Chapter 3 BCH Codes and RS Codes

3.1 Binary BCH Codes
3.2 Generation of BCH Codes
3.3 Reed-Solomon Codes
3.4 Decoding of BCH Codes and RS Codes
3.5 Shortened RS Codes

3.1 Binary BCH Codes

- BCH codes are a large class of multiple random errorcorrecting codes, first discovered by A. Hocquenghem in 1959 and independently by R.C. Bose and D. K. RayChaudhuri in 1960.
- The first decoding algorithm for binary BCH codes was devised by Peterson in 1960. Since then Peterson's algorithm has been refined by Berlekamp, Massey, Chien , Forney and many others.
- For any integer $m \geqq 3$ and $t \leqq 2^{m-1}$, there exists a primitive $B C H$ code with the following parameters :

$$
\begin{align*}
& n=2^{m}-1, \quad n-k \leqq m t \\
& d_{\text {min }} \geqq 2 t+1 \tag{3.1}
\end{align*}
$$

This code can correct \mathbf{t} oe fewer random errors over a span of $\mathbf{2 ~}^{\mathrm{m}} \mathbf{- 1}$ bit positions.

3.2 Generation of BCH Codes

- The generator polynomial of a t-error-correcting BCH codes of length $2^{m}-1$ is given by

$$
\begin{equation*}
g(\mathbf{x})=\operatorname{LCM}\left\{\psi_{1}(\mathbf{x}), \psi_{3}(\mathbf{x}), \ldots, \psi_{2 t-1}(\mathbf{x})\right\} \tag{3.2}
\end{equation*}
$$

where $\psi_{i}(\mathbf{x})$ is the minimum polynomial of the primitive element in GF(2^{m}). Since the degree of $g(\mathbf{x})$ is $m t$ or less, the number of paritycheck bits, $n-k$, of the code is at most $m t$.

Example: $m=4, t=3$
Then $\mathrm{n}=2^{4}-1=15$, $\mathrm{n}-\mathrm{k}=\mathrm{mt}=12$ thus $\mathrm{k}=3$
The code is a $(15,3)$ code.
The primitive polynomial $p(x)=1+x+x^{4}$

$$
\begin{aligned}
& \Psi_{1}(x)=1+x+x^{4} \\
& \Psi_{3}(x)=1+x+x^{2}+x^{3}+x^{4} \\
& \Psi_{5}(x)=1+x+x^{2}
\end{aligned}
$$

Thus $\mathrm{g}(\mathrm{x})=\operatorname{LCM}\left\{\Psi_{1}(\mathrm{x}), \Psi_{3}(\mathrm{x}), \Psi_{5}(\mathrm{x})\right\}$

$$
\begin{aligned}
& =\Psi_{1}(\mathrm{x}) \Psi_{3}(\mathrm{x}) \Psi_{5}(\mathrm{x}) \\
& =1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{4}+\mathrm{x}^{5}+\mathrm{x}^{8}+\mathrm{x}^{10}
\end{aligned}
$$

Table 3.1 Minimal polynomials of the elements in $\mathbf{G F}\left(\mathbf{2}^{4}\right)$
Ele-

ments	Conjugates	Minimal polynomials
α	$\alpha^{2}, \alpha^{4}, \alpha^{8}$	$m_{1}(x)=1+x+x^{4}$
α^{2}	$\alpha^{4}, \alpha^{8}, \alpha^{16}=\alpha$	$m_{2}(x)=1+x+x^{4}$
α^{3}	$\alpha^{6}, \alpha^{12}, \alpha^{24}=\alpha^{9}$	$m_{3}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{4}	$\alpha^{8}, \alpha^{16}=\alpha, \alpha^{32}=\alpha^{2}$	$m_{4}(x)=1+x+x^{4}$
α^{5}	α^{10}	$m_{5}(x)=1+x+x^{2}$
α^{6}	$\alpha^{12}, \alpha^{24}=\alpha^{9}, \alpha^{48}=\alpha^{3}$	$m_{6}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{7}	$\alpha^{14}, \alpha^{28}=\alpha^{3}, \alpha^{56}=\alpha^{11}$	$m_{7}(x)=1+x^{3}+x^{4}$
α^{8}	$\alpha^{16}=\alpha, \alpha^{32}=\alpha^{2}, \alpha^{64}=\alpha^{4}$	$m_{8}(x)=1+x+x^{4}$
α^{9}	$\alpha^{18}=\alpha^{3}, \alpha^{36}=\alpha^{6}, \alpha^{72}=\alpha^{12}$	$m_{9}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{10}	$\alpha^{20}=\alpha^{5}$	$m_{10}(x)=1+x+x^{2}$
α^{11}	$\alpha^{22}=\alpha^{7}, \alpha^{44}=\alpha^{14}, \alpha^{88}=\alpha^{13}$	$m_{11}(x)=1+x^{3}+x^{4}$
α^{12}	$\alpha^{24}=\alpha^{9}, \alpha^{48}=\alpha^{3}, \alpha^{96}=\alpha^{6}$	$m_{12}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{13}	$\alpha^{26}=\alpha^{11}, \alpha^{52}=\alpha^{7}, \alpha^{104}=\alpha^{14}$	$m_{13}(x)=1+x^{3}+x^{4}$
α^{14}	$\alpha^{28}=\alpha^{33}, \alpha^{66}=\alpha^{11}, \alpha^{112}=\alpha^{7}$	$m_{14}(x)=1+x^{3}+x^{4}$

Table 3.1 Minimal polynomials of the elements in $\mathbf{G F}\left(\mathbf{2}^{4}\right)$
Ele-

ments	Conjugates	Minimal polynomials
α	$\alpha^{2}, \alpha^{4}, \alpha^{8}$	$m_{1}(x)=1+x+x^{4}$
α^{2}	$\alpha^{4}, \alpha^{8}, \alpha^{16}=\alpha$	$m_{2}(x)=1+x+x^{4}$
α^{3}	$\alpha^{6}, \alpha^{12}, \alpha^{24}=\alpha^{9}$	$m_{3}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{4}	$\alpha^{8}, \alpha^{16}=\alpha, \alpha^{32}=\alpha^{2}$	$m_{4}(x)=1+x+x^{4}$
α^{5}	α^{10}	$m_{5}(x)=1+x+x^{2}$
α^{6}	$\alpha^{12}, \alpha^{24}=\alpha^{9}, \alpha^{48}=\alpha^{3}$	$m_{6}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{7}	$\alpha^{14}, \alpha^{28}=\alpha^{3}, \alpha^{56}=\alpha^{11}$	$m_{7}(x)=1+x^{3}+x^{4}$
α^{8}	$\alpha^{16}=\alpha, \alpha^{32}=\alpha^{2}, \alpha^{64}=\alpha^{4}$	$m_{8}(x)=1+x+x^{4}$
α^{9}	$\alpha^{18}=\alpha^{3}, \alpha^{36}=\alpha^{6}, \alpha^{72}=\alpha^{12}$	$m_{9}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{10}	$\alpha^{20}=\alpha^{5}$	$m_{10}(x)=1+x+x^{2}$
α^{11}	$\alpha^{22}=\alpha^{7}, \alpha^{44}=\alpha^{14}, \alpha^{88}=\alpha^{13}$	$m_{11}(x)=1+x^{3}+x^{4}$
α^{12}	$\alpha^{24}=\alpha^{9}, \alpha^{48}=\alpha^{3}, a^{96}=\alpha^{6}$	$m_{12}(x)=1+x+x^{2}+x^{3}+x^{4}$
α^{13}	$\alpha^{26}=\alpha^{11}, \alpha^{52}=\alpha^{7}, \alpha^{104}=\alpha^{14}$	$m_{13}(x)=1+x^{3}+x^{4}$
α^{14}	$\alpha^{28}=\alpha^{13}, \alpha^{56}=\alpha^{11}, \alpha^{112}=\alpha^{7}$	$m_{14}(x)=1+x^{3}+x^{4}$

3.3 Reed-Solomon Codes

3.3.1 RS Codes over GF (2^{m})

- The Reed-Solomon codes (RS codes) are nonbinary cyclic codes with code symbols from a Galois field. They were discovered in 1960 by I.Reed and G. Solomon at MIT .
- In the decades since their discovery , RS codes have enjoyed countless applications from compact disc and digital TV in living room to spacecraft and satellite in outer space.
- The RS codes with symbols from GF($\left.2^{\mathrm{m}}\right)$ are the most important codes in application.
- Let be a primitive symbol in $\operatorname{GF}\left(2^{m}\right)$.

