
1

 Chapter 3

 BCH Codes and RS Codes

3.1 Binary BCH Codes

3.2 Generation of BCH Codes

3.3 Reed-Solomon Codes

3.4 Decoding of BCH Codes and RS Codes

3.5 Shortened RS Codes

2

3.1 Binary BCH Codes

 BCH codes are a large class of multiple random error-

 correcting codes , first discovered by A. Hocquenghem in

 1959 and independently by R.C. Bose and D. K. Ray-

 Chaudhuri in 1960.

 The first decoding algorithm for binary BCH codes was

 devised by Peterson in 1960. Since then Peterson’s algorithm

 has been refined by Berlekamp, Massey , Chien , Forney and

 many others.

3

 For any integer m ≧ 3 and t ≦ 2 m -1 , there exists a

 primitive BCH code with the following parameters :

 n = 2 m -1 , n -k ≦ m t

 dmin ≧ 2 t + 1 (3.1)

 This code can correct t oe fewer random errors over a span

 of 2 m -1 bit positions .

3.2 Generation of BCH Codes

 The generator polynomial of a t-error-correcting BCH codes
of length 2 m -1 is given by

 g(x) = LCM { ψ1(x), ψ3(x), …, ψ2t-1(x)} (3.2)

 where ψi(x) is the minimum polynomial of the primitive
element in GF(2 m) .

 Since the degree of g(x) is mt or less , the number of parity-
check bits , n-k , of the code is at most mt .

4

Example : m =4 , t =3

 Then n = 24 -1 = 15 , n-k = m t = 12 thus k = 3

 The code is a (15 ,3) code.

 The primitive polynomial p (x) = 1 +x + x4

 ψ1(x) = 1 +x + x4

 ψ3(x) = 1 +x + x2 + x3 + x4

 ψ5(x) = 1 +x + x2

 Thus g(x) = LCM {ψ1(x), ψ3(x), ψ5(x) }

 = ψ1(x) ψ3(x) ψ5(x)

 = 1 +x + x2 + x4 + x5 + x8 + x10

5

Table 3.1 Minimal polynomials of the elements in GF(24)

6

Table 3.1 Minimal polynomials of the elements in GF(24)

7

3.3 Reed-Solomon Codes

3.3.1 RS Codes over GF(2 m)

 The Reed-Solomon codes (RS codes) are nonbinary cyclic

codes with code symbols from a Galois field. They were

discovered in 1960 by I.Reed and G. Solomon at MIT .

 In the decades since their discovery , RS codes have enjoyed

countless applications from compact disc and digital TV in

living room to spacecraft and satellite in outer space.

 The RS codes with symbols from GF(2 m) are the most

important codes in application.

 Let be a primitive symbol in GF(2 m) .

 For any positive integer t ≦ 2 m -1 , there exists a t-symbol –

error- correcting RS code with symbols from GF(2 m) and the

following parameters :

8

 n = 2 m -1

 n-k = 2 t

 k = 2 m -1 -2 t

 dmin = 2 t + 1 = n-k+1 (3.3)

Example :

 m = 8 , t =16

 n =255, k = n-2t = 223

 dmin = 32

 It is a (255, 223) RS code . The code is NASA standard code for

satellite and space application .

9

3.3.2 Generation and Encoding of RS Codes

 The generator polynomial of RS codes are given by

 g(x) = (x+α) (x+ α2) … (x+ α2 t)

 = g0 + g1 x + g2 x 2 + … + g2t -1 x 2t-1 + x2t (3.4)

 where gi ε GF(2 m) .

 It is noted that g(x) has α ,α2 , … ,α2 t as roots .

 The encoding of RS codes can be done as follows.

 Let m(x) = m0 + m1x + m2x 2 + … + mk-1x k -1 be the message

polynomial.

 Dividing x2 t m(x) by g(x) , we have

 x2 t m(x) = a(x) g(x) + b(x) (3.5)

 where b(x) = b0 + b1x + b2 x 2 + … + b2t-1 x 2t -1 (3.6)

 is the remainder.

