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4.1 Introduction to Convolutional Codes 

• Convolutional codes were first discovered by P. Elias in 1955. 

• The structure of convolutional codes is quite different from 

that of block codes. 

     During each unit of time, the input to a convolutional code 

encoder is also a k-bit message block and the corresponding 

output is also an n-bit coded block with k < n. 

• Each coded n-bit output block depends not only the 

corresponding k-bit input message block at the same time 

unit but also on the M previous message blocks. 

• Thus the encoder has k input lines, n output lines and a 

memory of order M as shown in Figure 4.1 .  
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 Each message (or information) sequence is encoded into a 
code sequence. 

• The set of all possible code sequences produced by the 
encoder is called an (n,k,M) convolutional code. 

    The parameters, k and n , are normally small,  

     say 1 k 8  and  2  n  9. 

     The ratio R = k/n is called the code rate. 

     The parameter M is called the memory order of the code. 

• Note that the number of redundant (or parity) bits in each 
coded block is small.   

    However, more redundant bits are added by increasing the 
memory order M of the code while holding k and n fixed. 
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4.2   Encoder of (n,k,M) Convolutional Code 
                     

• For (n,k,M)  code , the encoder has k inputs and n outputs as 

     shown in Fig. 4.1 

 

              Time-Domain  Representation 
 

• At the i-th input terminal, the input message sequence is                

                                                                                                                             
u(i) =  (u0

(i) , u1
(i) , … , ur

(i) , … )         for 1  i k.             (4.1) 

 

• At the j-th output terminal, the output code sequence is  

 

     v(j) =  (v0
(j) , v1

(j) , … , vr
(j) , … )            for 1 j  n           (4.2) 
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• An (n,k,M) convolutional code is specified by k ×  n generator 

sequence: 

                 g1
(1)     g2

(1)   …    gk
(1)  

                 g1
(2)      g2

(2)  …    gk
(2)    

          [       .             .                .       ]                                (4.3)                                                                                                                             

                 gk
(n)       gk

n)   …  gk
(n)  

                                               . 
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 The n output code sequences are then given by 

     v(1) = u 
(1) ＊ g1

(1) + u 
(2) ＊ g2

(1) + … +u 
(k) ＊ gk

(1)  

     v(2) = u 
(1) ＊ g1

(2) + u 
(2) ＊ g2

(2) + … +u(k) ＊ gk
(2)  

                                . 
                                               . 

     v(n) = u(1) ＊ g1
(n) + u 

(2) ＊ g2
(n) + … + u 

(k) ＊ gk
(n)  

                                               . 

                                                                                           (4.4) 

where ＊ denotes  discrete convolution operation. 

 

Encoder 

• The encoder of an (n,k,M) code consists of k shift-registers, 
each has at most M stages. The feedforward connections are 
based on the k× n generator sequences. 

• The message bits stored in the k shift-registers together 
represent the state of the encoder. 
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Example 4.1  

     Let n=3, k=2, and M =1. Consider the (3,2,1) convolutional 

code generated by the following 6  generator sequences: 

              g1
(1) = ( 1  1 )       g1

(2) = ( 0  1 )     g1
(3) = ( 1  1 ) 

              g2
(1) = ( 1  1 )       g2

(2) = ( 0  1 )     g2
(3) = ( 1  1 ) 

    The output sequence are:  

               v(1) = u 
(1) ＊ g1

(1) +u 
(2) ＊ g2

(1)  

               v(2) = u(1) ＊ g1
(2) + u 

(2) ＊ g2
(2) .                 . 

               v(3) = u 
(1) ＊ g1

(3) + u 
(2) ＊ g2

(3)                        (4.5) 

• The 3 code digits of the l-th code block are given by: 

             vl 
(1) = ul 

(1)  + ul-1 
(1) + ul-1 

(2) 

             vl 
(2) = ul-1

(1) + ul 
(2) 

             v 
l
(3) = ul 

(1) + ul-1 
(1) + ul 

(2) 

                                                                                          (4.6) 
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       Transform –Domain Representation 

 It is well known  in the field of digital signal analysis the 

convolution operation in time-domain becomes multiplication  in 

transform- domain, also called  D- transform domain . 