For any positive integer $\mathrm{t} \leqq 2^{m-1}$, there exists a t-symbol -error- correcting RS code with symbols from GF($\mathbf{2}^{\mathrm{m}}$) and the following parameters :

$$
\begin{align*}
& n=2^{m}-1 \\
& n-k=2 t \\
& k=2^{m}-1-2 t \\
& d_{\text {min }}=2 t+1=n-k+1 \tag{3.3}
\end{align*}
$$

Example:

$$
\begin{aligned}
& m=8, t=16 \\
& n=255, k=n-2 t=223 \\
& d_{\min }=32
\end{aligned}
$$

It is a $(255,223)$ RS code. The code is NASA standard code for satellite and space application .

3.3.2 Generation and Encoding of RS Codes

- The generator polynomial of RS codes are given by

$$
\begin{align*}
g(\mathrm{x}) & =(\mathrm{x}+\alpha)\left(\mathrm{x}+\alpha^{2}\right) \ldots\left(\mathrm{x}+\alpha^{2 t}\right) \\
& =g_{0}+g_{1} \mathrm{x}+g_{2} \mathrm{x}^{2}+\ldots+g_{2 t-1} \mathrm{x}^{2 t-1}+\mathrm{x}^{2 t} \tag{3.4}
\end{align*}
$$

where $g_{i} \varepsilon \operatorname{GF}\left(2^{m}\right)$.
It is noted that $g(x)$ has $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ as roots.

- The encoding of RS codes can be done as follows.

Let $m(x)=m_{0}+m_{1} \mathbf{x}+m_{2} \mathbf{x}^{2}+\ldots+m_{k-1} \mathbf{x}^{k-1}$ be the message polynomial.
Dividing $x^{2 t} m(x)$ by $g(x)$, we have

$$
\begin{equation*}
x^{2 t} m(\mathbf{x})=a(\mathbf{x}) g(\mathbf{x})+b(\mathbf{x}) \tag{3.5}
\end{equation*}
$$

where $b(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{2 t-1} x^{2 t-1}$ is the remainder.

- The encoding circuit is shown in Fig. 3.1

Fig.3.1 RS code encoder

3.3.3 RS Codes for Binary Data

- Every symbol in GF (2^{m}) can be represented by a binary m-tuple, called m-bit byte..
- Suppose an (n, k) RS code is used for encoding mk bits of message sequence.This message sequence is first divided into $\mathrm{k} \mathbf{m}$-bit bytes. Each m-bit byte is regarded as a symbol in GF(2^{m}).
The k -byte message is then encoded into n -byte codeword based on the RS encoding rule.
By doing this, we actually expand a RS code with symbols from GF(2^{m}) into a binary (nm, km) linear, called a binary RS code.
- Binary RS codes are very effective in correcting bursts of bit errors as long as no more than \mathbf{t} bytes are affected.
- A popular RS code is the (255, 223) code over GF (28) . This code has a minimum distance of $d_{\text {min }}=255-223+1$ $=33$ and is capable of correcting 16 symbol errors.
- Example \# 1: RS(15,9) code

Let $n=2^{4}-1=15$, Construct a primitive three-error correcting RS code over the Galois field GF $\left(2^{4}\right)$ using the primitive polynomial

$$
p(x)=x^{4}+x+1
$$

The code generator has $a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}$ as roots.
The generator of the $(15,9)$ code is

$$
\begin{aligned}
g(x) & =(x+a)\left(x+a^{2}\right)\left(x+a^{3}\right)\left(x+a^{4}\right)\left(x+a^{5}\right)\left(x+a^{6}\right) \\
& =a^{6}+a^{9} x+a^{6} x^{2}+a^{4} x^{3}+a^{14} x^{4}+a^{10} x^{5}+x^{6}
\end{aligned}
$$

If the 4 -bit data stream $5,2,1,6,8,3,10,15,4$ are to be encoded. Find the systematically encoded code polynomial .

Sol. $t=3$

$$
m(x)=5+2 x+x^{2}+6 x^{3}+8 x^{4}+3 x^{5}+10 x^{6}+15 x^{7}+4 x^{8}
$$

Using the vector -to -power conversion

$$
5=0101 \leftrightarrow \alpha^{8} \quad, 2=0010 \leftrightarrow \alpha, 1=0001 \leftrightarrow 1, \ldots .
$$

The message polynomial (expressed in power form) is the expressed as

$$
\begin{aligned}
m(x)= & \alpha^{8}+\alpha x+x^{2}+\alpha^{5} x^{3}+\alpha^{3} x^{4}+\alpha^{4} x^{5}+\alpha^{9} x^{6}+ \\
& \alpha^{12} x^{7}+\alpha^{2} x^{8}
\end{aligned}
$$

Dividing $x^{6} m(x)$ by $g(x)$ to obtain the remainder

$$
b(x)=a^{8}+\alpha^{2} x+\alpha^{14} x^{2}+a^{3} x^{3}+a^{5} x^{4}+a x^{5}
$$

then we obtain

$$
\begin{aligned}
c(x)= & \alpha^{8}+\alpha^{2} x+\alpha^{14} x^{2}+\alpha^{3} x^{3}+\alpha^{5} x^{4}+\alpha x^{5}+\alpha^{8} x^{6}+ \\
& \alpha x^{7}+x^{8}+\alpha^{5} x^{9}+\alpha^{3} x^{10}+\alpha^{4} x^{11}+\alpha^{9} x^{12}+\alpha^{12} x^{13}+ \\
& \alpha^{2} x^{14}
\end{aligned}
$$

Example \# : RS (255,223) RS code

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{8}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+1 \\
& \mathrm{~g}(\mathrm{x})=\Pi_{j=1^{32}\left(x-\alpha^{j}\right)} \\
& \text { or } \mathrm{p}(\mathrm{x})=\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{2}+\mathrm{x}+1 . \\
& \mathrm{g}(\mathrm{x})=\Pi_{j=112^{143}\left(\mathrm{x}-\left(\alpha^{11}\right)^{j}\right)}
\end{aligned}
$$

3.4 Decoding of BCH Codes and RS Codes

- There are many algorithms which have been developed for decoding BCH codes. In general , the algebraic decoding binary BCH codes have the following steps :
(i) Computation of the syndrome
(ii) Determination of an error- location polynomial whose roots provide an indication of the error- locations. The Berlekamp-Massey algorithm is an efficient algorithm for determining the error-locator polynomial .
(iii) Finding the roots of the error-location polynomial . This is usually done using the Chien search , which is an exhaustive search over all the elements in the finite field.

