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3.1  Binary BCH Codes  

 BCH codes are a large class of multiple random error- 

     correcting codes , first discovered  by A. Hocquenghem in  

    1959  and  independently by R.C. Bose and D. K. Ray- 

     Chaudhuri in 1960.  

 The first decoding algorithm for binary BCH codes was  

     devised by  Peterson  in 1960. Since then Peterson’s algorithm 

     has been refined by Berlekamp, Massey , Chien , Forney and  

      many others. 
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 For any integer m ≧ 3  and   t ≦ 2 m -1    ,  there  exists a  

     primitive BCH code with the following parameters :  

        n = 2 m -1    ,           n -k ≦ m t    

        dmin ≧ 2 t + 1                                                        (3.1) 

     This code can correct t oe fewer random errors over a span  

     of  2 m -1   bit positions . 

 

3.2 Generation of BCH Codes 

 The generator polynomial of a  t-error-correcting BCH codes 
of length  2 m -1   is given by 

         g(x) = LCM { ψ1(x), ψ3(x), …, ψ2t-1(x)}           (3.2) 

     where ψi(x) is the minimum polynomial of  the  primitive 
element  in GF( 2 m ) . 

     Since the degree of  g(x) is mt or less , the number of parity-
check bits , n-k , of the code  is at most  mt . 
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Example :   m =4 , t =3 

     Then  n = 24 -1 = 15  ,     n-k = m t = 12   thus  k = 3 

     The code  is  a ( 15 ,3) code. 

     The primitive  polynomial  p (x ) = 1 +x + x4 

        ψ1(x) = 1 +x + x4 

        ψ3(x)  = 1 +x + x2 + x3  + x4 

        ψ5(x)  = 1 +x + x2  

      Thus g(x) =  LCM {ψ1(x), ψ3(x), ψ5(x)  } 

                     = ψ1(x) ψ3(x) ψ5(x )      

                     =  1 +x + x2 + x4  + x5  + x8 + x10 
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Table 3.1   Minimal polynomials of the elements in GF(24) 
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Table 3.1   Minimal polynomials of the elements in GF(24) 
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3.3  Reed-Solomon Codes 

3.3.1    RS Codes over GF( 2 m )  

 The Reed-Solomon codes  ( RS codes) are nonbinary cyclic 

codes with code symbols from a Galois  field. They were 

discovered in 1960 by I.Reed and G. Solomon at MIT . 

 In the decades since their discovery , RS codes have enjoyed 

countless applications from compact disc and digital TV in 

living room to spacecraft and satellite in outer space. 

 The RS codes with symbols from GF(2 m )  are the most 

important codes in application. 

 Let   be a primitive symbol in GF( 2 m ) . 

      For any positive  integer   t ≦ 2 m -1 , there exists a t-symbol –

error- correcting RS code with symbols from GF(2 m ) and the 

following parameters : 
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        n = 2 m -1  

            n-k = 2 t  

            k = 2 m -1 -2 t 

            dmin = 2 t + 1 = n-k+1                                (3.3) 

 

Example : 

           m = 8 ,  t =16  

           n =255,  k = n-2t = 223 

          dmin = 32  

    It is  a (255, 223 ) RS code . The code is NASA standard code for 

satellite and space application . 
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3.3.2  Generation and Encoding of RS Codes 

 The generator polynomial of  RS codes are given by  

          g(x) = ( x+α  ) ( x+ α2 ) … (x+ α2 t ) 

                 = g0 + g1 x + g2 x 2  + … + g2t -1 x 2t-1  + x2t            (3.4) 

       where   gi ε GF( 2 m ) . 

    It is noted that  g(x) has α ,α2 , … ,α2 t   as roots . 

 The encoding  of  RS codes can be done as follows. 

    Let  m(x) = m0 + m1x + m2x 2  + … + mk-1x k -1   be the message 

polynomial. 

    Dividing  x2 t  m(x)  by g(x) , we have 

         x2 t  m(x) = a(x) g(x) + b(x)                                     (3.5) 

    where  b(x) = b0 + b1x + b2 x 2  + … + b2t-1 x 2t -1             (3.6) 

       is the remainder. 