 The message sequence  u(i) =  (u0
(i) , u1

(i) , u2
(i) , … )  can be 

represented in polynomial form 

        u(i) (D) = u0
(i) + u1

(i) D +  u2
(i)  D2  +  …  

    where D represents a unit-delay  . 

 

 The generator sequences  can be represented  by generator 

polynomials 

 

      gj
(i) (D)  =  gi0

(i)  + gj1
(1) D +   gj2

(2) D2 + … 
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    In general , for a  (n,k, M) convolutional code,  the generator 

polynomials  can be represented in matrix form as 

 

                    g1
(1) (D)   g1

(2)(D)  …     g1
(n)(D)  

                    g2
(1)(D)   g2

(2)(D)  …     g2
(n)(D)  

                                     .                  . 

   G(D) =                         .                  .                              (4.7) 

                                     .                  . 

                    gk
(1)(D)    gk

(2)(D)  …  gk
(n)(D)  

 

  and   then    

       v(D) =  u(D) G (D)                                                   (4.8) 
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 Example  4.2 :  The (3,2,1) encoder  is shown in Fig.4.3 

   

                      1+D      D      1+D               v(D) =  ( u1   u2 )    1+D      D      1+D  

     G(D)  =   

                      D          1        1                                                    D          1        1   

 

Fig.4.3  
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4.3  Systematic Form 
• An (n, k, M) convolutional code is said to be systematic if the  

    first output sequence  is identical to the input message 
sequence , i.e., 

             v(1)   =  u                                                               (4.9)       
Suppose the input message sequence  is of finite length with  

    L bits, 

               u(i) =  (u0
(i) , u2

(i) , … , uL-1
(i)  )                                     (4.10)  

     It takes the last bit, uL-1 , M units of time to move out of the  

     memory. Usually , M zeros are added to the message sequence 

     to compute the last M output blocks  and also clear the shift  

     register .   Thus ,each output sequence consists of L+M bits, 

            

                v(j) =  ( v0
(j) , v1

(j) , … , vr
( j ) , … , vL+M-1

( j ) )                                                       

                                                                  for i = 1, 2, …, n.    (4.11) 

The parameter K = M +1 is called the constraint length of the  

code. 
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4.4   Non-recursive and Recursive  Codes 

 Encoders for convolutional codes  can be implemented by finite 

state sequential machines FSSMs) which fall into two general 

categories :    recursive and non-recursive . 

 Finite state sequential machines can be constructed by using  

basic memory units ( such as shift registers ), combined with 

adders and scalar multipliers. 

 The following figure (Fig.4.4) shows  the functional diagram of  

    a general finite state sequential machine  , expressed by the 

transfer function 

    G(D) = ( a0  +    a1 D +  a2  D
2 +…+   an D

n  )  /  (1  +   f1 D +   f2  D
2 + … +  fn D

n  ) 
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Fig.4.4 
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 Fig.4.5(a) shows the structure of a non-recursive (2,1,2) 

convolutional code  with generator matrix  

     G(D)=[ 1+D+D2   , 1+D2 ] , while Fig.4.5(b) shows the 

structure of the recursive convolutional code with generator 

matrix    G(D) = [ 1   (1+D2 ) / 1+D+D2)  ] 

 

Fig.4.5 

(a)                                                          (b) 
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4.5  State Diagram 

• Since the encoder is a linear sequential circuit, its behavior 
can be described by a state diagram. 

    Define the encoder state at the time l  as the M-tuple, 

                (ul -1    , ul -2 , …, ul -M   ) 

     which consists of the M message bits stored in the shift 
register. 

• There are 2M possible states.  At any time instant, the 
encoder must be in one of these states. 

• The encoder undergoes a state transition when a message 
bit is shifted into the encoder register as shown below. 