3.4.1 Decoding of RS Codes

- Decoding of a RS code is similar to the decoding of a BCH code except an additional step is needed. The additional step is evaluating the error vales .
- The Berlekamp-Massey algorithm is also an efficient algorithm for determining the error-locator polynomial for decoding RS codes.
A typical approach to find the error values is using Forney's Algorithm developed by J.D. Fornry in 1965.
- In 1965, E. Berlekamp presented an extremely efficient algorithm for both BCH and RS codes.
Berlekamp's algorithm allowed for the first time the possibility of a quick and efficient decoding of dozens of symbol errors in some powerful RS codes. The algorithm was modified by J.L. Massey in 1969.

Chien,R.T.," Cyclic Decoding Procedure for the Bose - Chaudhuri- Hocquenghem Codes ," IEEE Trans. Inf. Theory, vol. IT-10, pp.357-363 ,October 1964
Forney , G.D., ‘ On Decoding BCH Codes ," IEEE Trans. Inf. Theory , vol. IT-11, pp.549-557, October 1965,
Berlekamp , E.R., "On Decoding Bose - Chaudhuri- Hocquenghem Codes ," IEEE Trans. Inf. Theory, vol. IT-11, pp.577-579 ,October 1965
Berlrkamp, E.R. Algebraic Coding Theory, McGraw0Hill, 1968
Massey, J.L.," Shift Register Synthesis and BCH Decoding , "IEEE Trans. Inf. Theory , vol. IT15, pp. 122-127 Jan. 1969.

3.4.2 Computation of the Syndrome

- Consider a code with codeword polynomial $c(x)$ and generator polynomial $\mathbf{g}(\mathbf{x})$.
Since $g(\alpha)=g\left(\alpha^{2}\right)=\ldots=g\left(\alpha^{2 t}\right)=0$
we have $c(\alpha)=c\left(\alpha^{2}\right)=\ldots=c\left(\alpha^{2 t}\right)=0$
If the received polynomial $r(x)$ is expressed as

$$
\begin{equation*}
r(\mathbf{x})=c(\mathbf{x})+e(\mathbf{x}) \tag{3.7}
\end{equation*}
$$

then the syndrome $S=\left(S_{1}, S_{2}, \ldots, S_{2 t}\right)$ can be obtained by

$$
\begin{align*}
S_{j} & =r\left(\boldsymbol{\alpha}^{\mathbf{j}}\right)=c\left(\boldsymbol{\alpha}^{\mathbf{j}}\right)+e\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) \\
& =e\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) \quad j=1,2, \ldots, 2 t \tag{3.8}
\end{align*}
$$

This gives a relationship between the syndrome and the error pattern .
3.4.3 Syndrome and Error- Location Polynomial

- Suppose $e(x)$ has v errors,$v \leqq t$, at the locations specified by

$$
\begin{align*}
& \mathbf{x}^{j^{\prime}}, x^{j^{2}}, \ldots, x^{j v} \\
& \text { i.e. } e(x)=x^{j^{\prime} I}+x^{j 2}+\ldots+x^{j v} \tag{3.9}
\end{align*}
$$

where $0 \leqq j_{1}<j_{2}<\ldots<j_{v}$
From equations (3.8) \& (3.9), we have the following relation between syndrome components and error location:

$$
\begin{aligned}
& S_{1}=\mathrm{e}(\boldsymbol{\alpha})=\boldsymbol{\alpha}^{\boldsymbol{j}^{1}}+\boldsymbol{\alpha}^{j^{2}}+\ldots+\boldsymbol{\alpha}^{j v} \\
& S_{2}=\mathrm{e}\left(\boldsymbol{\alpha}^{2}\right)=\left(\boldsymbol{\alpha}^{1 /}\right)^{2}+\left(\boldsymbol{\alpha}^{\mathbf{j}^{2}}\right)^{2}+\ldots+\left(\boldsymbol{\alpha}^{\left.\boldsymbol{j}^{j}\right)^{2}}\right.
\end{aligned}
$$

$$
\begin{equation*}
S_{2 \mathrm{t}}=\mathrm{e}\left(\boldsymbol{\alpha}^{2 t}\right)=\left(\boldsymbol{\alpha}^{\mathrm{j}^{i}}\right)^{2 t}+\left(\boldsymbol{\alpha}^{j^{2}}\right)^{2 t}+\ldots+\left(\boldsymbol{\alpha}^{j^{v}}\right)^{2 t} \tag{3.10}
\end{equation*}
$$

If we can solve the $2 t$ equations, we can determine $\boldsymbol{\alpha}^{j 1}, \boldsymbol{\alpha}^{j^{2}}, \ldots, \boldsymbol{\alpha}^{j v}$

- The unknown parameter $\boldsymbol{\beta}_{\mathrm{k}}=\boldsymbol{\alpha}^{\mathbf{j x}}$ for $\mathrm{k}=\mathbf{1 , 2 , \ldots , v} \mathbf{v}$ are called the " error location numbers".
- When, $\boldsymbol{a}^{j \mathrm{k}}, \mathbf{1} \leqq \mathrm{k} \leqq \mathrm{v}$, are found, the powers, $\boldsymbol{j}_{\mathrm{k}}$ give us the error locations in $e(x)$.
These $2 t$ equations of (3.10) are known as power-sum symmetric function.
- Eq.(3.8) can be written as

$$
\begin{align*}
& S_{1}=\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}+\ldots+\boldsymbol{\beta}_{v} \\
& S_{2}=\boldsymbol{\beta}_{1}{ }^{2}+\boldsymbol{\beta}_{2}{ }^{2}+\ldots+\boldsymbol{\beta}_{v}{ }^{2} \\
& \vdots \tag{3.11}\\
& \vdots \\
& S_{2 t}=\boldsymbol{\beta}_{1}{ }^{2 t}+\boldsymbol{\beta}_{2}{ }^{2 t}+\ldots+\boldsymbol{\beta}_{v}{ }^{2 t}
\end{align*}
$$

- Suppose that $v \leqq t$ errors actually occur .Define the errorlocation polynomial $\sigma(x)$ as

$$
\begin{align*}
\sigma(\mathrm{x})= & \left(1+\boldsymbol{\beta}_{1} \mathrm{x}\right)\left(1+\boldsymbol{\beta}_{2} \mathbf{x}\right) \ldots\left(1+\boldsymbol{\beta}_{v} \mathrm{x}\right) \\
& =\sigma_{0}+\sigma_{1} \mathrm{x}^{2}+\sigma_{2} \mathbf{x}^{2}+\ldots+\sigma_{v} \mathbf{x}^{v} \tag{3.12}
\end{align*}
$$

$\sigma(x)$ has $\beta_{1}^{-1}, \beta_{2}^{-1}, \ldots, \beta_{v}^{-1}$ as roots and $\sigma_{0}=1$
Note that $\quad \beta_{k}=\alpha^{j}{ }^{\mathrm{k}}$.
If we can determine $\sigma(x)$ from the syndrome $S=\left\{S_{1}, S_{2}, \ldots\right.$, $\left.S_{2 t}\right\}$, then the roots of $\sigma(x)$ give us the error-location numbers $\boldsymbol{\beta}_{\mathrm{k}}$.

