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3.1  Binary BCH Codes  

 BCH codes are a large class of multiple random error- 

     correcting codes , first discovered  by A. Hocquenghem in  

    1959  and  independently by R.C. Bose and D. K. Ray- 

     Chaudhuri in 1960.  

 The first decoding algorithm for binary BCH codes was  

     devised by  Peterson  in 1960. Since then Peterson’s algorithm 

     has been refined by Berlekamp, Massey , Chien , Forney and  

      many others. 



3 

 For any integer m ≧ 3  and   t ≦ 2 m -1    ,  there  exists a  

     primitive BCH code with the following parameters :  

        n = 2 m -1    ,           n -k ≦ m t    

        dmin ≧ 2 t + 1                                                        (3.1) 

     This code can correct t oe fewer random errors over a span  

     of  2 m -1   bit positions . 

 

3.2 Generation of BCH Codes 

 The generator polynomial of a  t-error-correcting BCH codes 
of length  2 m -1   is given by 

         g(x) = LCM { ψ1(x), ψ3(x), …, ψ2t-1(x)}           (3.2) 

     where ψi(x) is the minimum polynomial of  the  primitive 
element  in GF( 2 m ) . 

     Since the degree of  g(x) is mt or less , the number of parity-
check bits , n-k , of the code  is at most  mt . 
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Example :   m =4 , t =3 

     Then  n = 24 -1 = 15  ,     n-k = m t = 12   thus  k = 3 

     The code  is  a ( 15 ,3) code. 

     The primitive  polynomial  p (x ) = 1 +x + x4 

        ψ1(x) = 1 +x + x4 

        ψ3(x)  = 1 +x + x2 + x3  + x4 

        ψ5(x)  = 1 +x + x2  

      Thus g(x) =  LCM {ψ1(x), ψ3(x), ψ5(x)  } 

                     = ψ1(x) ψ3(x) ψ5(x )      

                     =  1 +x + x2 + x4  + x5  + x8 + x10 
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Table 3.1   Minimal polynomials of the elements in GF(24) 
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Table 3.1   Minimal polynomials of the elements in GF(24) 
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3.3  Reed-Solomon Codes 

3.3.1    RS Codes over GF( 2 m )  

 The Reed-Solomon codes  ( RS codes) are nonbinary cyclic 

codes with code symbols from a Galois  field. They were 

discovered in 1960 by I.Reed and G. Solomon at MIT . 

 In the decades since their discovery , RS codes have enjoyed 

countless applications from compact disc and digital TV in 

living room to spacecraft and satellite in outer space. 

 The RS codes with symbols from GF(2 m )  are the most 

important codes in application. 

 Let   be a primitive symbol in GF( 2 m ) . 

      For any positive  integer   t ≦ 2 m -1 , there exists a t-symbol –

error- correcting RS code with symbols from GF(2 m ) and the 

following parameters : 
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        n = 2 m -1  

            n-k = 2 t  

            k = 2 m -1 -2 t 

            dmin = 2 t + 1 = n-k+1                                (3.3) 

 

Example : 

           m = 8 ,  t =16  

           n =255,  k = n-2t = 223 

          dmin = 32  

    It is  a (255, 223 ) RS code . The code is NASA standard code for 

satellite and space application . 
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3.3.2  Generation and Encoding of RS Codes 

 The generator polynomial of  RS codes are given by  

          g(x) = ( x+α  ) ( x+ α2 ) … (x+ α2 t ) 

                 = g0 + g1 x + g2 x 2  + … + g2t -1 x 2t-1  + x2t            (3.4) 

       where   gi ε GF( 2 m ) . 

    It is noted that  g(x) has α ,α2 , … ,α2 t   as roots . 

 The encoding  of  RS codes can be done as follows. 

    Let  m(x) = m0 + m1x + m2x 2  + … + mk-1x k -1   be the message 

polynomial. 

    Dividing  x2 t  m(x)  by g(x) , we have 

         x2 t  m(x) = a(x) g(x) + b(x)                                     (3.5) 

    where  b(x) = b0 + b1x + b2 x 2  + … + b2t-1 x 2t -1             (3.6) 

       is the remainder. 