 The encoding circuit is shown in Fig. 3.1

10

Fig.3.1 RS code encoder

11

3.3.3 RS Codes for Binary Data

 Every symbol in GF(2 m) can be represented by a binary

m-tuple , called m-bit byte..

 Suppose an (n,k) RS code is used for encoding mk bits

of message sequence .This message sequence is first divided

into k m-bit bytes. Each m-bit byte is regarded as a symbol

in GF(2 m) .

 The k-byte message is then encoded into n-byte codeword

based on the RS encoding rule.

 By doing this , we actually expand a RS code with symbols

from GF(2 m) into a binary (nm , km) linear , called a

binary RS code .

 Binary RS codes are very effective in correcting bursts of

bit errors as long as no more than t bytes are affected.

12

 A popular RS code is the (255, 223) code over GF (28) .

This code has a minimum distance of dmin = 255-223+1

=33 and is capable of correcting 16 symbol errors.

 Example # 1: RS(15,9) code

 Let n = 24 - 1 =15 , Construct a primitive three-error correcting RS code over

the Galois field GF (24) using the primitive polynomial

 p(x) = x4 + x + 1.

 The code generator has α ,α2 , α3 ,α4 , α5,α6 as roots.

 The generator of the (15 ,9) code is

 g (x) = (x+ α) (x+ α2) (x+ α3) (x + α4) (x+ α5) (x+α6)

 = α6 + α9 x + α6 x2 + α4 x3 + α14 x4 + α10 x5 + x6

 If the 4-bit data stream 5,2,1,6,8,3,10,15,4 are to be encoded. Find the

systematically encoded code polynomial .

13

 Sol. t =3

 m(x) = 5+ 2x + x2 + 6x3 +8 x4 + 3x5 +10 x6+ 15x7 + 4x8

 Using the vector –to –power conversion

 5 = 0101 --> α8 , 2 = 0010 > α , 1 = 0001 > 1 , ….

 The message polynomial (expressed in power form) is the

 expressed as

 m(x) = α8 + αx + x2 + α5 x3 + α3 x4 + α4 x5 + α9 x6+

 α12 x7 + α2 x8

 Dividing x6 m(x) by g(x) to obtain the remainder

 b(x) = α8 + α2 x + α14x2 + α3 x3 + α5 x4 + αx5

 then we obtain

 c(x) = α8 + α2 x + α14x2 + α3 x3 + α5 x4 + αx5 + α8 x6+

 αx7 + x8 +α5 x9 + α3 x10 + α4 x11 + α9 x12 + α12x13+

 α2 x14

14

 Example # : RS (255,223) RS code

 p(x) =x8 + x4+ x3 + x2 + 1.

 g(x) = Πj =1
32 (x -α j)

 or p(x) =x8 + x7 + x2 + x + 1.

 g(x) = Πj = 112
143 (x - (α 11) j)

15

3.4 Decoding of BCH Codes and RS Codes
 There are many algorithms which have been developed

for decoding BCH codes. In general , the algebraic
decoding binary BCH codes have the following steps :

 (i) Computation of the syndrome

 (ii) Determination of an error- location polynomial whose

 roots provide an indication of the error- locations.

 The Berlekamp-Massey algorithm is an efficient

 algorithm for determining the error-locator

 polynomial .

 (iii) Finding the roots of the error-location polynomial .

 This is usually done using the Chien search , which is

 an exhaustive search over all the elements in the finite

 field.

α

16

3.4.1 Decoding of RS Codes

 Decoding of a RS code is similar to the decoding of a BCH

 code except an additional step is needed.

 The additional step is evaluating the error vales .

 The Berlekamp-Massey algorithm is also an efficient

 algorithm for determining the error-locator polynomial

 for decoding RS codes.

 A typical approach to find the error values is using

 Forney’s Algorithm developed by J.D. Fornry in 1965.