- An efficient procedure, known as Chien search , to find these roots, and hence the error-locations, was given by R.T. Chien in 1964.
- Coefficients of the location polynomial Eq. (3.12) can be expressed as in the following manner :

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=\beta_{1}+\beta_{2}+\ldots+\beta_{v} \\
& \sigma_{2}=\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\ldots+\beta_{v-1} \beta_{v} \\
& \cdot \\
& \sigma_{v}=\beta_{1} \beta_{2} \beta_{3} \quad \ldots \beta_{v-1} \beta_{v}
\end{aligned}
$$

This set of equations is known as the elementary symmetric functions and is related to the system of equations (3.11) as follows .

$$
\begin{align*}
& S_{1}+\sigma_{1}=0 \\
& S_{2}+\sigma_{1} S_{1}=0 \\
& S_{3}+\sigma_{1} S_{2}+\sigma_{2} S_{1}=0 \\
& \quad \cdot \tag{3.13}\\
& S_{2 t}+\sigma_{1} S_{2 t-1}+\ldots+\sigma_{v-1} S_{2 t-v+1}+\sigma_{v} S_{2 t-v}=0
\end{align*}
$$

These equations are called generalized Newton identities .

Special cases : Decoding BCH Codes with Small t

The σ_{i} can be solved directly as follows.
For $t=1, \sigma_{1}=S_{I}$
For $t=2, \sigma_{1}=S_{1} \quad \sigma_{2}=\left(S_{3}+S_{1}{ }^{3}\right) / S_{1}$
For $t=3, \sigma_{1}=S_{1} \quad \sigma_{2}=\left(S_{1}{ }^{2} S_{3}+S_{5}\right) /\left(S_{3}+S_{1}{ }^{3}\right)$

$$
\left.\sigma_{3}=\left(S_{1}{ }^{3}+S_{3}\right)+S_{1} \sigma_{2}\right)
$$

For $t=4, \sigma_{1}=S_{1}$

$$
\begin{aligned}
& \sigma_{2}=\left\{S_{1}\left(S_{1}{ }^{7}+S_{7}\right)+S_{3}\left(S_{5}+S_{1}{ }^{5}\right)\right\} /\left\{S_{3}\left(S_{1}{ }^{3}+S_{3}\right)+S_{1}\left(S_{5}+S_{1}{ }^{5}\right)\right\} \\
&\left.\sigma_{3}=\left(S_{1}{ }^{3}+S_{3}\right)+S_{1} \sigma_{2}\right) \\
& \sigma_{4}=\left\{\left(S_{1}{ }^{2} S_{3}+S_{5}\right)+\left(S_{1}{ }^{3}+S_{3}\right) \sigma_{2}\right\} / S_{1}
\end{aligned}
$$

3.4.4 Berlekamp-Massey Iterative Algorithm for

 Finding the Error-Location Polynomial- The B-M algorithm basically consists of finding the coefficient of the error-location polynomial, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{v}$.
- The algorithm proceeds as follows . The first step is to determine a minimum -degree polynomial $\sigma^{(1)}(\mathbf{x})$ that satisfies the first Newton identity described in Eq. (3.13) .
- Then the second Newton identity is tested.

If the polynomial $\sigma^{(1)}(\mathbf{x})$ satisfies the second Newton identity
in Eq. (3.13) , then $\sigma^{(2)}(\mathbf{x})=\sigma^{(1)}(\mathbf{x})$.
Otherwise the decoding procedure adds a correction term to $\sigma^{(1)}(\mathbf{x})$ in order to form the polynomial $\sigma^{(2)}(\mathbf{x})$, which is able to satisfies the first two Newton identities.

- This procedure is subsequently applied to find $\sigma^{(3)}(x)$, and the following polynomials, until determination of the polynomial $\sigma^{(2 t)}(\mathbf{x})$ is complete.
- This algorithm can be implemented in iterative form. Let the minimum-degree polynomial obtained in the μ - $t h$ iteration, denoted by $\sigma^{(\mu)}(\mathbf{x})$, be of the form

$$
\begin{gather*}
\sigma^{(\mu)}(\mathbf{x})=1+\sigma_{1}{ }_{(\mu)}^{(\mu)} \mathbf{x}+\boldsymbol{\sigma}_{\mathbf{2}}{ }^{(\mu)} \mathbf{x}^{2}+\ldots+ \\
\sigma_{L \mu}{ }^{(\mu)} \mathbf{x}^{L_{\mu}} \tag{3.14}
\end{gather*}
$$

where L_{μ} is the degree of the polynomial $\sigma^{(\mu)}(\mathbf{x})$.

- This minimum-degree polynomial $\boldsymbol{\sigma}^{(\mu)}(\mathbf{x})$ satisfies the first i Newton identities in Eq.(3.13)
- To find $\sigma^{(\mu+1)}(\mathbf{x})$, we first check whether the coefficients of $\sigma^{(\mu)}(\mathbf{x})$ satisfy the next generalized Newton identity ; that is,

$$
\begin{equation*}
S_{\mu+1}+\Sigma_{k=1}{ }^{L_{\mu}} \sigma_{k}{ }^{(\mu)} S_{\mu+1-k}=0 ? \tag{3.15}
\end{equation*}
$$

If yes, $\sigma^{(\mu+1)}(\mathbf{x})=\sigma^{(\mu)}(\mathbf{x})$ is the minimum-degree polynomial whose coefficients satisfy the generalized Newton identities.
If not , a correction term is added to $\sigma^{(i)}(\mathbf{x})$ to obtain $\boldsymbol{\sigma}^{(i+1)}(\mathbf{x})$.

- To test the equality of Eq. (3.15) ,we calculate the discrepancy

$$
\begin{align*}
& d_{\mu}=S_{\mu+1}+\sigma_{I}{ }^{(\mu)} S_{\mu}+\sigma_{2,}{ }^{(\mu)} S_{\mu-I}+\ldots+ \\
& \sigma_{L \mu}{ }^{(\mu)} S_{\mu+1-L \mu} \tag{3.16}
\end{align*}
$$

If $d_{\mu}=0$, we set $\quad \sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)$
If $d_{\mu} \neq 0$, , we need to add a correction term to $\sigma^{(\mu)}(x)$ to obtain $\sigma^{(\mu+1)}(\mathbf{x})$

In the calculation of the correction term , the algorithm resorts to a previous step ρ such that $d_{\rho} \neq 0$ and ($\rho-L_{\rho}$) is a maximum, where L_{ρ} is the degree of of $\sigma^{(\rho)}(\mathbf{x})$. Massey demonstrated that, when $d_{\rho} \neq 0$, one must have

$$
L_{\mu+1}=\max \left[L_{\mu}, L_{\rho}+\mu-\rho\right]
$$

Then

$$
\begin{equation*}
\boldsymbol{\sigma}^{(\mu+1)}(\mathbf{x})=\boldsymbol{\sigma}^{(\mu)}(\mathbf{x})+d_{\mu} d_{\rho}^{-1} \mathbf{x}^{(\mu-\rho)} \sigma^{(\rho)}(\mathbf{x}) \tag{3.17}
\end{equation*}
$$

The B-M algorithm can be implemented in the form of a table, as shown below.

