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3.1 Binary BCH Codes

= BCH codes are a large class of multiple random error-
correcting codes , first discovered by A. Hocquenghem in
1959 and independently by R.C. Bose and D. K. Ray-
Chaudhuri in 1960.

« The first decoding algorithm for binary BCH codes was
devised by Peterson in 1960. Since then Peterson’s algorithm
has been refined by Berlekamp, Massey , Chien , Forney and
many others.



= Foranyintegerm =3 and t =2™-1 | there existsa
primitive BCH code with the following parameters :
n=2m-1 n-Kk =mt
dpin =21 +1 (3.1)
This code can correct t oe fewer random errors over a span
of 2m-1 bit positions .

3.2 Generation of BCH Codes

» The generator polynomial of a t-error-correcting BCH codes
of length 2™ -1 s given by

g(X) =LCM { \Vl(x)a \|’3(X)9 seey \|’2t-1(x)} (32)
where y;(X) Is the minimum polynomial of the primitive
element In GF(2 ™).

Since the degree of g(x) is mt or less , the number of parity-
check bits , n-k , of the code Is at most mt .



Example: m=4,t=3
Then n=24-1=15, n-k=mt=12 thus k=3
The code is a(15,3) code.
The primitive polynomial p (x)=1 +x+x*
Wy(x) = 1 +x+ x4
Ps(x) =1 +x+x%+x3 + x4
Ws(x) =1 4%+ x2
Thus g(x) = LCM {p;(x), 5(x), Ys(x) )

= P,(x) W;(x) ws(x)
= 14X+ x2+ x4+ x5+ x8+ x10



Table 3.1 Minimal polynomials of the elements in GF(24)

Conjugates Minimal polynomials
a o of, o® mx)=1+z+ 1!
o’ et of al® =g myx)=1+x+4x*
o a® ot? o = mi@)=1+x+2+23+2
a* a® ' = q, o*? = o mdx)=1+zx+1
o’ o'? mgx) =1+ x+x°
o’ o?, o™ = o, a® = o® mex)=1+zr+2+2°+x
o o', 0 = a!? o = o!! mqx) =1+ 2+ «*
o® o' =a,a®® =0 o® = o mglx) =1+ x+x*
o’ a® = o, 0¥ = 0 o2 = o1? mex)=1+x+x*+2>+a
o' o® = o Mm@ =1+ 1+ 2
at? o?=o, q* =o' ¥ =q" my(x) =1+ +4*
o'? o =0’ a® =0’ 0¥ = o® myx)=1+z+2* + 5 + 4
o 0% = o1l o82 = o7 o4 = o4 Mm@ =1+ + 54
oM o2 = o1 g% = gll 112 =y Mmys) = 1+ 9% + 1
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3.3 Reed-Solomon Codes
3.3.1 RS Codes over GF(2m)

The Reed-Solomon codes ( RS codes) are nonbinary cyclic
codes with code symbols from a Galois field. They were
discovered in 1960 by I.Reed and G. Solomon at MIT .

In the decades since their discovery , RS codes have enjoyed
countless applications from compact disc and digital TV in
living room to spacecraft and satellite in outer space.

The RS codes with symbols from GF(2 ™) are the most
Important codes in application.

Let be a primitive symbol in GF(2 ™).
For any positive integer t = 2™-1 there exists a t-symbol —

error- correcting RS code with symbols from GF(2 ™) and the

following parameters :
;



n=2m-1

n-k=2t

k=2m-1-2t

di,=2t+1=n-k+l (3.3)

Example :
m=8, t=16
n =255, k=n-2t= 223
d.. =32

It is a (2595, 223 ) RS code . The code is NASA standard code for
satellite and space application .



3.3.2 Generation and Encoding of RS Codes
= The generator polynomial of RS codes are given by
g(x) = (X+a ) (X+a?) ... (x+a?t)
= Qo+t O X+ 0o X2t t gy X+ X (3.4)
where ¢g,e GF(2™M).
It is noted that g(x) has a,a?, ...,a°t asroots.
« Theencoding of RS codes can be done as follows.
Let m(X) =my+ mx +myx? +... +m_x k1 bethe message
polynomial.
Dividing x?t' m(x) by g(x) , we have
X2t m(x) = a(x) g(x) + b(x) (3.5)
where b(x) =by+bx+b,x? +... + b, X1 (3.6)
IS the remainder.
= The encoding circuit is shown in Fig. 3.1
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3.3.3 RS Codes for Binary Data

= Everysymbol in GF(2 ™) can be represented by a binary
m-tuple , called m-bit byte..