 The encoding circuit is shown in Fig. 3.1 
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Fig.3.1   RS code encoder 
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3.3.3  RS Codes for Binary Data 

 Every symbol in GF( 2 m ) can be represented  by a binary 

m-tuple , called m-bit byte..  

 Suppose  an ( n,k ) RS code  is used for encoding mk  bits 

of message sequence .This message sequence is first divided 

into k m-bit bytes. Each m-bit byte is regarded as a symbol 

in GF( 2 m )  . 

     The k-byte message is then encoded into n-byte codeword 

based on the RS encoding rule. 

     By doing this , we actually expand a RS code with symbols 

from GF( 2 m )  into  a binary (nm , km ) linear , called a  

binary RS code . 

 Binary RS codes are very effective in correcting  bursts of 

bit errors as long as no more than t bytes are affected. 
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 A popular RS code is the  (255, 223 ) code over GF (28) . 

This code has a minimum distance of  dmin  = 255-223+1 

=33 and is capable  of correcting 16 symbol errors. 

 

 Example # 1: RS(15,9) code 

      Let  n = 24  - 1 =15  , Construct a primitive three-error correcting RS code over 

the Galois field  GF (24 ) using  the primitive polynomial  

              p(x) =   x4 + x + 1. 

     The code  generator  has α ,α2 , α3  ,α4 , α5,α6      as roots.   

      The generator of the ( 15 ,9 )  code  is  

      g ( x) = ( x+ α) ( x+ α2 ) ( x+ α3  ) ( x + α4 ) ( x+ α5  ) (x+α6  ) 

                = α6 + α9 x + α6 x2  + α4 x3 + α14 x4  + α10 x5 + x6 

      If the 4-bit data  stream 5,2,1,6,8,3,10,15,4  are to be encoded. Find the 

systematically encoded code polynomial . 
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      Sol.    t =3 

             m(x) =  5+ 2x + x2 + 6x3 +8 x4 + 3x5  +10 x6+ 15x7 + 4x8 

                  Using the vector –to –power conversion   

                5 = 0101   -->  α8        , 2 = 0010 > α , 1  = 0001 > 1 , …. 

            The message polynomial  ( expressed in power form ) is the   

            expressed as 

              m(x) = α8  + αx + x2   + α5 x3 + α3 x4 + α4 x5  + α9 x6+  

                          α12 x7 + α2 x8 

               Dividing  x6 m(x) by g(x) to obtain the remainder 

                       b(x) = α8  + α2  x + α14x2   + α3 x3 + α5 x4 + αx5 

                     then  we obtain 

               c( x) = α8  + α2  x + α14x2   + α3 x3 + α5 x4 + αx5  + α8 x6+  

                          αx7 + x8   +α5 x9   + α3 x10 + α4 x11 + α9 x12  + α12x13+  

                          α2  x14 
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  Example #    :  RS (255,223 ) RS code 

        p(x) =x8 + x4+ x3 + x2 + 1. 

          g(x) =   Πj =1
32 ( x -α j )  

   or  p(x) =x8 + x7 + x2 + x + 1. 

           g(x) =   Πj = 112
143  ( x -  (α 11 ) j )  
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3.4  Decoding of  BCH Codes and RS Codes 
 There are many algorithms which have been developed  

for decoding BCH codes. In general , the algebraic  
decoding  binary BCH codes  have the following  steps : 

     (i) Computation of the  syndrome 

     (ii) Determination of an error- location polynomial whose 

            roots provide  an indication of the error- locations.  

            The Berlekamp-Massey algorithm is an efficient  

            algorithm for determining the error-locator 

             polynomial  . 

     (iii)  Finding the roots of the error-location polynomial . 

            This is usually done using the Chien search , which is  

             an exhaustive search over all the elements in the finite 

             field. 

 

    

α 
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3.4.1  Decoding  of RS Codes 

 Decoding of a RS code is similar to the decoding of a BCH  

    code except an additional step is needed. 

    The additional step is evaluating the error vales . 