 The encoding circuit is shown in Fig. 3.1 
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Fig.3.1   RS code encoder 
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3.3.3  RS Codes for Binary Data 

 Every symbol in GF( 2 m ) can be represented  by a binary 

m-tuple , called m-bit byte..  

 Suppose  an ( n,k ) RS code  is used for encoding mk  bits 

of message sequence .This message sequence is first divided 

into k m-bit bytes. Each m-bit byte is regarded as a symbol 

in GF( 2 m )  . 

     The k-byte message is then encoded into n-byte codeword 

based on the RS encoding rule. 

     By doing this , we actually expand a RS code with symbols 

from GF( 2 m )  into  a binary (nm , km ) linear , called a  

binary RS code . 

 Binary RS codes are very effective in correcting  bursts of 

bit errors as long as no more than t bytes are affected. 
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 A popular RS code is the  (255, 223 ) code over GF (28) . 

This code has a minimum distance of  dmin  = 255-223+1 

=33 and is capable  of correcting 16 symbol errors. 

 

 Example # 1: RS(15,9) code 

      Let  n = 24  - 1 =15  , Construct a primitive three-error correcting RS code over 

the Galois field  GF (24 ) using  the primitive polynomial  

              p(x) =   x4 + x + 1. 

     The code  generator  has α ,α2 , α3  ,α4 , α5,α6      as roots.   

      The generator of the ( 15 ,9 )  code  is  

      g ( x) = ( x+ α) ( x+ α2 ) ( x+ α3  ) ( x + α4 ) ( x+ α5  ) (x+α6  ) 

                = α6 + α9 x + α6 x2  + α4 x3 + α14 x4  + α10 x5 + x6 

      If the 4-bit data  stream 5,2,1,6,8,3,10,15,4  are to be encoded. Find the 

systematically encoded code polynomial . 
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      Sol.    t =3 

             m(x) =  5+ 2x + x2 + 6x3 +8 x4 + 3x5  +10 x6+ 15x7 + 4x8 

                  Using the vector –to –power conversion   

                5 = 0101   -->  α8        , 2 = 0010 > α , 1  = 0001 > 1 , …. 

            The message polynomial  ( expressed in power form ) is the   

            expressed as 

              m(x) = α8  + αx + x2   + α5 x3 + α3 x4 + α4 x5  + α9 x6+  

                          α12 x7 + α2 x8 

               Dividing  x6 m(x) by g(x) to obtain the remainder 

                       b(x) = α8  + α2  x + α14x2   + α3 x3 + α5 x4 + αx5 

                     then  we obtain 

               c( x) = α8  + α2  x + α14x2   + α3 x3 + α5 x4 + αx5  + α8 x6+  

                          αx7 + x8   +α5 x9   + α3 x10 + α4 x11 + α9 x12  + α12x13+  

                          α2  x14 
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  Example #    :  RS (255,223 ) RS code 

        p(x) =x8 + x4+ x3 + x2 + 1. 

          g(x) =   Πj =1
32 ( x -α j )  

   or  p(x) =x8 + x7 + x2 + x + 1. 

           g(x) =   Πj = 112
143  ( x -  (α 11 ) j )  
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3.4  Decoding of  BCH Codes and RS Codes 
 There are many algorithms which have been developed  

for decoding BCH codes. In general , the algebraic  
decoding  binary BCH codes  have the following  steps : 

     (i) Computation of the  syndrome 

     (ii) Determination of an error- location polynomial whose 

            roots provide  an indication of the error- locations.  

            The Berlekamp-Massey algorithm is an efficient  

            algorithm for determining the error-locator 

             polynomial  . 

     (iii)  Finding the roots of the error-location polynomial . 

            This is usually done using the Chien search , which is  

             an exhaustive search over all the elements in the finite 

             field. 

 

    

α 
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3.4.1  Decoding  of RS Codes 

 Decoding of a RS code is similar to the decoding of a BCH  

    code except an additional step is needed. 

    The additional step is evaluating the error vales . 

 The Berlekamp-Massey algorithm is also an efficient  

     algorithm for determining the error-locator polynomial   

     for decoding RS codes.  