 

       Input                                                State 

        ul                                       (ul -1 , ul -2 ,…, ul -M) 

                                                              ↓ 

        ul+1                                    (ul , ul -1,…, ul -M+1) 
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• At each time unit, the output block depends on the input and 

the state, 

            Vl= f ( ul , Sl)             (4.12) 

  State Diagram (Pictorial Representation) 

     Each state is represented by a vertex (or point) on a plane. 

     The transition from one state to another state is   represented 

by a directed line (arc). 

     Each directed line is labeled with I/O (input/output) pair. 

 

 

 



20 20 

• Suppose ml  is the current input.  The current state of the 
encoder is   Sl  =(ul-1    , ul-1  , …, ul-M   )                    (4.13) 

     When  cl  is shifted into the encoder, the encoder moves into 
the state     Sl+1  =  (ul    , ul-1  , …, ul-M +1  )               (4.14) 

    which is called the next state. 
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• The state diagram of the (2,1,2 ) convolutional coder (Fig. 4.3(a) ) is  

is shown in Fig.4.6 . 

     Each state is one of the forms:  (0 0), (0 1), (1 1), and (1 0).  

     

     Fig.4.6 
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4.6  Trellis Diagram 

• The state diagram can be expanded in time to display the 
state transition of a convolutional encoder in time. This 
expansion in time results in a trellis diagram. 

• Normally the encoder starts from the all-zero state,  

          (0, 0, …, 0). 

• When the first message bit m1 is shifted into the encoder 
register, the encoder is in one of the two following states: 

           (u1 = 0, 0, 0, …, 0) ; (u1 = 1, 0, 0, …, 0); 

• When the second message bit m2 is shifted into the encoder 
register, the encoder is in one of the following states: 

          (u2 = 0, u1= 0, 0, 0, …, 0); (u2 = 1, u1 = 0, 0, 0, …, 0); 

          (u2 = 0, u1 = 1, 0, 0, …, 0); (u2 = 1, u1 = 1, 0, 0, …, 0); 

 

• Every time, when a message bit is shifted into the encoder 
register, the number of state is doubled until the number of 
states reaches 2M. 
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• At the time M, the encoder reaches the steady state. 

• At the time l > M, the encoder is in the state, 

                       (ul -1, ul -2, …, ul -M). 

• At the time l+1, the encoder can move into one of the 
following states: 

                      (ul = 0, ul -1, ul -2, …, ul -M+1). 

                      (ul = 1, ul -1, ul -2, …, ul -M+1). 

• Therefore, in trellis diagram, there are two branches (or 
transitions) leaving a state. 

• Now, suppose the state of the encoder is 

            (ul , ul -1, ul -2, …, ul -M+1). for l > M. 

• This state can be reached from two states, 

            (ul -1, ul -2, …, ul -M+1 = 0) 

            (ul , ul -1, ul -2, …, ul -M+1, ul –M = 1) 

• Thus, for l >M, there are two branches merging into a state 
in the trellis diagram. 
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Example 4.4 

  Consider the (2,1,2)  nonrecursive convolutional code  with 

generator polynomial given by  

      g1 (D) = 1 + D + D2       ,      g2(D) = 1 + D2    

     Its  encoder and trellis diagram are shown in Figure 4.7 

• We see that there are two branches leaving each state, 

depending on the input symbol, ul = 0 or ul = 1. 

• The upper branch corresponds to an input symbol ml = 0, 

while the lower branch corresponds to an input symbol  

      ul = 1. 

• For l > M = 2, we see that there are two branches merging 

into a state. 

• The encoding of a message sequence  is equivalent to tracing 

a path through the trellis. 
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Fig.4.7  (a)   (2,1,2 ) convolutional code encoder 
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Fig.4.7(b)     Trellis  Diagram for (2,1,2 ) code 

Note that a dashed line is for an for input 1 and a solid line is  for an input 0 
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                    Termination of a Trellis 

• Suppose the message sequence is of L bits long,     

     u =  (u1
 , u2 , … , uL

  ) 

• When the entire sequence  has been encoded, the encoder 
must return to the starting state. This can be done by 
appending M zeros to the message sequence u . 