= Suppose an ( n,k) RS code is used for encoding mk bits
of message sequence .This message sequence is first divided
Into k m-bit bytes. Each m-bit byte is regarded as a symbol
iINnGF(2M) .
The k-byte message is then encoded into n-byte codeword
based on the RS encoding rule.

By doing this , we actually expand a RS code with symbols
from GF(2™) Into abinary (nm, km) linear, called a
binary RS code .

« Binary RS codes are very effective in correcting bursts of
bit errors as long as no more than t bytes are affected.

11



= A popular RS code is the (255, 223) code over GF (28) .
This code has a minimum distance of d_;, = 255-223+1
=33 and is capable of correcting 16 symbol errors.

« Example # 1: RS(15,9) code

Let n=24%-1=15 , Construct a primitive three-error correcting RS code over
the Galois field GF (2*) using the primitive polynomial
p(x)= x4+ x+1,
The code generator has a,a?, a® ,a*, a’,a® as roots.
The generator of the (15,9) code is
g(x)=(x+a)(x+a?)(x+a® ) (x+a*)(x+a)(x+a® )
=af+ a¥x+afx?+ ol x3+ al“x? + a9 x5+ xb
If the 4-bit data stream 5,2,1,6,8,3,10,15,4 are to be encoded. Find the
systematically encoded code polynomial .

12



Sol. t=3
m(x) = 5+ 2x + x2+ 6x3 +8 x*+ 3x5 +10 x5+ 15x7 + 4x?®
Using the vector —to —power conversion

5=0101 €-> a8 ,2=0010 € a,1=0001 &1,...

The message polynomial ( expressed in power form ) is the
expressed as
m(x)=ad +ax+x2 +a x3+ a’ x*+ af x5 + a? x5+
012 X7 + a2 x8
Dividing x® m(x) by g(x) to obtain the remainder
b(x)=a® +a? x+ a™x? + a3 x3+ a® x*+ ax®
then we obtain
c(x)=ad +a? x+ax? +a’x3+ a’ x4+ ax® + a8 x5+
ax’+x8 +a%x? + & x10+ g x1 + a? x12 + g'2x13+
02 X14

13



Example # : RS (255,223 ) RS code
P(X) =x8+ xH x3+ x2 + 1.
g(x)= M;.;*(x-a’)

or p(x) =x8+x7+x2+x+1,
g(x) = ”j=112143 (x- (a’)])

14



3.4 Decoding of BCH Codes and RS Codes

« There are many algorithms which have been developed
for decoding BCH codes. In general , the algebraic
decoding binary BCH codes have the following steps :

(1) Computation of the syndrome

(i1) Determination of an error- location polynomial whose
roots provide an indication of the error- locations.
The Berlekamp-Massey algorithm is an efficient
algorithm for determtning the error-locator
polynomial .

(i) Finding the roots of the error-location polynomial .
This is usually done using the Chien search , which is
an exhaustive search over all the elements in the finite
field.

15



3.4.1 Decoding of RS Codes

» Decoding of a RS code is similar to the decoding of a BCH
code except an additional step is needed.
The additional step is evaluating the error vales .

« The Berlekamp-Massey algorithm is also an efficient
algorithm for determining the error-locator polynomial
for decoding RS codes.

A typical approach to find the error values is using
Forney’s Algorithm developed by J.D. Fornry in 1965.

In 1965, E. Berlekamp presented an extremely efficient algorithm for both BCH

and RS codes.
Berlekamp’s algorithm allowed for the first time the possibility of a quick and
efficient decoding of dozens of symbol errors in some powerful RS codes. The

algorithm was modified by J.L. Massey in 1969.

16
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3.4.2 Computation of the Syndrome

« Consider a code with codeword polynomial c(x) and
generator polynomial g(x).

Since g@)=g@)=...=¢g(?t)=0
we have c(a)=c(0?)=...=c(a?t)=0
If the received polynomial r(x) is expressed as
r(x) = c(x) + e (x) (3.7)

then the syndrome S=(S,,S,,...,S,; ) can be
obtained by
S; =r(a) =c(a))+ e(a)
—e(o) j=1,2,..,2t (3.8)

This gives a relationship between the syndrome and the
error pattern.