     A typical  approach to find the error values is using  

     Forney’s Algorithm developed by J.D. Fornry in 1965. 

 

 In 1965, E. Berlekamp presented an extremely efficient algorithm for both BCH 
and RS codes.  

      Berlekamp’s algorithm allowed for the first time the possibility of a quick and 
efficient decoding of dozens of symbol errors in some powerful RS codes. The 
algorithm was modified by J.L. Massey in 1969. 
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3.4.2 Computation  of   the Syndrome 

 Consider a code with codeword polynomial c(x) and 

generator polynomial g(x). 

      Since      g(α) = g (α2 ) = … = g (α2 t ) = 0  

      we have  c(α) = c (α2 ) = … = c (α2 t ) = 0  

      If the received polynomial  r(x) is expressed as 

            r(x) = c(x) + e (x)                                               (3.7) 

      then  the syndrome  S = ( S1 , S2 , … , S2 t  ) can be  

      obtained by 

             Sj  = r (αj )  = c(αj)+ e(αj)  

                  = e(αj)     j = 1 ,2 ,…, 2 t                            (3.8) 

          

   This gives a relationship between the syndrome and the 

error pattern . 
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3.4.3   Syndrome and Error- Location Polynomial  

• Suppose e(x) has ν errors  , ν ≦ t , at the locations specified 

by                

       xj1  , xj2 , …, xjν . 

      i.e.  e(x) = xj1  +xj2 +  …+ xjν                                         (3.9) 

      where   0≦ j1 < j2  < … < jν 

     From equations (3.8) & (3.9), we have the following relation 

between syndrome components and error location: 

         S1 = e(α)  = αj1  +αj2 +  …+ αjν  

         S2 = e(α2)  = (αj1 )2 + (αj2 ) 2+  …+ (αjν)2 

                      . 

                 . 

         S2 t= e(α2t)  = (αj1 )2t + (αj2 ) 2t +  …+ (αjν)2t                (3.10) 

    If we can solve the 2t equations, we can determine  

        αj1 , αj2 , … , αjν  
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• The unknown parameter βκ= αjκ
 for  κ= 1,2,…, ν are called 

the  “ error location numbers ”. 

• When , αjκ  ,  1 ≦ κ ≦ ν , are found, the powers ,  jκ  give us 

the error locations in e(x).  

     These 2t equations of  (3.10) are known as  power-sum 

symmetric function. 

• Eq.(3.8) can be written as                      

                S1  = β1    + β2   + …+  βν 

                S2  =  β1
2

    +β2 
2

  + …+  βν
2   

                                 . 

                                 . 

                                 . 

                        S2t  =  β1
2t

    + β2 
2

 
t
 + …+  βν

2 t                   (3.11) 
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 Suppose that   ν ≦ t   errors actually occur .Define the error-

location polynomial σ(x) as 

     σ(x) = ( 1 + β1 x  ) ( 1 + β2  x  ) … ( 1 + βν x )  

                   = σ0 + σ1 x+ σ2 x
2 + … + σν x

ν                 (3.12) 

 

   σ(x) has  β1 
-1  , β2 

-1  , …, βν 
-1   as roots and σ0 = 1 

    Note that    βκ= αj κ
 .    

     If we can determine σ(x) from the syndrome  S = {S1, S2 , …, 

S2t  } ,  then the roots of σ(x) give us the error-location 

     numbers βκ . 

 An efficient procedure, known as Chien search , to find these 

roots , and hence the error-locations, was given by  R.T. 

Chien in 1964. 
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 Coefficients of the location polynomial Eq. (3.12) can be 
expressed as in the following manner : 

          σ0  = 1  

            σ1 = β1    + β2   + …+  βν 

            σ2  =β1 β2   + β2β3 +    …+βν-1 βν 

                      .    

                   σν = β1 β2 β3     …βν-1 βν   

   This set of equations is known as the elementary symmetric 
functions and is related to the system of equations ( 3.11 ) 

    as follows . 

            S1 +σ1  = 0    

              S2+σ1 S1 = 0 

                     S3+σ1 S2 +σ2 S1 = 0  

                     . 