 The Berlekamp-Massey algorithm is also an efficient  

     algorithm for determining the error-locator polynomial   

     for decoding RS codes.  

     A typical  approach to find the error values is using  

     Forney’s Algorithm developed by J.D. Fornry in 1965. 

 

 In 1965, E. Berlekamp presented an extremely efficient algorithm for both BCH 
and RS codes.  

      Berlekamp’s algorithm allowed for the first time the possibility of a quick and 
efficient decoding of dozens of symbol errors in some powerful RS codes. The 
algorithm was modified by J.L. Massey in 1969. 
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3.4.2 Computation  of   the Syndrome 

 Consider a code with codeword polynomial c(x) and 

generator polynomial g(x). 

      Since      g(α) = g (α2 ) = … = g (α2 t ) = 0  

      we have  c(α) = c (α2 ) = … = c (α2 t ) = 0  

      If the received polynomial  r(x) is expressed as 

            r(x) = c(x) + e (x)                                               (3.7) 

      then  the syndrome  S = ( S1 , S2 , … , S2 t  ) can be  

      obtained by 

             Sj  = r (αj )  = c(αj)+ e(αj)  

                  = e(αj)     j = 1 ,2 ,…, 2 t                            (3.8) 

          

   This gives a relationship between the syndrome and the 

error pattern . 
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3.4.3   Syndrome and Error- Location Polynomial  

• Suppose e(x) has ν errors  , ν ≦ t , at the locations specified 

by                

       xj1  , xj2 , …, xjν . 

      i.e.  e(x) = xj1  +xj2 +  …+ xjν                                         (3.9) 

      where   0≦ j1 < j2  < … < jν 

     From equations (3.8) & (3.9), we have the following relation 

between syndrome components and error location: 

         S1 = e(α)  = αj1  +αj2 +  …+ αjν  

         S2 = e(α2)  = (αj1 )2 + (αj2 ) 2+  …+ (αjν)2 

                      . 

                 . 

         S2 t= e(α2t)  = (αj1 )2t + (αj2 ) 2t +  …+ (αjν)2t                (3.10) 

    If we can solve the 2t equations, we can determine  

        αj1 , αj2 , … , αjν  
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• The unknown parameter βκ= αjκ
 for  κ= 1,2,…, ν are called 

the  “ error location numbers ”. 

• When , αjκ  ,  1 ≦ κ ≦ ν , are found, the powers ,  jκ  give us 

the error locations in e(x).  

     These 2t equations of  (3.10) are known as  power-sum 

symmetric function. 

• Eq.(3.8) can be written as                      

                S1  = β1    + β2   + …+  βν 

                S2  =  β1
2

    +β2 
2

  + …+  βν
2   

                                 . 

                                 . 

                                 . 

                        S2t  =  β1
2t

    + β2 
2

 
t
 + …+  βν

2 t                   (3.11) 
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 Suppose that   ν ≦ t   errors actually occur .Define the error-

location polynomial σ(x) as 

     σ(x) = ( 1 + β1 x  ) ( 1 + β2  x  ) … ( 1 + βν x )  

                   = σ0 + σ1 x+ σ2 x
2 + … + σν x

ν                 (3.12) 

 

   σ(x) has  β1 
-1  , β2 

-1  , …, βν 
-1   as roots and σ0 = 1 

    Note that    βκ= αj κ
 .    

     If we can determine σ(x) from the syndrome  S = {S1, S2 , …, 

S2t  } ,  then the roots of σ(x) give us the error-location 

     numbers βκ . 

 An efficient procedure, known as Chien search , to find these 

roots , and hence the error-locations, was given by  R.T. 

Chien in 1964. 
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 Coefficients of the location polynomial Eq. (3.12) can be 
expressed as in the following manner : 

          σ0  = 1  

            σ1 = β1    + β2   + …+  βν 

            σ2  =β1 β2   + β2β3 +    …+βν-1 βν 

                      .    

                   σν = β1 β2 β3     …βν-1 βν   

   This set of equations is known as the elementary symmetric 
functions and is related to the system of equations ( 3.11 ) 

    as follows . 