 

• When the first appended “0” is shifted into the encoder 
register, the encoder is in the state, 

          ( 0, uL-1
 , uL-2 , … , uL- M+1

  ) 

 

• There are 2M-1 such states. 
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• When the second “0” is shifted into the encoder register, 
the encoder is in the state, 

       ( 0, 0, uL-1
 , uL-2 , … , uL- M+2

  ) 

    There are 2M-2 such states. 

 

• When the M-th “0” is shifted into the register, the encoder 
is back to the all-zero state, (0, 0, …, 0). 

 

• At this instant, the trellis converges into a single vertex. 

 

• During the termination process, the number of states is 
reduced by half as each “0” is shifted into the encoder 
register. 
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4.7  Minimum Free Distance 

• The most important distance measure for convolutional 

codes is the minimum free distance, denoted dfree. 

• The minimum free distance of a convolutional code is 

simply the minimum Hamming distance between any two 

code sequences in the code. 

• It is also the minimum weight of all the code sequences, 

which are produced by the nonzero message sequences. 

• The minimum free distance of the (2,1,2) convolutional code 

given in Example 4.4   is 5 ,  i.e., dfree= 5. 
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The Most Widely Used Convolutional Codes 

• The most widely used convolutional code is (2,1,6) 
Odenwalter code generate by the following generator 
sequence, 

        g(1) (D) = 1 + D + D3 + D4 + D6 

            g2(D) =     1 + D3 + D4 + D5+ D6 

    

      This code has dfree=10. 

 With hard-decision decoding, it provides a 3.98dB coding 
gain over the uncoded BPSK modulation system. 

    With soft-decision decoding, the coding gain is 6.98dB. 

Remarks : 

    Note that good convolutional codes have as large  a free distance as 

possible; at high signal-to- noise ratios these codes are optimum. Some 
non-systematic convolutional codes have a superior distance structure. 
Therefore non-systematic codes are sometimes preferred over 
systematic codes . 
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Summary : 

• A (n.k,M) convolutional code can be  represented by : 

      1. Encoder block diagram using 

         digital circuits (shift registers , adders , etc.) 

      2. Generator polynomials, g (i) (D) . 

      3. State diagram 

      4. Trellis diagram 

      Note : constraint length K = M+1 

                  number of states = 2M 
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4.8. Maximum Likelihood Decoding of    

       Convolutional Codes 

4.8.1  Maximum Likelihood Decoding 

• For a convolutional code, each code sequence is a path in the 
trellis diagram of the code. 

 

• Suppose each message sequence  consists of L message blocks of 
k bits each, u =  ( u0

 , u1 , … , uL-1 ) 

     Then each code sequence  c   is a path of L+M branches long in 
the trellis diagram. 

• Suppose a code sequence is transmitted , v = (v0
 , v1 , … , v L+M-1 ) 

     where the j-th branch (or code block)  vj =  ( vj
(1) , vl

(2) , … , vl
(n) ) 

 

• Let   r =  ( r0
 , r1 , … , r L+M-1 ) 

     be the received sequence where rj the j-th  received block. . 
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 MLD: Find the path  through the trellis diagram such that the  

                conditional probability,   P( r ｜v  )     is the largest. 

 For a binary input, Q-ary output discrete memoryless channel  

     (DMC), v  is a binary sequence and  r   is a  Q-ary sequence. 

 The conditional probability P( r ｜v ) can be computed as  

     follows: 

            P( r ｜v  ) = Π l =0 
L+m-1  P( rl ｜vl  )                        (4.15)  

 
      where P( rl ｜vl  )    is the branch conditional probability. 

 The branch conditional probability is given by 

 

               P( rl ｜vl  ) =  Πi =0 
n  P( rl

(i) ｜vl
(i)  )                                      (4.16)              

                                                                                                            

     where P( rl
(i) ｜vl

(i)  ) is the channel transition probability. 