            S2 t+σ1 S2 t -1 + … +   σν-1  S2 t-ν+1+σνS2 t-ν = 0        ( 3.13) 

 

    These equations are called generalized Newton identities .  
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Special cases : Decoding BCH Codes with Small  t   

   

      The σi can be solved directly  as follows. 

   

               For  t = 1  ,   σ1  = S1   

 

                         For  t = 2   , σ1  = S1      σ2 = (S3  + S1 
3  ) / S1 

  

 

                 For  t = 3 ,  σ1  = S1       σ2 =  ( S1 
2S3  + S5

  ) / (S3  + S1 
3  ) 

                                     σ3 =  ( S1 
3  

  + S3
  )  +  S1 σ2 ) 

 

                  For t = 4 ,   σ1  = S1    

                                  σ2 = { S1 ( S1 
7
  + S7

  ) + S3 (S5 + S1 
5  ) } / {S3( S1 

3
  + S3

  ) + S1 (S5 + S1 
5  ) } 

                      σ3 =  ( S1 
3  

  + S3
  )  +  S1 σ2 ) 

                     σ4   = { ( S1
2 S3 + S5

  )  + ( S1 
3  

  + S3
  ) σ2 } / S1  
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3.4.4  Berlekamp-Massey Iterative  Algorithm for  

          Finding the Error-Location Polynomial 

 The B-M algorithm  basically consists of finding the coefficient 

of the error-location  polynomial, σ1 ,σ2 ,…, σν .  

 The algorithm proceeds as follows . The first step is to 

determine a minimum -degree polynomial  σ(1)(x)  that satisfies 

the first Newton identity described in Eq. (3.13) .  

 Then the second Newton identity is tested.  

     If the polynomial σ(1)(x) satisfies the second Newton identity  

     in Eq. (3.13) , 

     then   σ(2)(x)  = σ(1)(x) . 

     Otherwise the decoding procedure adds a  correction term 

      to σ(1)(x)  in order to form the  polynomial σ(2)(x), which  

      is able to satisfies the first two Newton identities. 
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 This procedure is subsequently applied to find σ(3)(x) , and the 

     following polynomials, until  determination of the polynomial  

     σ(2t)(x) is complete. 

 

 This algorithm can be implemented in iterative form.  

     Let the minimum-degree polynomial  obtained in the  

      μ- th  iteration , denoted by σ(μ)(x) , be of the form  

             σ(μ)(x)  =  1 + σ1 
(μ) x + σ2

(μ) x2 + … + 

                                       σLμ 
(μ) x Lμ 

                                                                                                                                              (3.14) 
         where Lμ  is the degree of the polynomial σ(μ)(x)  . 

  This minimum-degree polynomial σ(μ)(x) satisfies the first  

      i  Newton identities  in Eq.(3.13) 
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 To find σ(μ+1)(x)  , we first check whether the coefficients of 

     σ(μ)(x) satisfy the next generalized Newton identity ; that is, 

          Sμ+1  + Σk =1
Lμσk 

(μ)  Sμ+1-k
    = 0   ?                     (3.15) 

    If yes , σ(μ+1)(x) = σ(μ)(x)  is the minimum-degree  

     polynomial whose coefficients satisfy the generalized Newton  

     identities.  

     If not ,a correction term is  added to σ(i)(x)  to obtain  

     σ(i+1)(x) . 

 To test the equality of Eq. (3.15) ,we calculate the discrepancy 

             dμ = Sμ+1 +σ1 
(μ) 

 Sμ +σ2,  
(μ) 

 Sμ-1  + … + 

                     σLμ
(μ) Sμ+1  – Lμ                                                                     (3.16) 

     If dμ = 0 , we set    σ(μ+1)(x) = σ(μ)(x)  

     If dμ ≠ 0 , , we need to  add a correction term  to σ(μ)(x)  

       to obtain σ(μ+1)(x)  
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   In the calculation of the correction term , the algorithm 

resorts to a previous step ρ such that dρ ≠ 0  and   (ρ – Lρ ) 

       is a maximum , where Lρ is the degree of of σ(ρ)(x) . 