 In 1965, E. Berlekamp presented an extremely efficient algorithm for both BCH
and RS codes.

 Berlekamp’s algorithm allowed for the first time the possibility of a quick and
efficient decoding of dozens of symbol errors in some powerful RS codes. The
algorithm was modified by J.L. Massey in 1969.

17

 Chien,R.T.,” Cyclic Decoding Procedure for the Bose - Chaudhuri- Hocquenghem Codes ,”

IEEE Trans. Inf. Theory , vol. IT-10, pp.357-363 ,October 1964

 Forney , G.D., „ On Decoding BCH Codes ,” IEEE Trans. Inf. Theory , vol. IT-11, pp.549-557,

October 1965,

 Berlekamp , E.R., “On Decoding Bose - Chaudhuri- Hocquenghem Codes , “ IEEE Trans. Inf.

Theory , vol. IT-11, pp.577-579 ,October 1965

 Berlrkamp , E.R. Algebraic Coding Theory , McGraw0Hill, 1968

 Massey, J.L.,” Shift Register Synthesis and BCH Decoding , “ IEEE Trans. Inf. Theory , vol. IT-

15, pp. 122-127 Jan. 1969.

18

3.4.2 Computation of the Syndrome

 Consider a code with codeword polynomial c(x) and

generator polynomial g(x).

 Since g(α) = g (α2) = … = g (α2 t) = 0

 we have c(α) = c (α2) = … = c (α2 t) = 0

 If the received polynomial r(x) is expressed as

 r(x) = c(x) + e (x) (3.7)

 then the syndrome S = (S1 , S2 , … , S2 t) can be

 obtained by

 Sj = r (αj) = c(αj)+ e(αj)

 = e(αj) j = 1 ,2 ,…, 2 t (3.8)

 This gives a relationship between the syndrome and the

error pattern .

19

3.4.3 Syndrome and Error- Location Polynomial

• Suppose e(x) has ν errors , ν ≦ t , at the locations specified

by

 xj1 , xj2 , …, xjν .

 i.e. e(x) = xj1 +xj2 + …+ xjν (3.9)

 where 0≦ j1 < j2 < … < jν

 From equations (3.8) & (3.9), we have the following relation

between syndrome components and error location:

 S1 = e(α) = αj1 +αj2 + …+ αjν

 S2 = e(α2) = (αj1)2 + (αj2) 2+ …+ (αjν)2

 .

 .

 S2 t= e(α2t) = (αj1)2t + (αj2) 2t + …+ (αjν)2t (3.10)

 If we can solve the 2t equations, we can determine

 αj1 , αj2 , … , αjν

20

• The unknown parameter βκ= αjκ
 for κ= 1,2,…, ν are called

the “ error location numbers ”.

• When , αjκ , 1 ≦ κ ≦ ν , are found, the powers , jκ give us

the error locations in e(x).

 These 2t equations of (3.10) are known as power-sum

symmetric function.

• Eq.(3.8) can be written as

 S1 = β1 + β2 + …+ βν

 S2 = β1
2

 +β2
2

 + …+ βν
2

 .

 .

 .

 S2t = β1
2t

 + β2
2

t
 + …+ βν

2 t (3.11)

21

 Suppose that ν ≦ t errors actually occur .Define the error-

location polynomial σ(x) as

 σ(x) = (1 + β1 x) (1 + β2 x) … (1 + βν x)

 = σ0 + σ1 x+ σ2 x
2 + … + σν x

ν (3.12)

 σ(x) has β1
-1 , β2

-1 , …, βν
-1 as roots and σ0 = 1

 Note that βκ= αj κ
 .

 If we can determine σ(x) from the syndrome S = {S1, S2 , …,

S2t } , then the roots of σ(x) give us the error-location

 numbers βκ .

 An efficient procedure, known as Chien search , to find these

roots , and hence the error-locations, was given by R.T.

Chien in 1964.