18



3.4.3 Syndrome and Error- Location Polynomial
« Suppose e(x) hasverrors ,v =t, at the locations specified
by
XXz, Xy
e, e(X) =Xt +x24+ 4 xb (3.9)
where 0=j);<], <...<j,

From equations (3.8) & (3.9), we have the following relation
between syndrome components and error location:

S;=e(a) = ! +a2+ ...+ ak
S,=e(a?) = (a)1)?+ (a)2) 2+ ...+ (0))?

S, =e(e?) = (a1t )+ (a2) 2+ ...+ (@) (3.10)
If we can solve the 2t equations, we can determine

ol, a?, ..., o
19



« The unknown parameter p = a)xfor k= 1,2,..., v are called
the “ error location numbers ”.

 When, o, 1 <K = v, are found, the powers, j, give us
the error locations in e(x).

These 2t equations of (3.10) are known as power-sum
symmetric function.

« EQ.(3.8) can be written as

S; =B, tB, +...t B,
S, = B, +P,2 +...+ B°

S = B2t + Byt .t B2 (3.11)

20



= Suppose that v =<'t errors actually occur .Define the error-
location polynomial 6(x) as

o(x)=(1+p;x)(1+P,x)...(1+B,X)

=0, to X+t o, X°+... to, X (3.12)

o(x) has g, 1 ,p,*,...,p,t asrootsand s,=1

Note that p.= a«.
If we can determine o(x) from the syndrome S={S, S,, ...,
S, }, then the roots of o(x) give us the error-location
numbers f, .

« An efficient procedure, known as Chien search , to find these
roots , and hence the error-locations, was given by R.T.
Chien in 1964.

21



» Coefficients of the location polynomial Eq. (3.12) can be
expressed as in the following manner :

o, =1
c,=p, +B, ...+ B,

6, =P By + BBt .. AP B,

O-v: Bl BZ BS "‘Bv-l Bv
This set of equations is known as the elementary symmetric
functions and is related to the system of equations ( 3.11 )

as follows .
S;+e;, =0
S,+6,S,=0
S3t+6,5,+6,S, =0

Syte1 Sy gt e v 6, Sy 16,5,, =0 ( 3-13)

These equations are called generalized Newton identities .
22



Special cases : Decoding BCH Codes with Small t
The o, can be solved directly as follows.
For t=1, o, =S;
Fort=2 ,6, =S, 6,=(S; +S;3)/S,

For t=3, 6, =S; 06,= (S5,%5; +S5)/(S; +S;3)
o= (S;° +33) + S;0)

Fort=4, o, =S5,

0, ={S1(S;" +5;) +S5(Ss+S,°) }/{S5(S;% +S3) +S,(S5+5,°) }
o= (S;° +S3) + S;0,)

o, ={(S*S;+S5) +(S5,° +53)0,}/S;

23



3.4.4 Berlekamp-Massey lterative Algorithm for

Finding the Error-Location Polynomial

« The B-M algorithm basically consists of finding the coefficient
of the error-location polynomial, ¢,,0,,..., 7,.

« The algorithm proceeds as follows . The first step is to
determine a minimum -degree polynomial ¢(Y)(x) that satisfies
the first Newton identity described in Eq. (3.13) .

= Then the second Newton identity is tested.
If the polynomial ¢()(x) satisfies the second Newton identity
In Eq. (3.13),
then ¢®(x) =o6W(X).
Otherwise the decoding procedure adds a correction term
to 6)(x) in order to form the polynomial 6(®(x), which

IS able to satisfies the first two Newton identities.
24



= This procedure is subsequently applied to find ¢©(x) , and the
following polynomials, until determination of the polynomial
¢29(x) is complete.

« This algorithm can be implemented in iterative form.
Let the minimum-degree polynomial obtained in the
H- th iteration , denoted by ¢ (X) , be of the form
cW(x) = 1+06, Wx+06,0)x+...+
6, x L
(3.14)
where L, is the degree of the polynomial ¢()(X) .
= This minimum-degree polynomial 6™ (x) satisfies the first
I Newton identities in EqQ.(3.13)

25



= To find o®*D(X) , we first check whether the coefficients of
¢ (X) satisfy the next generalized Newton identity ; that is,
Sps1 * Tzt W Spyqye =0 7 (3.15)
If yes , 6""D(x) = 6®™(X) is the minimum-degree
polynomial whose coefficients satisfy the generalized Newton
Identities.
If not ,a correction term is added to ¢()(X) to obtain
6(i*D(X) .
= To test the equality of Eq. (3.15) ,we calculate the discrepancy
du = Sy 10y () S,to, () Syp t.o
oW Sp+l - L (3.16)
Ifd,=0,weset o"(x)=0cM(x)

1fd,#0,, we need to add a correction term to ¢*(x)
to obtain o**(x) 26



In the calculation of the correction term , the algorithm
resorts to a previous step p such thatd,#0 and (p-L,)

is a maximum , where L is the degree of of ¢)(x) .
Massey demonstrated that ,when d,#0 , one must have
Lp+1 = Max [Lp J Lp + n- p]
Then
o™ )(x) = s™(X) + dlu dp-l X (=9 gP)(X) (3.17)

The B-M algorithm can be implemented in the form of a table,
as shown below.