     Massey demonstrated that ,when  dρ ≠ 0  , one must have 

             Lμ+1  = max [Lμ  ,  Lρ + μ-  ρ ] 

     Then  

             σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)       (3.17) 

    The B-M algorithm can be implemented in the form of  a table, 

as shown below. 

 

     Note that    

         σ(-1)(x) = σ(0)(x)  =  1  ,    d1  = S1 

         σ(1)(x) = 1 + S1 x 
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     ---------------------------------------------------------------------------- 

     μ         σ(μ)(x)            dμ            Lμ             μ- Lμ                  ρ 

     ---------------------------------------------------------------------------- 

      -1                 1                   1           0             -1 

       0                  1                  S1               0              0 

       1             1+ S1 x              .            .              . 

       2 

       . 

       . 

       . 

      2t   
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Berlrkamp-Massey Algorithm 

1.  Set the initial conditions before taking the  iterative step. 

                σ(-1)(x) = 1         L-1 =  0       d-1 =  1  

                   σ(0)(x) = 1         L0 =  0       d0 =  s1 

2.  If dμ = 0 , then set    σ(μ+1)(x) = σ(μ)(x)  and  Lμ+1 = Lμ 

3. If dμ ≠ 0 , , then find σ(ρ)(x) prior to σ(μ)(x)  such that 

    dρ≠ 0 , ρ ≦ μ , and  the number  (ρ – Lμ)  has the 

     largest number.      Then  

               σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)   

                Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 

      and   dμ+1 = Sμ+2+σ1 
(μ+1) 

 Sμ+1 +σ2 
(μ+1) 

 Sμ-1  + … + 

                     σL(μ+1 ) 
(μ+1) Sμ+2  – L(μ+1 ) 

    where σi 
(μ+1)  , 1 ≦ i ≦  Lμ+1  , are the coefficients of  

   σ(μ+1)(x) . 
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Example:  

• For the (15, 9) RS code over GF(24) 

    Use the Berlekamp-Massey algorithm to find the error-locator 

polynomial.  The received polynomial is 

     r (x) = x8+ α11 x7 + α8x5+ α10 x4+ α4 x3 + α3 x2+ α8x+ α12 

 

Solution:     n – k = 6 
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Solution 

          σ(μ+1)(x) = σ(μ)(x) +  dμ dρ
-1  x (μ– ρ)   σ(ρ)(x)  

              Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 

              dμ+1 = Sμ+2+σ1 
(μ+1) 

 Sμ+1 +σ2,  
(μ+1) 

 Sμ-1  + … + 

                         σL(μ+1 ) 
(μ+1) Sμ+2  – L(μ+1) 

 

1.    μ=0 , Choose ρ= -1 

          σ(1)(x) = σ(0)(x) +  d0 d-1
-1  x σ(-1)(x) = 1-x  = 1+x 

           d1 = S2+σ1 
(1) 

 S1   = 1 +1 = 0 

          L1  =   max [ L0  ,  L-1 + 0 + 1]  = 1  

2 .    μ=  1 

        Since  d1 = 0 , 

        we have       σ(2)(x) = σ(1)(x) = 1+x   and     L2  =  L1  =1 

        d2= S3+σ1 
(2) 

 S2   +σ2,  
(2) 

 S1   = 1 + α5  = α10 
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3. μ=  2 , Since  d2 ≠ 0 , ρ must be chosen such that (ρ –   Lμ)  

has the largest value. We choose  ρ= 0 

         σ(3)(x) = σ(2)(x) – d2 d0
-1  x 2   σ(0)(x)  

                          = 1 + x +α10 x2 

        d3 = S4+σ1 
(3) 

 S3   +σ2,  
(3) 

 S2  +σ3,  
(3) 

 S1  

                       = 1 + α5     + α10  
 =  0  

            …………….. 

      Finally , we obtain 

        σ(x) =  1 + x +α10 x2 
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3.4.5   Chien Search 

 After  the determination of the error-location polynomial, 
the roots of this polynomial are calculated by applying the 
Chien search. The roots of σ(x ) in GF( 2m ) can be 
determined by substituting the elements of GF(2m ) in σ(x )  . 