22

 Coefficients of the location polynomial Eq. (3.12) can be
expressed as in the following manner :

 σ0 = 1

 σ1 = β1 + β2 + …+ βν

 σ2 =β1 β2 + β2β3 + …+βν-1 βν

 .

 σν = β1 β2 β3 …βν-1 βν

 This set of equations is known as the elementary symmetric
functions and is related to the system of equations (3.11)

 as follows .

 S1 +σ1 = 0

 S2+σ1 S1 = 0

 S3+σ1 S2 +σ2 S1 = 0

 .

 S2 t+σ1 S2 t -1 + … + σν-1 S2 t-ν+1+σνS2 t-ν = 0 (3.13)

 These equations are called generalized Newton identities .

23

Special cases : Decoding BCH Codes with Small t

 The σi can be solved directly as follows.

 For t = 1 , σ1 = S1

 For t = 2 , σ1 = S1 σ2 = (S3 + S1
3) / S1

 For t = 3 , σ1 = S1 σ2 = (S1
2S3 + S5

) / (S3 + S1
3)

 σ3 = (S1
3

 + S3
) + S1 σ2)

 For t = 4 , σ1 = S1

 σ2 = { S1 (S1
7
 + S7

) + S3 (S5 + S1
5) } / {S3(S1

3
 + S3

) + S1 (S5 + S1
5) }

 σ3 = (S1
3

 + S3
) + S1 σ2)

 σ4 = { (S1
2 S3 + S5

) + (S1
3

 + S3
) σ2 } / S1

24

3.4.4 Berlekamp-Massey Iterative Algorithm for

 Finding the Error-Location Polynomial

 The B-M algorithm basically consists of finding the coefficient

of the error-location polynomial, σ1 ,σ2 ,…, σν .

 The algorithm proceeds as follows . The first step is to

determine a minimum -degree polynomial σ(1)(x) that satisfies

the first Newton identity described in Eq. (3.13) .

 Then the second Newton identity is tested.

 If the polynomial σ(1)(x) satisfies the second Newton identity

 in Eq. (3.13) ,

 then σ(2)(x) = σ(1)(x) .

 Otherwise the decoding procedure adds a correction term

 to σ(1)(x) in order to form the polynomial σ(2)(x), which

 is able to satisfies the first two Newton identities.

25

 This procedure is subsequently applied to find σ(3)(x) , and the

 following polynomials, until determination of the polynomial

 σ(2t)(x) is complete.

 This algorithm can be implemented in iterative form.

 Let the minimum-degree polynomial obtained in the

 μ- th iteration , denoted by σ(μ)(x) , be of the form

 σ(μ)(x) = 1 + σ1
(μ) x + σ2

(μ) x2 + … +

 σLμ
(μ) x Lμ

 (3.14)
 where Lμ is the degree of the polynomial σ(μ)(x) .

 This minimum-degree polynomial σ(μ)(x) satisfies the first

 i Newton identities in Eq.(3.13)

26

 To find σ(μ+1)(x) , we first check whether the coefficients of

 σ(μ)(x) satisfy the next generalized Newton identity ; that is,

 Sμ+1 + Σk =1
Lμσk

(μ) Sμ+1-k
 = 0 ? (3.15)

 If yes , σ(μ+1)(x) = σ(μ)(x) is the minimum-degree

 polynomial whose coefficients satisfy the generalized Newton

 identities.

 If not ,a correction term is added to σ(i)(x) to obtain

 σ(i+1)(x) .

 To test the equality of Eq. (3.15) ,we calculate the discrepancy

 dμ = Sμ+1 +σ1
(μ)

 Sμ +σ2,
(μ)

 Sμ-1 + … +

 σLμ
(μ) Sμ+1 – Lμ (3.16)

 If dμ = 0 , we set σ(μ+1)(x) = σ(μ)(x)

 If dμ ≠ 0 , , we need to add a correction term to σ(μ)(x)

 to obtain σ(μ+1)(x)

27

 In the calculation of the correction term , the algorithm

resorts to a previous step ρ such that dρ ≠ 0 and (ρ – Lρ)

 is a maximum , where Lρ is the degree of of σ(ρ)(x) .