Note that
G('l)(X) = G(O)(X) =1, dl = Sl
cD(x) =1+ S,x

27



-1 1 1 0 -1
0 1 S 0 0
1 1+ S, X

2

2t

28



Berlrkamp-Massey Algorithm
1. Set the initial conditions before taking the iterative step.
cD(x) =1 L,=0 d;=1
cO(x) =1 L,=0 dy=s
2. 1fd,=0,thenset oD(x)=06M(x) and L, =L,
3. 1fd,#0,, then find ¢*(x) prior to ¢®(x) such that
d#0,p = pn,and the number (p-L,) hasthe
largest number.  Then
o™ D(x) = 6W(X) + dlLl dp-l X (=9 g(P)(x)
L, =max[L,, L,+p-p]
and dq=S,,te, D § 1 +6, D S |+ +

1
O-L(IJ+1)(H+ ) S|.|+2 — L(u#1)
where 5,V |1 < i =< L, , are the coefficients of

(n+1)
o 1)(X) . s



Example:
« For the (15, 9) RS code over GF(2%)

Use the Berlekamp-Massey algorithm to find the error-locator
polynomial. The received polynomial is

r (X) — X8_|_ q11 X7 + a8x5+ a10 X4_|_ a4 X3 + a3 X2_|_ G8X+ q12

Solution: n—-k=6

a® =1

8 ra' X +a® X+ttt +at X +ai Xl +alx+at?

=
Il
A

ﬁ
~

N OO ,;mov O wmXx
w N—r
Il Il
QOHQ HHX

N e
1l
o1

NN
i

=

o

(o]
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Solution
ot (x) = 6t)(x) + d,d, L x W) 6l)(x)
L,,=max[L,, L, +p- p]

—_ 1 1
dm, = Sy+2+0'1 (n+1) Sm, +o, (n+1) Sy—l + ...+

+1
O'L(u+1)(ll ) Sp+2 — L(p+1)

1. p=0, Choose p=-1
c(x) = 6O(x) + dyd ;! xo6((x) = 1-x = 1+x
d,;=S,+te, M S, =1+1=0
L, = max[L,, L;+0+1] =1

2. p=1
Since d,=0,
we have o6@Ox)=06WU(x)=1+x and L,=1L,=1
d,= S;t6,@ S, +6, @S, =1+0a® =qa'0

31



3. p= 2, Since d, F0, p must be chosen such that (p— L)
has the largest value. We choose p=10
6®(x) = 6@ (X) - d,d, x2 6O(x)
=1+ x +a0 x?
=1+0° +0l0 =0
Finally , we obtain
6(x) = 1+ x+ai0 x?

32



3.4.5 Chien Search

After the determination of the error-location polynomial,
the roots of this polynomial are calculated by applying the
Chien search. The roots of 6(x ) in GF(2™M ) can be
determined by substituting the elements of GF(2™) in 6(x) .

If o(@)=0, then o istherootofo(x) .
Thus, o' =a™! is an error-location number.

To decode the first received digit r,, , we check whether a
is aroot of 6(x) .

If (o) =0, then is erroneous and must be corrected.

If 6(a)#0,thenr, , iserror-free.

To decode r, ., we test whether o(a' ) =0 or not.
Ifo(a' ) =0, r,; iserroneous and must be corrected ,
otherwise r,; Iserror-free .

A Chien-search circuit is shown in Fig.3. 2

33



Fig.3.2 Chien-search circuit
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3.4.6 Error-Value Calculation
« The generator polynomial of (n, k) RS codes can be
expressed by
g(x)=(x+ta ) (x+ a?)..(x+ a?")
=g, g Xt X 2+ H gy x M Hx (318
where g. ¢ GF(2™).
If c(x) is the transmitted codeword and r(x) is the
corresponding received word, then the error pattern caused

by the channel impairments is given by

e(x) =) +ex)= 2 =" ex (3.19)
In order to determine e(x) , we need to find the location ¥
and the error values ¢; .