     If   σ(αi  )  = 0 ,   then  αi     is the root of σ(x )  . 

     Thus, α- i = α n- I   is an error-location number. 

 To decode the first received digit  rn-1   , we check whether α 
is a root of σ(x ) . 

     If  σ(α )  = 0 , then is erroneous and must be corrected.  

     If  σ(α ) ≠ 0 , then rn-1  is error-free. 

• To decode   rn-i , we test whether σ(αi  ) = 0  or not. 

      If σ(αi  ) = 0 , rn-i  is erroneous and must be corrected ,  

       otherwise   rn-i  is error-free  . 

 A Chien-search circuit is shown in Fig.3. 2 

 



34 

Fig.3.2   Chien-search circuit 
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  Note that 

            Σq =1 
∞ βκ

q xq  =   1 + βκx +βκ
2 x2 + … 

                                       =  1 / ( 1- βκx ) =1 / ( 1+βκx )  
    Then we have 

             s (x) = Σκ =1 
ν  Yκ / ( 1+βκx )  

   Using the above equations , the error-evaluator polynomial 

   Z(x) of degree less than ν can be written as  

            Z(x) = Σκ =1 
ν Yκ  Πp=1

ν ( 1+βpx )  

                                                  p≠κ   

   Thus , the error-value at location   x =βm   is easily obtained 
as 

             Ym = Z(βm 
– 1 )  /  Πp=1

ν ( 1+βpβm 
– 1 )  

                                                                    p≠m   

    and then    

             e(x) = Σ Ym xm 
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Example : 

     Consider  the triple-error-correcting    (31,25) RS code. The 

received polynomial is  

          r(x) = α8 x2 +α2x5 + αx10 
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     r(x) =  (0 0α8 0 0α2 0 0 0 0α00000000000000000000) 

     S = ( S1 , S2 , … , S6  ) =  (α,α21 ,α23 , α15 α2 ,α13 ) 

       The error locator polynomial σ(x)  can be found by 
applying the iterative algorithm as follows : 

    1.   μ= 0 , Choose ρ= -1 

          σ(1)(x) = σ(0)(x) +  d0 d-1
-1  x σ(-1)(x) = 1+αx 

           d1 = S2+σ1 
(1) 

 S1   = α21+ α2 = α13 
 

           L1  =   max [ L0  ,  L-1 + 0 + 1]  

      2 .    μ=  1     ρ= 0 

              σ(2)(x) = σ(1)(x) + d1 d0
-1  x σ(-1)(x) = 1+αx +α13α-1 x  = 1 +α20 x 

                and     L2  =  L1  =1   

               d2= S3+σ1 
(2) 

 S2 = α23+ α10  = α24 

 

    Note :  Lμ+1  = max [ Lμ  ,  Lρ + μ-  ρ ] 
                  The number  (ρ – Lμ)  has the largest number. 
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     3.    μ=  2      ρ= 0 

               σ(3)(x) = σ(2)(x) + d2 d0
-1  x2 σ(0)(x) 

                             = 1 +α20 x + α24 α-1 x2     

                                            = 1 + α20 x + α23  x2  

                d3 = S4+σ1 
(3) 

 S3 +σ2
(3) 

 S2 = α15+ α12 + α13    = α8 

 

     4.    μ= 3      ρ= 2 

           σ(4)(x) = σ(3)(x) + d3 d2
-1  x2 σ(2)(x) 

                        = 1 +α20 x + α23 x2 + α15  x+ α4  x2 

                        = 1 +α17 x + α15x2 

 

            d4  = S5+σ1 
(4)  S4+σ2 

(4)  S3 = α15+ α12 + α13    = α8 

                 =α2+ α + α7   = α30 

 

     5.    μ= 4      ρ= 2 

            σ(5)(x) = σ(4)(x) + d4 d2
-1  x2 σ(2)(x) 

                         = 1 +α17 x + α22 x2+ α26x3 

 

            d5 = S6+σ1 
(5) 

 S5+σ2
(5) 

 S4 +σ3
(5) 