 Massey demonstrated that ,when dρ ≠ 0 , one must have

 Lμ+1 = max [Lμ , Lρ + μ- ρ]

 Then

 σ(μ+1)(x) = σ(μ)(x) + dμ dρ
-1 x (μ– ρ) σ(ρ)(x) (3.17)

 The B-M algorithm can be implemented in the form of a table,

as shown below.

 Note that

 σ(-1)(x) = σ(0)(x) = 1 , d1 = S1

 σ(1)(x) = 1 + S1 x

28

 --

 μ σ(μ)(x) dμ Lμ μ- Lμ ρ

 --

 -1 1 1 0 -1

 0 1 S1 0 0

 1 1+ S1 x . . .

 2

 .

 .

 .

 2t

29

Berlrkamp-Massey Algorithm

1. Set the initial conditions before taking the iterative step.

 σ(-1)(x) = 1 L-1 = 0 d-1 = 1

 σ(0)(x) = 1 L0 = 0 d0 = s1

2. If dμ = 0 , then set σ(μ+1)(x) = σ(μ)(x) and Lμ+1 = Lμ

3. If dμ ≠ 0 , , then find σ(ρ)(x) prior to σ(μ)(x) such that

 dρ≠ 0 , ρ ≦ μ , and the number (ρ – Lμ) has the

 largest number. Then

 σ(μ+1)(x) = σ(μ)(x) + dμ dρ
-1 x (μ– ρ) σ(ρ)(x)

 Lμ+1 = max [Lμ , Lρ + μ- ρ]

 and dμ+1 = Sμ+2+σ1
(μ+1)

 Sμ+1 +σ2
(μ+1)

 Sμ-1 + … +

 σL(μ+1)
(μ+1) Sμ+2 – L(μ+1)

 where σi
(μ+1) , 1 ≦ i ≦ Lμ+1 , are the coefficients of

 σ(μ+1)(x) .

30

Example:

• For the (15, 9) RS code over GF(24)

 Use the Berlekamp-Massey algorithm to find the error-locator

polynomial. The received polynomial is

 r (x) = x8+ α11 x7 + α8x5+ α10 x4+ α4 x3 + α3 x2+ α8x+ α12

Solution: n – k = 6

10

6

5

4

5

3

2

1

1282334410587118

15

0

1

1

1

)(

1 ,4

S

S

S

S

S

S

xxxxxxxxr

m

31

Solution

 σ(μ+1)(x) = σ(μ)(x) + dμ dρ
-1 x (μ– ρ) σ(ρ)(x)

 Lμ+1 = max [Lμ , Lρ + μ- ρ]

 dμ+1 = Sμ+2+σ1
(μ+1)

 Sμ+1 +σ2,
(μ+1)

 Sμ-1 + … +

 σL(μ+1)
(μ+1) Sμ+2 – L(μ+1)

1. μ=0 , Choose ρ= -1

 σ(1)(x) = σ(0)(x) + d0 d-1
-1 x σ(-1)(x) = 1-x = 1+x

 d1 = S2+σ1
(1)

 S1 = 1 +1 = 0

 L1 = max [L0 , L-1 + 0 + 1] = 1

2 . μ= 1

 Since d1 = 0 ,

 we have σ(2)(x) = σ(1)(x) = 1+x and L2 = L1 =1

 d2= S3+σ1
(2)

 S2 +σ2,
(2)

 S1 = 1 + α5 = α10

32

3. μ= 2 , Since d2 ≠ 0 , ρ must be chosen such that (ρ – Lμ)

has the largest value. We choose ρ= 0

 σ(3)(x) = σ(2)(x) – d2 d0
-1 x 2 σ(0)(x)

 = 1 + x +α10 x2

 d3 = S4+σ1
(3)

 S3 +σ2,
(3)

 S2 +σ3,
(3)

 S1

 = 1 + α5 + α10
 = 0

 ……………..