            S1 +σ1  = 0    

              S2+σ1 S1 = 0 

                     S3+σ1 S2 +σ2 S1 = 0  

                     . 

            S2 t+σ1 S2 t -1 + … +   σν-1  S2 t-ν+1+σνS2 t-ν = 0        ( 3.13) 

 

    These equations are called generalized Newton identities .  
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Special cases : Decoding BCH Codes with Small  t   

   

      The σi can be solved directly  as follows. 

   

               For  t = 1  ,   σ1  = S1   

 

                         For  t = 2   , σ1  = S1      σ2 = (S3  + S1 
3  ) / S1 

  

 

                 For  t = 3 ,  σ1  = S1       σ2 =  ( S1 
2S3  + S5

  ) / (S3  + S1 
3  ) 

                                     σ3 =  ( S1 
3  

  + S3
  )  +  S1 σ2 ) 

 

                  For t = 4 ,   σ1  = S1    

                                  σ2 = { S1 ( S1 
7
  + S7

  ) + S3 (S5 + S1 
5  ) } / {S3( S1 

3
  + S3

  ) + S1 (S5 + S1 
5  ) } 

                      σ3 =  ( S1 
3  

  + S3
  )  +  S1 σ2 ) 

                     σ4   = { ( S1
2 S3 + S5

  )  + ( S1 
3  

  + S3
  ) σ2 } / S1  
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3.4.4  Berlekamp-Massey Iterative  Algorithm for  

          Finding the Error-Location Polynomial 

 The B-M algorithm  basically consists of finding the coefficient 

of the error-location  polynomial, σ1 ,σ2 ,…, σν .  

 The algorithm proceeds as follows . The first step is to 

determine a minimum -degree polynomial  σ(1)(x)  that satisfies 

the first Newton identity described in Eq. (3.13) .  

 Then the second Newton identity is tested.  

     If the polynomial σ(1)(x) satisfies the second Newton identity  

     in Eq. (3.13) , 

     then   σ(2)(x)  = σ(1)(x) . 

     Otherwise the decoding procedure adds a  correction term 

      to σ(1)(x)  in order to form the  polynomial σ(2)(x), which  

      is able to satisfies the first two Newton identities. 
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 This procedure is subsequently applied to find σ(3)(x) , and the 

     following polynomials, until  determination of the polynomial  

     σ(2t)(x) is complete. 

 

 This algorithm can be implemented in iterative form.  

     Let the minimum-degree polynomial  obtained in the  

      μ- th  iteration , denoted by σ(μ)(x) , be of the form  

             σ(μ)(x)  =  1 + σ1 
(μ) x + σ2

(μ) x2 + … + 

                                       σLμ 
(μ) x Lμ 

                                                                                                                                              (3.14) 
         where Lμ  is the degree of the polynomial σ(μ)(x)  . 

  This minimum-degree polynomial σ(μ)(x) satisfies the first  

      i  Newton identities  in Eq.(3.13) 
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 To find σ(μ+1)(x)  , we first check whether the coefficients of 

     σ(μ)(x) satisfy the next generalized Newton identity ; that is, 

          Sμ+1  + Σk =1
Lμσk 

(μ)  Sμ+1-k
    = 0   ?                     (3.15) 

    If yes , σ(μ+1)(x) = σ(μ)(x)  is the minimum-degree  

     polynomial whose coefficients satisfy the generalized Newton  

     identities.  

     If not ,a correction term is  added to σ(i)(x)  to obtain  

     σ(i+1)(x) . 

 To test the equality of Eq. (3.15) ,we calculate the discrepancy 

             dμ = Sμ+1 +σ1 
(μ) 

 Sμ +σ2,  
(μ) 

 Sμ-1  + … + 

                     σLμ
(μ) Sμ+1  – Lμ                                                                     (3.16) 

     If dμ = 0 , we set    σ(μ+1)(x) = σ(μ)(x)  

     If dμ ≠ 0 , , we need to  add a correction term  to σ(μ)(x)  

       to obtain σ(μ+1)(x)  
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   In the calculation of the correction term , the algorithm 

resorts to a previous step ρ such that dρ ≠ 0  and   (ρ – Lρ ) 

       is a maximum , where Lρ is the degree of of σ(ρ)(x) . 