 

• Define the log-likelihood function of a path v as follows: 

          M( r ｜v )  =   log  P( r ｜v )                               (4.17) 

   which is called the metric of  path  v . 

c



35 35 

• From (4.15) and (4.17), we have 

        M( r ｜v ) = Σl=0
L+m-1  log P( rl ｜cl  ) 

                              = Σl=0
L+m-1 M( rl ｜cl  )                      (4.18) 

      where  M( rl ｜cl  ) =   log P( rl ｜cl  )                     (4.19) 

       is called the branch metric. 

• From (4.16) and (4.19), we have the branch metric 

       M( rl ｜cl  ) = Σi =1 
n   log  P( rl

(i) ｜cl
(i)  )               (4.20) 

 where   M( rl
(i) ｜cl

(i)  ) =   log  P( rl
(i) ｜cl

(i)  )             (4.21) 

 is called the bit metric. 

• MLD: Find the path  v   in the trellis diagram such that    

               M( r ｜v ) is maximized. Then  v  is the estimate of  

               the transmitted code sequence. 

• For the first j branches of a path  through the trellis, the  

     partial path metric is 

  M( [r ｜c ]j ) = Σl =0 
j-1   M( rl ｜cl  )                     (4.22)  

c
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4.8.2  ML Decoding  for  Binary Symmetric Channel 
 

 For a BSC (Q=2) with transition probability  p < ½  , the  

     log-likelihood function becomes 

             log P( r ｜v  ) = d(r,v) log [p/(1-p)] + (L+m) n log (1-p)  

                                                                                                   (4.23) 

      where  d(r,v)  is the Hamming distance  between  r   and v . 

 

     Since  log [ p/(1-p)] < 0    and  (L+m) n log (1-p)  is a constant 

      for  all code sequences ,   log P( r ｜v  )  is maximized if and  

     only if  d(r,v)   is minimized. 

 

 MLD: The received sequence  r is decoded into the code  

                sequence  v   if  d(r,v) is minimized. 

 
 



37 37 

4.8.3  The Viterbi Decoding Algorithm 

 

• The Viterbi algorithm performs maximum likelihood 

decoding but reduces the computational complexity by 

taking advantage of the special structure of the code trellis. 

• It was first introduced by A. Viterbi in 1967 and was first 

recognized by D. Forney in 1973 that it is a MLD algorithm 

for convolutional code. 
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       The Viterbi Algorithm 

• Step 1. Starting at the level l = m  in the trellis, compute the 

partial metric for the single path entering each m-th order 

node. Store the path (the survivor) and its metric for each 

node. 

• Step 2. 

     Increasing l  by 1. 

     Compute the partial metric for all the paths entering a 

(l+1)-th order node by adding the branch metric entering  

    that node to the metric of the connecting survivor at a 

previous l-th order node.  

     For each (l+1)-th node, store the path with the largest metric 

(the survivor) , together with its metric, and eliminate all the 

other paths. 

• Step 3. If l < L+M, repeat Step2. Otherwise, stop. 
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Example 4.5 

• Consider the (2,1,2) convolutional code given in Example  

    4.4 ,  whose trellis diagram is shown in Fig.4.8. 

      Suppose the code is used for a BSC. In this case, we may 

use the Hamming distance as the path metric. The survivor 

at each node is the path with the smallest Hamming 

distance from the received sequence. 

• The message length L = 6. 

     received sequence : 10 10 10 11 11 10 01 11 

 

     ( answer : decoded sequence : 11 10 11 11 01 10 01 11 ) 
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Fig.4.8 (a) Truncated trellis diagram 

                   G(D) = (1+D+D2   1+D2 ) 
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Fig.4.8 (b) 
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Fig. 4.8( c ) 
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Fig.4.8(d) 
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Fig.4.8(e) 
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Fig. 4.8(f) 
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Fig.4.8(g) 
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Fig.4.8(h) 
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4.8.4  Modifications of Viterbi Algorithm : Truncation 

 

• For very large L, this is practically impossible, and some 
trade-offs must be made. 

 

• One approach to this problem is to truncate the path 
memory of the decoder by storing only the most recent  q 
blocks of message bits for each survivor, where  q<< L. 

 

• After the first  q blocks of the received sequence have been 
processed by the decoder, the decoder memory is full. 