 Finally , we obtain

 σ(x) = 1 + x +α10 x2

33

3.4.5 Chien Search

 After the determination of the error-location polynomial,
the roots of this polynomial are calculated by applying the
Chien search. The roots of σ(x) in GF(2m) can be
determined by substituting the elements of GF(2m) in σ(x) .

 If σ(αi) = 0 , then αi is the root of σ(x) .

 Thus, α- i = α n- I is an error-location number.

 To decode the first received digit rn-1 , we check whether α
is a root of σ(x) .

 If σ(α) = 0 , then is erroneous and must be corrected.

 If σ(α) ≠ 0 , then rn-1 is error-free.

• To decode rn-i , we test whether σ(αi) = 0 or not.

 If σ(αi) = 0 , rn-i is erroneous and must be corrected ,

 otherwise rn-i is error-free .

 A Chien-search circuit is shown in Fig.3. 2

34

Fig.3.2 Chien-search circuit

35

36

37

38

 Note that

 Σq =1
∞ βκ

q xq = 1 + βκx +βκ
2 x2 + …

 = 1 / (1- βκx) =1 / (1+βκx)
 Then we have

 s (x) = Σκ =1
ν Yκ / (1+βκx)

 Using the above equations , the error-evaluator polynomial

 Z(x) of degree less than ν can be written as

 Z(x) = Σκ =1
ν Yκ Πp=1

ν (1+βpx)

 p≠κ

 Thus , the error-value at location x =βm is easily obtained
as

 Ym = Z(βm
– 1) / Πp=1

ν (1+βpβm
– 1)

 p≠m

 and then

 e(x) = Σ Ym xm

39

Example :

 Consider the triple-error-correcting (31,25) RS code. The

received polynomial is

 r(x) = α8 x2 +α2x5 + αx10

40

 r(x) = (0 0α8 0 0α2 0 0 0 0α00000000000000000000)

 S = (S1 , S2 , … , S6) = (α,α21 ,α23 , α15 α2 ,α13)

 The error locator polynomial σ(x) can be found by
applying the iterative algorithm as follows :

 1. μ= 0 , Choose ρ= -1

 σ(1)(x) = σ(0)(x) + d0 d-1
-1 x σ(-1)(x) = 1+αx

 d1 = S2+σ1
(1)

 S1 = α21+ α2 = α13

 L1 = max [L0 , L-1 + 0 + 1]

 2 . μ= 1 ρ= 0

 σ(2)(x) = σ(1)(x) + d1 d0
-1 x σ(-1)(x) = 1+αx +α13α-1 x = 1 +α20 x

 and L2 = L1 =1

 d2= S3+σ1
(2)

 S2 = α23+ α10 = α24

 Note : Lμ+1 = max [Lμ , Lρ + μ- ρ]
 The number (ρ – Lμ) has the largest number.

41

 3. μ= 2 ρ= 0

 σ(3)(x) = σ(2)(x) + d2 d0
-1 x2 σ(0)(x)

 = 1 +α20 x + α24 α-1 x2

 = 1 + α20 x + α23 x2

 d3 = S4+σ1
(3)

 S3 +σ2
(3)

 S2 = α15+ α12 + α13 = α8

 4. μ= 3 ρ= 2

 σ(4)(x) = σ(3)(x) + d3 d2
-1 x2 σ(2)(x)

 = 1 +α20 x + α23 x2 + α15 x+ α4 x2

 = 1 +α17 x + α15x2

 d4 = S5+σ1
(4) S4+σ2

(4) S3 = α15+ α12 + α13 = α8

 =α2+ α + α7 = α30

 5. μ= 4 ρ= 2

 σ(5)(x) = σ(4)(x) + d4 d2
-1 x2 σ(2)(x)