     Massey demonstrated that ,when  dρ ≠ 0  , one must have 

             Lμ+1  = max [Lμ  ,  Lρ + μ-  ρ ] 

     Then  

             σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)       (3.17) 

    The B-M algorithm can be implemented in the form of  a table, 

as shown below. 

 

     Note that    

         σ(-1)(x) = σ(0)(x)  =  1  ,    d1  = S1 

         σ(1)(x) = 1 + S1 x 
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     ---------------------------------------------------------------------------- 

     μ         σ(μ)(x)            dμ            Lμ             μ- Lμ                  ρ 

     ---------------------------------------------------------------------------- 

      -1                 1                   1           0             -1 

       0                  1                  S1               0              0 

       1             1+ S1 x              .            .              . 

       2 

       . 

       . 

       . 

      2t   
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Berlrkamp-Massey Algorithm 

1.  Set the initial conditions before taking the  iterative step. 

                σ(-1)(x) = 1         L-1 =  0       d-1 =  1  

                   σ(0)(x) = 1         L0 =  0       d0 =  s1 

2.  If dμ = 0 , then set    σ(μ+1)(x) = σ(μ)(x)  and  Lμ+1 = Lμ 

3. If dμ ≠ 0 , , then find σ(ρ)(x) prior to σ(μ)(x)  such that 

    dρ≠ 0 , ρ ≦ μ , and  the number  (ρ – Lμ)  has the 

     largest number.      Then  

               σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)   

                Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 

      and   dμ+1 = Sμ+2+σ1 
(μ+1) 

 Sμ+1 +σ2 
(μ+1) 

 Sμ-1  + … + 

                     σL(μ+1 ) 
(μ+1) Sμ+2  – L(μ+1 ) 

    where σi 
(μ+1)  , 1 ≦ i ≦  Lμ+1  , are the coefficients of  

   σ(μ+1)(x) . 
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Example:  

• For the (15, 9) RS code over GF(24) 

    Use the Berlekamp-Massey algorithm to find the error-locator 

polynomial.  The received polynomial is 

     r (x) = x8+ α11 x7 + α8x5+ α10 x4+ α4 x3 + α3 x2+ α8x+ α12 

 

Solution:     n – k = 6 
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Solution 

          σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)  

              Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 

              dμ+1 = Sμ+2+σ1 
(μ+1) 

 Sμ+1 +σ2,  
(μ+1) 

 Sμ-1  + … + 

                         σL(μ+1 ) 
(μ+1) Sμ+2  – L(μ+1) 

 

1.    μ=0 , Choose ρ= -1 

          σ(1)(x) = σ(0)(x) +  d0 d-1
-1  x σ(-1)(x) = 1-x  = 1+x 

           d1 = S2+σ1 
(1) 

 S1   = 1 +1 = 0 

          L1  =   max [ L0  ,  L-1 + 0 + 1]  = 1  

2 .    μ=  1 

        Since  d1 = 0 , 

        we have       σ(2)(x) = σ(1)(x) = 1+x   and     L2  =  L1  =1 

        d2= S3+σ1 
(2) 

 S2   +σ2,  
(2) 

 S1   = 1 + α5  = α10 
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3. μ=  2 , Since  d2 ≠ 0 , ρ must be chosen such that (ρ –   Lμ)  

has the largest value. We choose  ρ= 0 

         σ(3)(x) = σ(2)(x) – d2 d0
-1  x 2   σ(0)(x)  

                          = 1 + x +α10 x2 

        d3 = S4+σ1 
(3) 

 S3   +σ2,  
(3) 

 S2  +σ3,  
(3) 

 S1  

                       = 1 + α5     + α10  
 =  0  

            …………….. 

      Finally , we obtain 

        σ(x) =  1 + x +α10 x2 
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3.4.5   Chien Search 

 After  the determination of the error-location polynomial, 
the roots of this polynomial are calculated by applying the 
Chien search. The roots of σ(x ) in GF( 2m ) can be 
determined by substituting the elements of GF(2m ) in σ(x )  . 