 

• As soon as the next received block is processed, a decoding 
decision must be made on the first block of   k  message bits, 
since they can no longer be stored in the decoder memory. 
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• The optimum strategy to make this decision is to select the 

survivor with the best metric, and the first block of k 

message bits of this survivor is chosen as the decoded 

message block and released to the user. 

 

• After the first decoding decision is made, subsequent 

decoding decisions are made in the same manner for each 

new received block processed. 

• Note that decoding decisions made in this way are 

no longer maximum likelihood, but can be almost 

as good  if  q is large enough. 
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• Experience and analysis have shown that if   r  is in the  

    order of  5 times of the encoder memory K or more, with  

     probability approaching “1”, all the 2K survivors stem from 

     the same branch r levels back as shown in Fig.4.9. 

 

• Hence there is no ambiguity in making decoding decision. 

    The parameter q is called the decoding span (or depth). 
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Fig. 4.9 

            Decoding decision with a finite path memory  q 
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4.9  Coding Gain 
• Coding gain is defined as the reduction in the require 

Eb/N0 (usually expressed in decibels) to achieve a specified 
error probability of a coded system over an uncodeed 
system with the same modulation and channel 
characteristic , as illustrated in Fig.4.10. 

• For an uncoded coherent BPSK system with an AWGN 
channel, the bit-error rate simply the transition probability,  

   

                Pb(E) =  Q (√ (2Eb /No ) )                 
  

• For large Eb/N0, this error rate (without coding) is 
approximated by 

    Pb(E) ≒ 0.282  exp ( -Eb / N0 ) 

                                                                         (4.24) 
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Fig.4.10 Illustration of coding gain 
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4.10 Punctured Convolutional Codes  

 In many bandwidth-limited application s , high-rate or low-
redundancy convolutional codes are desirable . However, the 
Viterbi decoder for these codes is often quite complicated . For 
the (n,k.M) binary convolutional code , the complexity of the 
Viterbi decoding  is proportional to 2kM . 

• Puncturing is a technique used to make a k/n rate code from a 
"basic" rate 1/2 code. It is reached by deletion of some bits in 
the encoder output. Bits are deleted according to puncturing 
matrix. 

• This has the same effect as encoding with an error-correction 
code with a higher rate, or less redundancy. However, with 
puncturing the same decoder can be used regardless of how 
many bits have been punctured, thus puncturing considerably 
increases the flexibility of the system without significantly 
increasing its complexity 
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• A pre-defined pattern of puncturing is used in an 
encoder. Then, the inverse operation, known as 
depuncturing, is implemented by the decoder. 
Puncturing is often used with the Viterbi Algorithm in 
coding systems. 

 

4.10.1  Rate  R= (n-1)/ n  Punctured Convolutional Code 

 We are to make a code with rate 2/3 using the 4-state , 

         rate  R =1/2    mother code generated by the (2,1,2) non-
systematic feedforward convolutional  encoder with the 
generator matrix  

               G(D)  = [1+ D+ D2    1+D2]  

               This code has free distance  dfree = 5 . 

         we should take a basic encoder output and transmit 
every second bit from the first branch and every bit 
from the second one, that is, deleting the first bit on 
every other branch of the trellis, as shown in Fig, 4.11 
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Example :Puncturing Pattern of 2/3 and 4/5 codes 

 In each of the above case, the puncturing pattern is 
indicated using a  2 x T binary matrix P , where T  is 
the puncturing period. The first row of P indicates the 
bits to be deleted from the first encode sequence , and 
the second row of  P indicates the bits to be deleted 
from the second encoded sequence. In the matrix P , a 0 
indicates  a bit to be deleted , and a 1 indicated a bit to 
be transmitted. 