K
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= The error locator polynomial for a v -error-correcting RS
code is expressed as

cox)=1 ,_,» 1+ B . X)
=(1+B,;x)(1+B,x) . (I+B,x)
=]+ g, xt o,x¥*+...+t 0, x” (3.20)
where ﬁ K= ak .
The error locations can be determined by the Berlekamp-
Massey algorithm.
« Let the syndrome polynomial be
s(x)= S, x+8,x2+...+S8 x7=2%,,% §x' (321

and define the error-evaluator polynomial as
Qx) = o (x) s(x)
=]+(S,+ o,)x+(S,+ (o, 8+ g, )+ ...+
S,+o;s,,;+.to,)x” (3.22)
36



= Suppose that v errors have occurred in locations
corresponding to the indices j; < Jo<.e <],
Then , the syndrome components can be expressed as

S =2, 4" Y, 67 1 =qg=2t (3.23)

q
where Y, =ei* is the error value at location j,

and ﬁ K= QL x
« For convenience sake, let us consider the syndrome
polynomial of infinite degree such that

s (X)= 2 g=0" SX7
Then , from , we obtain
S(X)= TP L g ? Y L1XE
=% q? Y, X, 67X

37



Note that

Yoo PBIX = I+ B X+ X+ ...

= 1/(1- B x) =1/ (I+X)

Then we have

S (X) =Ty Yoo/ (IHBX)
Using the above equations , the error-evaluator polynomial
Z(x) of degree less than v can be written as

Z(X) = ZK =1 ¥ YK I-Ip:lv ( 1+Bpx)

psK
Thus , the error-value at location x =, Is easily obtained
as

Ym = Z(Bm_l) / rlpzlv ( :I-_l_lsplsm_1 )
pFmM

and then
e(X) =X Y, X"

38



Example :

Consider the triple-error-correcting (31,25) RS code. The
received polynomial is

r(x) = 08 X2 +a2x® + ax10
si=ra)=a® +a” + all =«
o= ra?) = ! + o12 4 2! = o2!
83 = o) = al® + a!7 + o3 = o23
84 = I‘(ﬂ"} = olb + u22 + 20 = ol
S5 = r'(aﬁ) = o8 + 27 + 20 = o2

39



r(x)= (00a20 00200 0 0000000000000000000000)
S=(S.,S,, ..., 8 )= (0,0°,02, o 0?,a!3)

The error locator polynomial 6(x) can be found by
applying the iterative algorithm as follows :

1. p= 0, Choose p= -1
cM(x) = 6O(X) + dyd ;! x6D(x) = 1+0Qx
d,=S,+¢, ¥ S, = 0?1+ g2 = al?

L, = max[L,, L;+0+1]
2. p=1 p=0
6@(x) = 6M(x) + d; d,* x6D(X) = 1+01x +ol3al x =1+020x
and L,=1L1,=1
d,= S;+a,@ S, = 0?3+ g1V = @24

Note: L, =max[L,, L,+p- p]
The number (p-L,) has the largest number.

40



3.

p=2 p=0
6®)(x) = 6?)(x) + d, d,* x?6O(x)
=1+ 0%+ a2 x?
d,= S, 40, @ S, +6,® S, = a5+ 12+ g3 = g3

p=3 p=2
c(x) = 6®)(x) + dyd,* X% 6(2)(x)
=1 +al’x + al®?

d4 — SS+O'1 4) S4+O'2 4 83 — (115+ (112 + al3 — (18
=g+ a+a’ =%

69(x) = 60(x) + d d 1 3 6(x)

d: = Sg+o, ® Sc+6,0 S, +6,0) S;= a5+ a2+ a1 = b

41



6. p=35 p=4
6®(x) = 6O(x) + d;d,* x 6¥(x)
=1 +a*X + a® X%+ al’x®

Since o(x) = 6 , the error —locator polynomial is
o(x) = 1 +a*x + a® X+ al’x3
By the Chien search method , we can easily find that o?! , 0?® and a?°

roots of o(x) . The reciprocals of these roots are to be the error-location
number of e(x). These numbers are calculated as a!° , o° and o?.

Thus, the triple errors occurs at positions x1° | x>and x2.

42



To find the error-values , we first calculate the error-evaluator
polynomial z(x) by using eg. (3.22).