     If   σ(αi  )  = 0 ,   then  αi     is the root of σ(x )  . 

     Thus, α- i = α n- I   is an error-location number. 

 To decode the first received digit  rn-1   , we check whether α 
is a root of σ(x ) . 

     If  σ(α )  = 0 , then is erroneous and must be corrected.  

     If  σ(α ) ≠ 0 , then rn-1  is error-free. 

• To decode   rn-i , we test whether σ(αi  ) = 0  or not. 

      If σ(αi  ) = 0 , rn-i  is erroneous and must be corrected ,  

       otherwise   rn-i  is error-free  . 

 A Chien-search circuit is shown in Fig.3. 2 
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Fig.3.2   Chien-search circuit 
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  Note that 

            Σq =1 
∞ βκ

q xq  =   1 + βκx +βκ
2 x2 + … 

                                       =  1 / ( 1- βκx ) =1 / ( 1+βκx )  
    Then we have 

             s (x) = Σκ =1 
ν  Yκ / ( 1+βκx )  

   Using the above equations , the error-evaluator polynomial 

   Z(x) of degree less than ν can be written as  

            Z(x) = Σκ =1 
ν Yκ  Πp=1

ν ( 1+βpx )  

                                                  p≠κ   

   Thus , the error-value at location   x =βm   is easily obtained 
as 

             Ym = Z(βm 
– 1 )  /  Πp=1

ν ( 1+βpβm 
– 1 )  

                                                                    p≠m   

    and then    

             e(x) = Σ Ym xm 
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Example : 

     Consider  the triple-error-correcting    (31,25) RS code. The 

received polynomial is  

          r(x) = α8 x2 +α2x5 + αx10 
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     r(x) =  (0 0α8 0 0α2 0 0 0 0α00000000000000000000) 

     S = ( S1 , S2 , … , S6  ) =  (α,α21 ,α23 , α15 α2 ,α13 ) 

       The error locator polynomial σ(x)  can be found by 
applying the iterative algorithm as follows : 

    1.   μ= 0 , Choose ρ= -1 

          σ(1)(x) = σ(0)(x) +  d0 d-1
-1  x σ(-1)(x) = 1+αx 

           d1 = S2+σ1 
(1) 

 S1   = α21+ α2 = α13 
 

           L1  =   max [ L0  ,  L-1 + 0 + 1]  

      2 .    μ=  1     ρ= 0 

              σ(2)(x) = σ(1)(x) + d1 d0
-1  x σ(-1)(x) = 1+αx +α13α-1 x  = 1 +α20 x 

                and     L2  =  L1  =1   

               d2= S3+σ1 
(2) 

 S2 = α23+ α10  = α24 

 

    Note :  Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 
                  The number  (ρ – Lμ)  has the largest number. 
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     3.    μ=  2      ρ= 0 

               σ(3)(x) = σ(2)(x) + d2 d0
-1  x2 σ(0)(x) 

                             = 1 +α20 x + α24 α-1 x2     

                                            = 1 + α20 x + α23  x2  

                d3 = S4+σ1 
(3) 

 S3 +σ2
(3) 

 S2 = α15+ α12 + α13    = α8 

 

     4.    μ= 3      ρ= 2 

           σ(4)(x) = σ(3)(x) + d3 d2
-1  x2 σ(2)(x) 

                        = 1 +α20 x + α23 x2 + α15  x+ α4  x2 

                        = 1 +α17 x + α15x2 

 

            d4  = S5+σ1 
(4)  S4+σ2 

(4)  S3 = α15+ α12 + α13    = α8 

                 =α2+ α + α7   = α30 

 

     5.    μ= 4      ρ= 2 

            σ(5)(x) = σ(4)(x) + d4 d2
-1  x2 σ(2)(x) 

                         = 1 +α17 x + α22 x2+ α26x3 

 

            d5 = S6+σ1 
(5) 

 S5+σ2
(5) 

 S4 +σ3
(5) 