 = 1 +α17 x + α22 x2+ α26x3

 d5 = S6+σ1
(5)

 S5+σ2
(5)

 S4 +σ3
(5)

 S3= α15+ α12 + α13 = α8

 =α13+ α19+ α6 + α18 = α17

42

 6. μ= 5 ρ=4

 σ(6)(x) = σ(5)(x) + d5 d4
-1 x σ(4)(x)

 = 1 +α4x + α5 x2+ α17x3

 Since σ(x) = σ(6 , the error –locator polynomial is

 σ(x) = 1 +α4x + α5 x2+ α17x3

 By the Chien search method , we can easily find that α21 , α26 and α29

roots of σ(x) . The reciprocals of these roots are to be the error-location

number of e(x). These numbers are calculated as α10 , α5 and α2 .

 Thus, the triple errors occurs at positions x10 , x5 and x2 .

43

 To find the error-values , we first calculate the error-evaluator

 polynomial Z(x) by using eq. (3.22).

 Z(x) = Σκ =1
ν Yκ Πp=1

ν (1+βpx)

 p≠κ

 = 1 + (α+ α4) x + (α21 + α4 α + α5) x2

 + (α23 + α4 α21 + α5 α + α17) x3

 = 1 + α30 x +α21 x2 + α23 x3

44

 Y2 = Z (α
–2) / (1+ α

5
 α

–2) (1+ α
10α

–2)

 = α
26

 / α
18 = α8

 Y5 = Z (α
–5) / (1+ α

2
 α

–5) (1+ α
10α

–10)

 = α
30/ α

28 = α2

 Y10 = Z (α
–10) / (1+ α

2
 α

–10) (1+ α5α
–10)

 = α
10/ α

9 = α

 Thus , the error-pattern polynomial is easily found as

 e (x) = Y2 x
2 + Y5 x

5 + Y10 x
10

 =α8 x2 +α2x5 + αx10

45

3.5 Shortened RS Codes

 In system design, if a code of natural length or suitable

number of information digits can not be found , it may be

desirable to shorten the code to meet the requirement.

 Given an (n,k) cyclic code C, consider the set of codewords

for which the L leading high-order message digits are

identical to zero .There are 2k-L such codewords and they

form a linear subcode of C. If we delete the L zero

message digits from each of these codewords, we obtain a

set of 2k-L words of length n-L . These 2k-L shortened

words form an (n-L , k-L) linear code. This code is called

a shortened cyclic code. The shortened code has the same

error-correcting capability as the original code but is not

cyclic is not cyclic in general.

46

 The (255, 251) RS code is designed over the Galois field

 GF (28) with error-correcting capability t = 2.

 Shortened RS codes CRS(32,28) and CRS(28, 24) are

obtained from the original RS code CRS(255, 251) by

deleting 227 digits and 223 digits, respectively , from the

255 codewords.

 These two codes are the constituent codes of the compact

disc (CD) error-control coding system.

 Both shortened RS codes and the original RS code have

the same generator polynomial.

 The generator polynomial is given by

 g (x) = (x+ α) (x+ α2) (x+ α3) (x + α4)

 = x4 + α76 x3+ α251x2 + α81 x + α10

 All operations performed in te calculation of this

generator polynomial are done in GF(28) .

47

Table 3.2 Minimal polynomials of the elements of GF(26)

48

Table 3.3

 Generator polynomials of all the BCH codes of length 63

49

Appen.: Division circuit for dividing X(D) by G(D)

 X(D) = x0+ x1D + x2D
2 + …+ xn-1D

n-1

 G(D) = g0+ g1D +g2D
2 + …+ gn-kD

n-k

Note : 1. The high-order coefficients are input first .

 2. First output is coefficient of Dn- 1 of quotient

 3. Shift register contains coefficients of remainder

 r(D) = r0+ r1D +r2D
2 + …+ rn-k-1D

n-k-1