Z(X) = ZK =1 ¥ YK l_[p:1V ( 1+Bpx )
pofx
=1+ (at o?) x+ (a2 + a*a+ a®) X?
+ (a23+ a4a21 + (15(1 + (117) X3

43



Y,=Z(?) /(1+a%a?) (1+al%—2)
:q26/a18 :a8

Ye=Z(a®) /(1+a?2a>) (1+alfa-10)
:q30/a28 :a2

Yo=Z (@) /(1+a?a-20) (1+ a;a10)
=al%a® =a

Thus , the error-pattern polynomial is easily found as
e(x) =Y,x2 + Y x>+ Y o x10
=a® x? +ax° + ax1o

44



3.5 Shortened RS Codes

« Insystem design, if a code of natural length or suitable
number of information digits can not be found , it may be
desirable to shorten the code to meet the requirement.

« Given an (n,k) cyclic code C, consider the set of codewords
for which the L leading high-order message digits are
identical to zero .There are 2%~ such codewords and they
form a linear subcode of C. If we delete the L zero
message digits from each of these codewords, we obtain a
set of 2kL words of length n-L . These 2%t shortened
words form an ( n-L , k-L ) linear code. This code is called
a shortened cyclic code. The shortened code has the same
error-correcting capability as the original code but is not
cyclic is not cyclic in general.
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» The (255, 251) RS code is designed over the Galois field
GF ( 28) with error-correcting capability t = 2.
Shortened RS codes Cxs(32,28) and C(28, 24 ) are
obtained from the original RS code Cx¢(255, 251) by

deleting 227 digits and 223 digits, respectively , from the
255 codewords.

These two codes are the constituent codes of the compact
disc (CD) error-control coding system.

Both shortened RS codes and the original RS code have
the same generator polynomial.

The generator polynomial is given by
g(x)=(xta)(xta*)(xta®)(x+a*)
All operations performed in te calculation of this

generator polynomial are done in GF(29) .
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Table 3.2 Minimal polynomials of the elements of GF(2°)

Elements Minimal polynomials
a, o, o, alf, 32 1+ X+ Xx°©

01’3, Q‘f6, th12(1'24, a48a33 : 14+ X+ X2 + X4 + X6
OKS, O:!]‘O, aZO, 0.’40, 0617, 0334 1+ X + XZ + XS + X6
o7 14 q28 o6, ¢49, ¢3S 1+ X3 4+ x6

o, o8, 36 1+ X2+ X3

(1‘11,(}!22, {’144, szs, CY.SO, Of37 1+ XZ + X3 + XS + X6
Ot13,a26, C¥52, 0541, 0!19,(138 14+ X+ X3 + X4 4+ X6
als,a30,a60,a57,a51,a39 1+ X2 + X4 + XS +X6
a2l o2 1+ X+ X?
0523,0646,(}{29,(]{58,6!53,&43 14+ X + X4 + XS + X6
0627,(:!54, O‘.’45 14+ X+ X3

0531’ Ot62, (),;61, 0359’ CBSS, 0547 1+ XS + X6
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Table 3.3

Generator polynomials of all the BCH codes of length 63

n k t g(X)

63 57 1 g(X)=1+X+Xx°
51 2 X =(0+X+X)0+X+ X2+ X+ X5
45 3 mX)=(1+X+X+ X+ X0g((X)
39 4 @ =01+X+X0g1X)
3% 5 g =01+X+X)gul)
30 6 ge(X)=(1+X2+ X3+ X+ XOg5(X)
24 7 X)) =1+X+X3+ X+ X0g(X)
18 10 gm<x> =14+ X2+ X4+ X3 + X)g:(X)
16 11 gn(X)=0+X+X)gnX)
10 13 gnX)=0+X+X*+X +X%gu(X)

7 15 g15<X> 1+ X + X)gi(X)
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Appen.: Division circuit for dividing X(D) by G(D)
X(D) = x,+ x,D +x,D?+ ...+ x D"
G(D) = go* gD +g,D?+ ...+ g, , D™

Note : 1. The high-order coefficients are input first.

2. First output is coefficient of D™ of quotient

3. Shift register contains coefficients of remainder
r(DY=r.+r.D +r.D2+ ___+r_, .Dnk1

.\ ‘\ / '
I .\I“}:n | @ \“".\’) o \}“.L',' - K1 | @ )-ln K /.-}‘n k
| ‘ T \T’ T \1/

'r“ a— - Y - ’/'-\_\ r— ."‘ \ y \\ —~
—’v'l »i l —> —- —’wl ol o 1! l-+ ! L’.'.—’l(\ + }———’nﬂ

Ik'x _J l\ : /'( ‘ — ._‘// \ % ",‘ o __j
Input
- VCPRSSEPRD 4
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