 S3= α15+ α12 + α13  = α8   

                 =α13+ α19+  α6 + α18  = α17 
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       6.    μ= 5        ρ=4 

             σ(6)(x) = σ(5)(x) + d5 d4
-1  x σ(4)(x) 

                         = 1 +α4x + α5 x2+ α17x3 

 

      Since σ(x) = σ(6  , the error –locator polynomial is 

               σ(x) = 1 +α4x + α5 x2+ α17x3 

       By  the Chien search method , we can easily find that α21 , α26  and  α29   

roots of σ(x) . The reciprocals of these roots are to be the error-location 

number of e(x). These numbers are  calculated as α10 , α5 and α2 . 

      Thus, the triple errors occurs at positions x10 , x5 and x2 . 
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 To find the error-values , we first calculate the error-evaluator  

  polynomial Z(x) by using eq. (3.22). 

        

           Z(x) = Σκ =1 
ν Yκ  Πp=1

ν ( 1+βpx )  

                                                  p≠κ  

                   = 1 + (α+ α4) x + (α21 + α4 α + α5 ) x2  

                                  + (α23 + α4 α21 + α5 α + α17 ) x3 

                             =  1 + α30 x +α21 x2 + α23 x3  
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               Y2  = Z (α 
–2 )  / ( 1+ α 

5
 α 

–2 ) ( 1+ α 
10α 

–2 )  

                        = α 
26

 / α 
18    = α8  

                   Y5 = Z (α 
–5 )  / ( 1+ α 

2
 α 

–5 ) ( 1+ α 
10α 

–10 )  

                        = α 
30/ α 

28    = α2 

                   Y10 = Z (α 
–10 )  / ( 1+ α 

2
 α 

–10 ) ( 1+ α5α 
–10 )  

                         = α 
10/ α 

9    = α 

 

               Thus , the error-pattern polynomial is easily found as 

                      e (x )  = Y2 x
2  + Y5 x

5 + Y10 x
10   

                                              =α8 x2  +α2x5 + αx10   
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3.5 Shortened RS Codes 

 In system design, if a code of natural length or suitable 

number of information digits can not be found , it may be 

desirable to shorten  the code to meet the requirement. 

 Given an (n,k) cyclic code C, consider the set of codewords 

for which the  L leading high-order message digits are 

identical to zero .There are 2k-L  such codewords and they 

form a linear  subcode of C.  If we delete the L zero 

message digits from each of these codewords, we obtain a 

set of  2k-L  words of length  n-L . These 2k-L  shortened 

words form an ( n-L , k-L ) linear code. This code is called 

a shortened cyclic code. The shortened code has the same 

error-correcting capability as the original code but is not 

cyclic is not cyclic  in general.  
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 The (255, 251) RS code is designed over the Galois field  

     GF ( 28) with error-correcting capability  t = 2. 

      Shortened RS codes   CRS(32,28) and CRS(28, 24 ) are 

obtained from the original RS code CRS(255, 251) by 

deleting 227 digits and 223 digits, respectively , from the  

255 codewords. 

     These two codes are the constituent codes of the compact 

disc (CD) error-control coding system. 

     Both  shortened  RS codes  and the original RS code have 

the same generator polynomial. 

     The generator polynomial is given by 

          g ( x) = ( x+ α) ( x+ α2 ) ( x+ α3  ) ( x + α4 ) 

                    = x4 + α76 x3+ α251x2 + α81 x + α10 

        All operations performed in te calculation of this 

generator polynomial are done in GF(28) . 
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Table 3.2  Minimal polynomials of the elements  of  GF(26) 
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Table 3.3 

 Generator polynomials of all the BCH codes  of length 63 
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Appen.:  Division circuit for dividing  X(D)  by G(D) 

     X(D) = x0+  x1D + x2D
2 + …+ xn-1D

n-1 

        G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k 

Note :  1. The high-order coefficients  are input first . 

             2. First output is coefficient of  Dn- 1  of quotient 

             3. Shift register contains coefficients of  remainder  

                 r(D) = r0+ r1D +r2D
2 + …+ rn-k-1D

n-k-1 

 

 