Note that

$$
\begin{aligned}
& \sigma^{(-1)}(\mathbf{x})=\sigma^{(0)}(\mathbf{x})=1, \quad d_{I}=S_{I} \\
& \sigma^{(1)}(\mathbf{x})=1+S_{I} \mathbf{x}
\end{aligned}
$$

2
\bullet
-
$2 t$

Berlrkamp-Massey Algorithm

1. Set the initial conditions before taking the iterative step.

$$
\begin{array}{ccc}
\sigma^{(-1)}(\mathbf{x})=1 & L_{-1}=0 & d_{-1}=1 \\
\sigma^{(0)}(\mathbf{x})=1 & L_{0}=0 & d_{0}=s_{1}
\end{array}
$$

2. If $d_{\mu}=0$, then set $\sigma^{(\mu+1)}(x)=\sigma^{(\mu)}(x)$ and $L_{\mu+1}=L_{\mu}$
3. If $d_{\mu} \neq 0$, then find $\sigma^{(\rho)}(x)$ prior to $\sigma^{(\mu)}(x)$ such that $d_{\rho} \neq 0, \rho \leqq \mu$, and the number $\left(\rho-L_{\mu}\right)$ has the largest number. Then

$$
\begin{aligned}
& \sigma^{(\mu+1)}(\mathbf{x})=\sigma^{(\mu)}(\mathbf{x})+d_{\mu} d_{\rho}^{-1} \mathbf{x}^{(\mu-\rho)} \sigma^{(\rho)}(\mathbf{x}) \\
& L_{\mu+1}=\max \left[L_{\mu}, L_{\rho}+\mu-\rho\right] \\
& \text { and } d_{\mu+1}=S_{\mu+2}+\sigma_{1}(\mu+1) S_{\mu+1}+\sigma_{2}{ }^{(\mu+1)} S_{\mu-1}+\ldots+ \\
& \sigma_{L(\mu+1)}(\mu+1) S_{\mu+2-L(\mu+1)}
\end{aligned}
$$

where $\sigma_{i}{ }^{(\mu+1)}, \mathbf{1} \leqq i \leqq L_{\mu+1}$, are the coefficients of $\sigma^{(\mu+1)}(\mathbf{x})$.

Example:

- For the $(15,9)$ RS code over $\mathbf{G F}\left(2^{4}\right)$

Use the Berlekamp-Massey algorithm to find the error-locator polynomial. The received polynomial is

$$
r(x)=x^{8}+\alpha^{11} x^{7}+\alpha^{8} x^{5}+\alpha^{10} x^{4}+\alpha^{4} x^{3}+\alpha^{3} x^{2}+\alpha^{8} x+\alpha^{12}
$$

Solution: $\quad n-k=6$

$$
\begin{aligned}
m & =4, \quad \alpha^{15}=1 \\
r(x) & =x^{8}+\alpha^{11} x^{7}+\alpha^{8} x^{5}+\alpha^{10} x^{4}+\alpha^{4} x^{3}+\alpha^{3} x^{2}+\alpha^{8} x+\alpha^{12} \\
S_{1} & =1 \\
S_{2} & =1 \\
S_{3} & =\alpha^{5} \\
S_{4} & =1 \\
S_{5} & =0 \\
S_{6} & =\alpha^{10}
\end{aligned}
$$

Solution

$\ldots \boldsymbol{\sigma}^{(\mu+1)}(\mathbf{x})=\boldsymbol{\sigma}^{(\mu)}(\mathbf{x})+d_{\mu} d_{\rho}^{-1} \mathbf{x}^{(\mu-\rho)} \boldsymbol{\sigma}^{(\rho)}(\mathbf{x})$

$$
\begin{aligned}
& L_{\mu+1}=\max \left[L_{\mu}, L_{\rho}+\mu-\rho\right] \\
& d_{\mu+1}=S_{\mu+2}+\sigma_{1}{ }^{(\mu+1)} S_{\mu+1}+\sigma_{2,}{ }^{(\mu+1)} S_{\mu-1}+\ldots+ \\
& \quad \sigma_{L(\mu+1)}{ }^{(\mu+1)} S_{\mu+2-L(\mu+1)}
\end{aligned}
$$

1. $\mu=0$, Choose $\rho=-1$

$$
\begin{aligned}
& \sigma^{(1)}(\mathbf{x})=\sigma^{(0)}(\mathbf{x})+d_{0} d_{-1}^{-1} \mathrm{x} \sigma^{(-1)}(\mathrm{x})=1-\mathrm{x}=1+\mathrm{x} \\
& d_{1}=S_{2}+\sigma_{1}^{(1)} S_{1}=1+1=0 \\
& L_{1}=\max \left[L_{0}, L_{-1}+0+1\right]=1
\end{aligned}
$$

2. $\mu=1$

Since $d_{1}=0$,
we have $\quad \sigma^{(2)}(x)=\sigma^{(1)}(x)=1+x \quad$ and $\quad L_{2}=L_{1}=1$
$d_{2}=S_{3}+\sigma_{1}{ }^{(2)} S_{2}+\sigma_{2,}{ }^{(2)} S_{1}=1+\alpha^{5}=\alpha^{10}$
3. $\boldsymbol{\mu}=\mathbf{2}$, Since $d_{2} \neq 0, \rho$ must be chosen such that $\left(\rho-L_{\mu}\right)$ has the largest value. We choose $\rho=0$

$$
\begin{gathered}
\boldsymbol{\sigma}^{(3)}(\mathbf{x})=\boldsymbol{\sigma}^{(2)}(\mathbf{x})-d_{2} d_{0}{ }^{-1} \mathbf{x}^{2} \sigma^{(0)}(\mathbf{x}) \\
=1+\mathbf{x}+\boldsymbol{\alpha}^{10} \mathbf{x}^{2} \\
d_{3}=S_{4}+\sigma_{1}{ }^{(3)} S_{3}+\sigma_{2,}{ }^{(3)} S_{2}+\sigma_{3,}{ }^{(3)} S_{1} \\
=1+\mathbf{a}^{5}+\boldsymbol{\alpha}^{10}=0
\end{gathered}
$$

Finally, we obtain

$$
\sigma(\mathbf{x})=1+x+\alpha^{10} \mathbf{x}^{\mathbf{2}}
$$

3.4.5 Chien Search

- After the determination of the error-location polynomial, the roots of this polynomial are calculated by applying the Chien search. The roots of $\sigma(x)$ in $G F\left(2^{m}\right)$ can be determined by substituting the elements of $\mathbf{G F}\left(\mathbf{2}^{\mathrm{m}}\right)$ in $\sigma(x)$. If $\sigma\left(\alpha^{i}\right)=0$, then α^{i} is the root of $\sigma(x)$.
Thus, $\alpha^{-i}=\alpha^{n-I}$ is an error-location number.
- To decode the first received digit r_{n-1}, we check whether a is a root of $\sigma(x)$.
If $\sigma(\alpha)=0$, then is erroneous and must be corrected.
If $\sigma(\alpha) \neq 0$, then r_{n-1} is error-free.
- To decode r_{n-i}, we test whether $\sigma\left(\alpha^{i}\right)=0$ or not. If $\sigma\left(\boldsymbol{\alpha}^{i}\right)=0, r_{n-i}$ is erroneous and must be corrected, otherwise r_{n-i} is error-free .
- A Chien-search circuit is shown in Fig.3. 2

Fig.3.2 Chien-search circuit

3.4.6 Error-Value Calculation

- The generator polynomial of (n, k) RS codes can be expressed by

$$
\begin{align*}
g(\mathrm{x}) & =(x+\alpha)\left(\mathrm{x}+\alpha^{2}\right) \ldots\left(\mathrm{x}+\alpha^{2 t}\right) \\
& =g_{0}+g_{1} \mathrm{x}+g_{2} \mathrm{x}^{2}+\ldots+g_{2 t-1} \mathrm{x}^{2 t-1}+\mathrm{x}^{2 t} \tag{3.18}
\end{align*}
$$

where $g_{i} \varepsilon \operatorname{GF}\left(2^{m}\right)$.
If $c(\mathbf{x})$ is the transmitted codeword and $r(\mathbf{x})$ is the corresponding received word, then the error pattern caused by the channel impairments is given by

$$
\begin{equation*}
e(\mathbf{x})=r(\mathbf{x})+c(\mathbf{x})=\sum_{i=0}^{n-1} e_{i} \mathbf{x}^{i} \tag{3.19}
\end{equation*}
$$

In order to determine $e(x)$, we need to find the location $x^{j_{k}}$ and the error values $e_{j_{k}}$.

