H = [0111010]

 G = [1101 001] 0010110

 0001 011

21

 The Golay code , introduced in 1949 by the Swiss

mathematician Marcel Golay , is a triple-error-correcting

binary linear code (23 ,12) with dmin = 7 .

 The generator polynomial of the (23,12) Golay code is

 g(x) = 1+ x + x5+ x6+ x7+ x9 + x11

 The (23, 12) Golay code can be extended by adding an

overall parity-check bit such that each codeword has even

parity. This extension results in a (24,12) code with

 dmin = 8 . This code is capable of correcting all patterns of

three or fewer errors and detecting all error patterns of

four errors.

22

2.4 Cyclic Codes

 An (n,k) linear code C is called a cyclic code if any cyclic

shift of a codeword is another codeword .

 In polynomial form

 c(x) = c0 + c1x + c2x 2 + … + cn-1x n-1

 c(j) (x) = cn- j + cn-j+1x + cn- j+2 x 2 + … + cn- j-1 x n-1

 Cyclic structure makes the encoding and syndrome

computation very easy.

2.4.1 Generator Polynomial

 Every nonzero code polynomial c(x) in C must have degree

at least n-k but not greater than n-1 . There is one and

only one nonzero generator polynomial g(x) for a cyclic

code.

23

• It can be shown that the generator polynomial g(x) of an
(n ,k) cyclic code is always a polynomial factor of the
polynomial

 x n – 1 , or x n +1 .

 g(x) = 1 + g1x + g2 x 2 + … + gn-k-1 x n-k-1 + x n-k

 Since g(x) divides x n – 1 , it follows that

 x n – 1 = h(x) g(x)

 where h(x) = h0 + h1x + h2 x 2 + … + hk x k

 and h0 = hk = 1

 h(x) is called the parity polynomial of the (n , k) cyclic

 code.

 The message polynomial is expressed as

 m(x) = m0 + m1x + m2x 2 + … + mk-1 x k -1

 Then , the product m(x)g(x) is the polynomial representing
the code word polynomial of degree n-1 or less.

24

 In general, c(x) and c(j) (x) are related by the formula

 c(j) (x) = x j c(x) mod (x n – 1)

 We can see that

 c(j) (x) = x j m(x)g(x) mod (x n – 1) = m j (x) g(x)

2.4.2 Encoding of Cyclic Codes

 Consider an (n ,k) cyclic code with generator polynomial g(x)
Suppose m = (m0 , m1 ,…, mk-1) is the message to be encoded.

 m(x) = m0 + m1x + m2x 2 + … + mk-1 x k -1

 Multiplying m(x) by x n-k and the dividing by g(x) , we obtain

 x n-k m(x) = q(x) g(x) + p(x)

 where p(x) = p0 + p1x + p2 x 2 + … + pn-k-1 x n-k -1

 is the remainder .

 Then p(x) +x n-k m(x) = q(x)g(x) is a multiple of g(x) and has
degree n-1. Hence it is the code polynomial for the message.

25

 Note that

 p(x) + x n-k m(x)

 = p0 + p1x + p2x 2 + … + pn-k-1x n-k -1 +

 m0x
n-k + m1x

n-k+1 + … + mk-1x k -1

 The code polynomial is in systematic form where p(x) is the

parity-check part .

 The encoding can be implemented by using a division circuit

consisting of shift registers and feedback connections based on

the generator polynomial g(x) ,as show below Fig.2.1) .

 In the figure the right-most symbol is the first symbol to enter the

encoder. The gate is turned on until all information digits have

been shifted into the circuit.

26

Fig.2.1 Encoding circuit based on g(x)

g
1

g
2

g
n-k-1

gate

c
0
c

1
...c

n-1

m0m1...mk-1



27

 Example : Encoding of cyclic (7,4) Hamming code
 g(x) = 1+x 2+x 3 , message bits m = (1001)

28

 It can be shown that cyclic codes can also be generated by using

the parity polynomial h(x) , where h(x) = h0 + h1x + h2 x 2 + …

+ hk x k .

 The k-stage shifter-register encoder based on h(x) is shown in

Fig.2.2 .

hk-1gate 2



h0h1





gate 1

hk-2

m0m1...mk-1

c0c1...cn-1

29

2.5 Syndrome Computation

 Let c(x)and r(x) be the transmitted code polynomial and

received polynomial, respectively.

 Dividing r(x) by the generator polynomial g (x) , we have

 r(x) = q(x) g(x) + s(x)

 where s(x) is the remainder and

 s(x) = s0 + s1x + s2x 2 + … + sn-k-1x n-k -1

 Then s(x) is the syndrome polynomial of r(x).

 The received polynomial r(x) is a code polynomial if and

only if s(x) = 0.

 Syndrome computation can be done by a division circuit

shown in Fig.2.3 .

 As soon as the entire r(x) has been shifted into the

register , the contents in the register form the s(x) .

30

Fig. 2.3 Syndrome Computation Circuit

g1 g2 gn-k-1

gate



g0 = 1

s0 s1
sn-k-1

)(xr

31

 Example : Syndrome circuit for a (7,4) cyclic code with g(x) = 1+ x +x3

 Received sequence r = (1001000)

32

 Since r(x) = c(x) + e(x)

 and also r(x) = q(x) g(x) + s(x)

 we have e(x) = r(x) + c(x)

 = q(x)g(x) + s(x) +c(x)

 = q(x) g(x) + s(x) + m(x) g(x)

 = [q(x) + m(x)] g(x) + s(x)

 or s(x) = e(x) mod g(x)

 Hence the syndrome polynomial s(x) is also the remainder

that results from dividing e(x) by g(x) .

33

Table 2.1

 Galois field GF(25) constructed by using the primitive polynomial

 p(x) = 1 +x2 + x5

34

Table 2.2 Minimal polynomials of the elements in GF(26)

35

 Table 2.3

 Galois field GF(26) constructed by using the primitive polynomial

 p(x) = 1 +x + x6

36

37

38

Appen.: Division circuit for dividing X(D) by G(D)

 X(D) = x0+ x1D + x2D
2 + …+ xn-1D

n-1

 G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k

39

Divider circuit using linear feedback shift register structure

40

Binary primitive polynomials of degree m

 m minimal polynomial

 2 x2+x + 1

 3 x3+x + 1 , x3+x2 + 1

 4 x4+x + 1 , x4 +x3 + 1 , x4 +x3+x2+x + 1

 5 x5 +x2+ 1 , x5 +x2+ 1 , x5 + x4 +x3+x2+ 1

 6 x6 +x+ 1 , x6 +x3+ 1 , x6 +x5+ 1 ,

 7 x7 +x3+ 1

 8 x8+ x4 +x3+x2+ 1

 9 x9 +x4+ 1

 10 x10+x3+ 1