 S3= α15+ α12 + α13  = α8   

                 =α13+ α19+  α6 + α18  = α17 
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       6.    μ= 5        ρ=4 

             σ(6)(x) = σ(5)(x) + d5 d4
-1  x σ(4)(x) 

                         = 1 +α4x + α5 x2+ α17x3 

 

      Since σ(x) = σ(6  , the error –locator polynomial is 

               σ(x) = 1 +α4x + α5 x2+ α17x3 

       By  the Chien search method , we can easily find that α21 , α26  and  α29   

roots of σ(x) . The reciprocals of these roots are to be the error-location 

number of e(x). These numbers are  calculated as α10 , α5 and α2 . 

      Thus, the triple errors occurs at positions x10 , x5 and x2 . 
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 To find the error-values , we first calculate the error-evaluator  

  polynomial Z(x) by using eq. (3.22). 

        

           Z(x) = Σκ =1 
ν Yκ  Πp=1

ν ( 1+βpx )  

                                                  p≠κ  

                   = 1 + (α+ α4) x + (α21 + α4 α + α5 ) x2  

                                  + (α23 + α4 α21 + α5 α + α17 ) x3 

                             =  1 + α30 x +α21 x2 + α23 x3  
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               Y2  = Z (α 
–2 )  / ( 1+ α 

5
 α 

–2 ) ( 1+ α 
10α 

–2 )  

                        = α 
26

 / α 
18    = α8  

                   Y5 = Z (α 
–5 )  / ( 1+ α 

2
 α 

–5 ) ( 1+ α 
10α 

–10 )  

                        = α 
30/ α 

28    = α2 

                   Y10 = Z (α 
–10 )  / ( 1+ α 

2
 α 

–10 ) ( 1+ α5α 
–10 )  

                         = α 
10/ α 

9    = α 

 

               Thus , the error-pattern polynomial is easily found as 

                      e (x )  = Y2 x
2  + Y5 x

5 + Y10 x
10   

                                              =α8 x2  +α2x5 + αx10   
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3.5 Shortened RS Codes 

 In system design, if a code of natural length or suitable 

number of information digits can not be found , it may be 

desirable to shorten  the code to meet the requirement. 

 Given an (n,k) cyclic code C, consider the set of codewords 

for which the  L leading high-order message digits are 

identical to zero .There are 2k-L  such codewords and they 

form a linear  subcode of C.  If we delete the L zero 

message digits from each of these codewords, we obtain a 

set of  2k-L  words of length  n-L . These 2k-L  shortened 

words form an ( n-L , k-L ) linear code. This code is called 

a shortened cyclic code. The shortened code has the same 

error-correcting capability as the original code but is not 

cyclic is not cyclic  in general.  
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 The (255, 251) RS code is designed over the Galois field  

     GF ( 28) with error-correcting capability  t = 2. 

      Shortened RS codes   CRS(32,28) and CRS(28, 24 ) are 

obtained from the original RS code CRS(255, 251) by 

deleting 227 digits and 223 digits, respectively , from the  

255 codewords. 

     These two codes are the constituent codes of the compact 

disc (CD) error-control coding system. 

     Both  shortened  RS codes  and the original RS code have 

the same generator polynomial. 

     The generator polynomial is given by 

          g ( x) = ( x+ α) ( x+ α2 ) ( x+ α3  ) ( x + α4 ) 

                    = x4 + α76 x3+ α251x2 + α81 x + α10 

        All operations performed in te calculation of this 

generator polynomial are done in GF(28) . 
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Table 3.2  Minimal polynomials of the elements  of  GF(26) 
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Table 3.3 

 Generator polynomials of all the BCH codes  of length 63 
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Appen.:  Division circuit for dividing  X(D)  by G(D) 

     X(D) = x0+  x1D + x2D
2 + …+ xn-1D

n-1 

        G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k 

Note :  1. The high-order coefficients  are input first . 

             2. First output is coefficient of  Dn- 1  of quotient 

             3. Shift register contains coefficients of  remainder  

                 r(D) = r0+ r1D +r2D
2 + …+ rn-k-1D

n-k-1 

 

 