- The error locator polynomial for a ν-error-correcting RS code is expressed as

$$
\begin{align*}
\sigma(\mathbf{x}) & =\Pi_{\kappa=1}^{\nu}\left(1+\beta_{\kappa} \mathbf{x}\right) \\
& =\left(1+\beta_{1} \mathbf{x}\right)\left(1+\beta_{2} \mathbf{x}\right) \ldots\left(1+\beta_{\nu} \mathbf{x}\right) \\
& =1+\sigma_{1} \mathbf{x}+\sigma_{2} \mathbf{x}^{2}+\ldots+\sigma_{\nu} \mathbf{x}^{\nu} \tag{3.20}\\
\text { where } \quad & \beta_{\kappa}=\alpha_{k}{ }_{k} .
\end{align*}
$$

The error locations can be determined by the BerlekampMassey algorithm.

- Let the syndrome polynomial be

$$
\begin{equation*}
\mathbf{s}(\mathbf{x})=S_{I} \mathbf{x}+\boldsymbol{S}_{2} \mathbf{x}^{2}+\ldots+\boldsymbol{S}_{\nu} \mathbf{x}^{\nu}=\sum_{i=1}^{\nu} S_{i} \mathbf{x}^{i} \tag{3.21}
\end{equation*}
$$

and define the error-evaluator polynomial as

$$
\begin{align*}
\Omega(\mathbf{x})= & \sigma(x) \mathbf{s}(\mathbf{x}) \\
= & 1+\left(S_{1}+\sigma_{1}\right) \mathbf{x}+\left(S_{2}+\left(\sigma_{1} S_{1}+\sigma_{2}\right) \mathbf{x}^{2}+\ldots+\right. \\
& \left(S_{\nu}+\sigma_{1} s_{\nu-1}+\ldots+\sigma_{\nu}\right) \mathbf{x}^{\nu} \tag{3.22}
\end{align*}
$$

- Suppose that ν errors have occurred in locations corresponding to the indices $\boldsymbol{j}_{1}<\boldsymbol{j}_{2}<\ldots<\boldsymbol{j}_{\nu}$
Then, the syndrome components can be expressed as

$$
\begin{equation*}
S_{q}=\sum_{\kappa=1} \nu \quad Y_{\kappa} \beta_{\kappa}^{q} \quad 1 \leqq q \leqq 2 t \tag{3.23}
\end{equation*}
$$

where $\boldsymbol{Y}_{\kappa}=\mathbf{e}^{j \kappa}$ is the error value at location j_{κ} and $\quad \beta_{\kappa}=\alpha^{j_{k}}$

- For convenience sake, let us consider the syndrome polynomial of infinite degree such that

$$
\mathbf{s}(\mathbf{x})=\sum_{q=0}^{\infty} S_{q} \mathbf{x}^{q}
$$

Then, from
, we obtain

$$
\begin{aligned}
\mathbf{s}(\mathbf{x}) & =\sum_{q=1}^{\infty} \sum_{\kappa=1}^{\nu} \quad \boldsymbol{Y}_{\kappa} \beta_{\kappa}{ }^{q} \mathbf{x}^{q} \\
& =\sum_{\kappa=1} \nu \quad \boldsymbol{Y}_{\kappa} \sum_{q=1}^{\infty} \beta_{\kappa}{ }^{q} \mathbf{x}^{q}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\Sigma_{q=1}^{\infty} \beta_{\kappa}^{q} \mathbf{x}^{q}= & 1+\beta_{\kappa} \mathbf{x}+\beta_{\kappa}^{2} \mathbf{x}^{2}+\ldots \\
& =1 /\left(1-\beta_{\kappa} \mathbf{x}\right)=1 /\left(1+\beta_{\kappa} \mathbf{x}\right)
\end{aligned}
$$

Then we have

$$
\mathbf{S}(\mathbf{x})=\Sigma_{\kappa=1}^{v} Y_{\kappa} /\left(1+\beta_{\kappa} \mathbf{x}\right)
$$

Using the above equations, the error-evaluator polynomial
$Z(x)$ of degree less than v can be written as

$$
Z(\mathbf{x})=\Sigma_{\kappa=1}^{v} Y_{\kappa} \prod_{p=1}^{v}\left(\underset{p \neq \kappa}{v}\left(1+\beta_{p} \mathbf{x}\right)\right.
$$

Thus, the error-value at location $x=\beta_{m}$ is easily obtained as

$$
\left.Y_{m}=Z\left(\beta_{m}^{-1}\right) / \prod_{p=1}^{p \neq m}<1+\beta_{p} \beta_{m}^{-1}\right)
$$

and then

$$
e(x)=\Sigma Y_{m} \mathbf{x}^{m}
$$

Example:

Consider the triple-error-correcting $(31,25)$ RS code. The received polynomial is

$$
r(x)=\alpha^{8} \mathbf{x}^{2}+\alpha^{2} \mathbf{x}^{5}+\alpha \mathbf{x}^{10}
$$

$$
\begin{aligned}
& s_{1}=r(\alpha)=\alpha^{10}+\alpha^{7}+\alpha^{11}=\alpha \\
& s_{2}=r\left(\alpha^{2}\right)=\alpha^{12}+\alpha^{12}+\alpha^{21}=\alpha^{21} \\
& s_{3}=r\left(\alpha^{3}\right)=\alpha^{14}+\alpha^{17}+\alpha^{31}=\alpha^{23} \\
& s_{4}=r\left(\alpha^{4}\right)=\alpha^{16}+\alpha^{22}+\alpha^{20}=\alpha^{15} \\
& s_{5}=r\left(\alpha^{5}\right)=\alpha^{18}+\alpha^{27}+\alpha^{20}=\alpha^{2} \\
& s_{6}=r\left(\alpha^{6}\right)=\alpha^{20}+\alpha+\alpha^{30}=\alpha^{13}
\end{aligned}
$$

$\mathrm{r}(\mathrm{x})=\left(00 \alpha^{8} 00 \alpha^{2} 0000 \alpha 00000000000000000000\right)$

$S=\left(S_{1}, S_{2}, \ldots, S_{6}\right)=\left(\alpha, \alpha^{21}, \alpha^{23}, \alpha^{15} \alpha^{2}, \alpha^{13}\right)$
The error locator polynomial $\sigma(x)$ can be found by applying the iterative algorithm as follows :

1. $\mu=0$, Choose $\rho=-1$
$\boldsymbol{\sigma}^{(1)}(\mathbf{x})=\boldsymbol{\sigma}^{(0)}(\mathbf{x})+d_{0} d_{-1}^{-1} \mathbf{x} \sigma^{(-1)}(\mathbf{x})=1+\boldsymbol{\alpha} \mathbf{x}$
$d_{1}=S_{2}+\sigma_{1}^{(1)} S_{1}=\alpha^{21}+\alpha^{2}=\alpha^{13}$
$L_{1}=\max \left[L_{0}, L_{-1}+0+1\right]$
2. $\mu=1 \quad \rho=0$

$$
\begin{aligned}
& \sigma^{(2)}(\mathbf{x})=\sigma^{(1)}(\mathbf{x})+d_{1} d_{0}^{-1} \times \sigma^{(-1)}(x)=1+\boldsymbol{\alpha} \times+\boldsymbol{\alpha}^{13} \boldsymbol{\alpha}^{-1} \mathrm{x}=1+\boldsymbol{\alpha}^{\mathbf{2 0}} \mathrm{x} \\
& \text { and } L_{2}=L_{1}=1 \\
& d_{2}=S_{3}+\sigma_{1}^{(2)} S_{2}=\boldsymbol{\alpha}^{\mathbf{2 3}}+\boldsymbol{\alpha}^{10}=\boldsymbol{\alpha}^{\mathbf{2 4}}
\end{aligned}
$$

Note : $L_{\mu+1}=\max \left[L_{\mu}, L_{\rho}+\mu-\rho\right]$
The number $\left(\rho-L_{\mu}\right)$ has the largest number.
3. $\mu=2 \quad \rho=0$

$$
\begin{aligned}
& \sigma^{(3)}(\mathbf{x})= \sigma^{(2)}(\mathbf{x})+d_{2} d_{0} \sigma^{-1} \mathbf{x}^{2} \sigma^{(0)}(\mathbf{x}) \\
&=1+\boldsymbol{\alpha}^{20} \mathbf{x}+\boldsymbol{\alpha}^{24} \boldsymbol{\alpha}^{-1} \mathbf{x}^{2} \\
&=1+\boldsymbol{\alpha}^{20} \mathbf{x}+\boldsymbol{\alpha}^{23} \mathbf{x}^{2} \\
& d_{3}=S_{4}+\sigma_{1}{ }^{(3)} S_{3}+\sigma_{2}{ }^{(3)} S_{2}=\boldsymbol{\alpha}^{15}+\boldsymbol{\alpha}^{12}+\boldsymbol{\alpha}^{13}=\boldsymbol{\alpha}^{8}
\end{aligned}
$$

4. $\mu=3 \quad \rho=2$

$$
\begin{aligned}
\boldsymbol{\sigma}^{(4)}(\mathbf{x})= & \boldsymbol{\sigma}^{(3)}(\mathbf{x})+d_{3} d_{2}^{-1} \mathbf{x}^{2} \sigma^{(2)}(\mathbf{x}) \\
& =1+\boldsymbol{\alpha}^{20} \mathbf{x}+\boldsymbol{\alpha}^{23} \mathbf{x}^{2}+\boldsymbol{\alpha}^{15} \mathbf{x}+\boldsymbol{\alpha}^{4} \mathbf{x}^{2} \\
& =1+\boldsymbol{\alpha}^{17} \mathbf{x}+\boldsymbol{\alpha}^{15} \mathbf{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
d_{4} & =S_{5}+\sigma_{1}{ }^{(4)} S_{4}+\sigma_{2}{ }^{(4)} S_{3}=\alpha^{15}+\alpha^{12}+\alpha^{13}=\alpha^{8} \\
& =\alpha^{2}+\alpha+\alpha^{7}=\alpha^{30}
\end{aligned}
$$

5. $\mu=4 \quad \rho=2$

$$
\dot{\sigma}^{(5)}(\mathbf{x})=\boldsymbol{\sigma}^{(4)}(\mathbf{x})+d_{4} d_{2}^{-1} \mathbf{x}^{2} \sigma^{(2)}(\mathbf{x})
$$

$$
=1+\alpha^{17} \mathrm{x}+\boldsymbol{\alpha}^{22} \mathbf{x}^{2}+\boldsymbol{\alpha}^{26} \mathbf{x}^{3}
$$

$$
d_{5}=S_{6}+\sigma_{1}{ }^{(5)} S_{5}+\sigma_{2}{ }^{(5)} S_{4}+\sigma_{3}^{(5)} S_{3}=\alpha^{15}+\alpha^{12}+\alpha^{13}=\alpha^{8}
$$

$$
=\boldsymbol{\alpha}^{13}+\boldsymbol{\alpha}^{19}+\boldsymbol{\alpha}^{6}+\boldsymbol{\alpha}^{18}=\boldsymbol{\alpha}^{17}
$$

6. $\mu=5 \quad \rho=4$

$$
\begin{aligned}
\sigma^{(6)}(\mathbf{x}) & =\sigma^{(5)}(\mathbf{x})+d_{5} d_{4}^{-1} \mathbf{x} \sigma^{(4)}(\mathbf{x}) \\
& =1+\boldsymbol{\alpha}^{4} \mathbf{x}+\boldsymbol{\alpha}^{5} \mathbf{x}^{2}+\boldsymbol{\alpha}^{17} \mathbf{x}^{3}
\end{aligned}
$$

Since $\sigma(x)=\sigma^{(6)}$, the error-locator polynomial is

$$
\sigma(x)=1+\alpha^{4} \mathbf{x}+\alpha^{5} \mathbf{x}^{2}+\alpha^{17} \mathbf{x}^{3}
$$

By the Chien search method, we can easily find that α^{21}, α^{26} and α^{29} roots of $\sigma(x)$. The reciprocals of these roots are to be the error-location number of $e(x)$. These numbers are calculated as α^{10}, α^{5} and α^{2}.
Thus, the triple errors occurs at positions x^{10}, x^{5} and x^{2}.

To find the error-values, we first calculate the error-evaluator

 polynomial $Z(x)$ by using eq. (3.22).$$
\begin{aligned}
& Z(\mathrm{x})= \Sigma_{\kappa=1}{ }^{v} Y_{\kappa} \Pi_{p=1}^{v}\left(1+\beta_{p} \mathbf{x}\right) \\
& p_{p \neq \kappa} \\
&= 1+\left(\alpha+\alpha^{4}\right) \mathbf{x}+\left(\alpha^{21}+\alpha^{4} \alpha+\alpha^{5}\right) \mathbf{x}^{2} \\
&+\left(\alpha^{23}+\alpha^{4} \alpha^{21}+\alpha^{5} \alpha+\alpha^{17}\right) \mathbf{x}^{3} \\
&= 1+\alpha^{30} \mathbf{x}+\alpha^{21} \mathbf{x}^{2}+\alpha^{23} \mathbf{x}^{3}
\end{aligned}
$$

$$
\begin{aligned}
Y_{2} & =Z\left(\alpha^{-2}\right) /\left(1+\alpha^{5} \alpha^{-2}\right)\left(1+\alpha^{10} \alpha^{-2}\right) \\
& =\alpha^{26} / \alpha^{18}=\alpha^{8} \\
Y_{5} & =Z\left(\alpha^{-5}\right) /\left(1+\alpha^{2} \alpha^{-5}\right)\left(1+\alpha^{10} \alpha^{-10}\right) \\
& =\alpha^{30} / \alpha^{28}=\alpha^{2} \\
Y_{10} & =Z\left(\alpha^{-10}\right) /\left(1+\alpha^{2} \alpha^{-10}\right)\left(1+\alpha_{5} \alpha^{-10}\right) \\
& =\alpha^{10} / \alpha^{9}=\alpha
\end{aligned}
$$

Thus, the error-pattern polynomial is easily found as

$$
\begin{aligned}
e(x)= & Y_{2} x^{2}+Y_{5} x^{5}+Y_{10} x^{10} \\
= & \alpha^{8} x^{2}+\alpha^{2} x^{5}+\alpha x^{10}
\end{aligned}
$$

3.5 Shortened RS Codes

- In system design, if a code of natural length or suitable number of information digits can not be found, it may be desirable to shorten the code to meet the requirement.
- Given an (\mathbf{n}, \mathbf{k}) cyclic code \mathbf{C}, consider the set of codewords for which the L leading high-order message digits are identical to zero.There are 2^{k-L} such codewords and they form a linear subcode of C. If we delete the L zero message digits from each of these codewords, we obtain a set of 2^{k-L} words of length $n-L$. These 2^{k-L} shortened words form an ($n-L, k-L$) linear code. This code is called a shortened cyclic code. The shortened code has the same error-correcting capability as the original code but is not cyclic is not cyclic in general.
- The $(\mathbf{2 5 5}, \mathbf{2 5 1})$ RS code is designed over the Galois field GF ($\mathbf{2}^{8}$) with error-correcting capability $t=2$. Shortened RS codes $\mathrm{C}_{\mathrm{RS}}(\mathbf{3 2}, 28)$ and $\mathrm{C}_{\mathrm{RS}}(\mathbf{2 8}, 24)$ are obtained from the original RS code $\mathrm{C}_{\text {RS }}(255,251)$ by deleting 227 digits and 223 digits, respectively, from the 255 codewords.
These two codes are the constituent codes of the compact disc (CD) error-control coding system.
Both shortened RS codes and the original RS code have the same generator polynomial.
The generator polynomial is given by

$$
\begin{aligned}
g(\mathrm{x}) & =(\mathrm{x}+\alpha)\left(\mathrm{x}+\alpha^{2}\right)\left(\mathrm{x}+\alpha^{3}\right)\left(\mathrm{x}+\alpha^{4}\right) \\
& =\mathrm{x}^{4}+\alpha^{76} \mathrm{x}^{3}+\alpha^{251} \mathrm{x}^{2}+\alpha^{81} \mathrm{x}+\alpha^{10}
\end{aligned}
$$

All operations performed in te calculation of this generator polynomial are done in $\mathbf{G F}\left(\mathbf{2}^{8}\right)$.

Table 3.2 Minimal polynomials of the elements of $\operatorname{GF}\left(2^{6}\right)$

Elements

$\alpha, \alpha^{2}, \alpha^{4}, \alpha^{16}, \alpha^{32}$	$1+X+X^{6}$
$\alpha^{3}, \alpha^{6}, \alpha^{12} \alpha^{24}, \alpha^{48} \alpha^{33}$	$1+X+X^{2}+X^{4}+X^{6}$
$\alpha^{5}, \alpha^{10}, \alpha^{20}, \alpha^{40}, \alpha^{17}, \alpha^{34}$	$1+X+X^{2}+X^{5}+X^{6}$
$\alpha^{7}, \alpha^{14}, \alpha^{28}, \alpha^{56}, \alpha^{49}, \alpha^{35}$	$1+X^{3}+X^{6}$
$\alpha^{9}, \alpha^{18}, \alpha^{36}$	$1+X^{2}+X^{3}$
$\alpha^{11}, \alpha^{22}, \alpha^{44}, \alpha^{25}, \alpha^{50}, \alpha^{37}$	$1+X^{2}+X^{3}+X^{5}+X^{6}$
$\alpha^{13}, \alpha^{26}, \alpha^{52}, \alpha^{41}, \alpha^{19}, \alpha^{38}$	$1+X+X^{3}+X^{4}+X^{6}$
$\alpha^{15}, \alpha^{30}, \alpha^{60}, \alpha^{57}, \alpha^{51}, \alpha^{39}$	$1+X^{2}+X^{4}+X^{5}+X^{6}$
α^{21}, α^{42}	$1+X+X^{2}$
$\alpha^{23}, \alpha^{46}, \alpha^{29}, \alpha^{58}, \alpha^{53}, \alpha^{43}$	$1+X+X^{4}+X^{5}+X^{6}$
$\alpha^{27}, \alpha^{54}, \alpha^{45}$	$1+X+X^{3}$
$\alpha^{31}, \alpha^{62}, \alpha^{61}, \alpha^{59}, \alpha^{55}, \alpha^{47}$	$1+X^{5}+X^{6}$

Minimal polynomials
$1+X+X^{6}$
$1+X+X^{2}+X^{4}+X^{6}$
$1+X+X^{2}+X^{5}+X^{6}$
$1+X^{3}+X^{6}$
$1+X^{2}+X^{3}$
$1+X^{2}+X^{3}+X^{5}+X^{6}$
$1+X+X^{3}+X^{4}+X^{6}$
$1+X^{2}+X^{4}+X^{5}+X^{6}$
$1+X+X^{2}$
$1+X+X^{4}+X^{5}+X^{6}$
$1+X+X^{3}$
$1+X^{5}+X^{6}$

Table 3.3
Generator polynomials of all the BCH codes of length 63

n	k	t	$\mathbf{g}(X)$
63	57	1	$\mathbf{g}_{1}(X)=1+X+X^{6}$
	51	2	$\mathbf{g}_{2}(X)=\left(1+X+X^{6}\right)\left(1+X+X^{2}+X^{4}+X^{6}\right)$
	45	3	$\mathbf{g}_{3}(X)=\left(1+X+X^{2}+X^{5}+X^{6}\right) \mathbf{g}_{2}(X)$
	39	4	$\mathbf{g}_{4}(X)=\left(1+X^{3}+X^{6}\right) \mathbf{g}_{3}(X)$
	36	5	$\mathbf{g}_{5}(X)=\left(1+X^{2}+X^{3} 3\right) \mathbf{g}_{4}(X)$
	30	6	$\mathbf{g}_{6}(X)=\left(1+X^{2}+X^{3}+X^{5}+X^{6}\right) \mathbf{g}_{5}(X)$
	24	7	$\mathbf{g}_{7}(X)=\left(1+X+X^{3}+X^{4}+X^{6}\right) \mathbf{g}_{6}(X)$
18	10	$\mathbf{g}_{10}(X)=\left(1+X^{2}+X^{4}+X^{5}+X^{6}\right) \mathbf{g}_{7}(X)$	
	16	11	$\mathbf{g}_{11}(X)=\left(1+X+X^{2}\right) \mathbf{g}_{10}(X)$
10	13	$\mathbf{g}_{13}(X)=\left(1+X+X^{4}+X^{5}+X^{6}\right) \mathbf{g}_{11}(X)$	
	7	15	$\mathbf{g}_{15}(X)=\left(1+X+X^{3}\right) \mathbf{g}_{13}(X)$

Appen.: Division circuit for dividing $X(D)$ by $G(D)$

$$
\begin{aligned}
X(D) & =x_{0}+x_{1} D+x_{2} D^{2}+\ldots+x_{n-1} D^{n-1} \\
G(D) & =g_{0}+g_{1} D+g_{2} D^{2}+\ldots+g_{n-k} D^{n-k}
\end{aligned}
$$

Note : 1. The high-order coefficients are input first .
2. First output is coefficient of $\mathrm{D}^{\mathrm{n}-1}$ of quotient
3. Shift register contains coefficients of remainder

$$
r(D)=r_{n}+r_{1} D+r_{-} D^{2}+\ldots+r_{\ldots} . D^{n-k-1}
$$