 The puncturing patterns in Fig. 4.11  and Fig.4.12 are 
given by 

               1  0                                            1 110 

       P =                                          P =   

               1  1                                           10 01 

      Fig. (a)                               Fig. (b) 
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Fig.4.11 Trellis diagram of R= 2/3 ,M=2  code produced  by 

puncturing    R= 1/2  , M =2  convolutional code 
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Fig.4.12   R = 4/5 code  obtained by puncturing  (2,1,2 ) code 
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4.10.2  Rate-Compatible Punctured  Convolutional  

            (RCPC) Codes 

 In applications where it is necessary to support two or  

        more different code rates, it is sometimes convenient to  

         make use of  rate-compatible punctured convolutional  

         (RCPC) codes. 

 An RCPC code is a set of two or more convolutional codes 

        punctured from the same mother code in such a way that  

        the codewords of a higher-rate code can be obtained from 

         the codewords of a lower-rate code simply by deleting 
additional bits. 

 In other words,  the set of puncturing patterns must be such 
that the P matrix of a higher-rate code is obtained from the 
P matrix of a lower-rate code by simply changing some of 
the  1’s to 0’s . 

 . 
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 An RCPC code then has the property that all the codes 

in the set have the same encoder and decoder 

 Example : Puncturing (2,1.2 ) convolutional code 
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Example of RCPC codes 

    Rate  1/ 2 , M =2 convolutional codes 

       puncturing period   P =4 
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4.11 Tail-Biting Convolutional Codes 

         4.11.1 Tail-Biting 

             4.11.2  Encoding Procedure  for Tailbiting Codes   

             4.11.3.  Decoding Algorithms for Tailbiting Codes 
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4.11 Tail-Biting Convolutional Codes 

4.11.1 Tail-Biting Technique 

 A tail-biting convolutional code is obtained by terminating 

    the encoder output sequence after the last information block  

    in the input sequence. 

 In other words, no “ tail “ of input blocks is used to force the  

    encoder to the all-zero state. In this case, the input sequence  

    has length hk , the output sequence has length hn  , and the  

    rate of the resulting tail-biting convolutional code is 

              R = hk/hn  = k/n 

    There is no rate loss associated with this trellis termination  

     technique. 

 The tail-biting convolutional codes have been adopted as the  

     forward error correcting code for  data and/or overhead 

     channels in many wireless communications , such as 

     EDGE, WiMAX  and  LTE. 
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 For the tail-biting case, the allowable codewords are those 
that start and end in the same state. Thus , one approach to 
implement a ML decoder for a tail-biting code , as 
suggested by Ma and Wolf, is to run M parallel Viterbi 
algorithms , where M is the number of states in the trellis 
structure of the convolutional  code. Each  Viterbi 
algorithm has a different postulate for the starting and 
ending states.  

     The Viterbi algorithm that produces the globally best 
metric gives the ML estimate of the transmitted bits. 

     The obvious disadvantage  of this method is that the 
decoding method for tail-biting codes is M times as complex 
as the decoding algorithm for the code with tail bits . 
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4.11.2 . Encoding Procedure  for Tailbiting Codes 

 In the tailbiting convolutional coding system, we encode 

and decode a block of  N trellis sections without  a known 

tail, thus keeping the effective rate of transmission equal to 

the code rate. This is done  by letting the encoder start and 

end  in the same ( for the decoder unknown) state , as 

illustrated in the following figure. 

 The encoding procedure to achieve this is straightforward. 

In its simplest form , the encoder starts encoding in the 

state given by the last M information bits of message. This 

will also be the ending state. The decoder now  has to make 

a decision about the unknown information and starting ( = 

ending) state. 
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Zero-tail and taibiting encoders 
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Tailbiting technique 



68 

• A rate 1/3  tailbiting convolutional code , constraint length  K=7 . The initial 

values of the  shift registers are  set to equal to the last six information bits in 

the input stream. This code is defined for  LTE . 
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• A tailbiting convolutional code  for  IEEE 802.16e-2005 
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4.11.3.  Decoding Algorithms for Tailbiting Codes 

 To perform optimum ML decoding for tail-biting 

convolutional codes, all Viterbi decoders with all possible 

2M  different starting and ending states are performed 

exhaustively, the decoded path with the best metric is 

chosen. 

 Several suboptimum algorithms which are more or less 

complex and more or less efficient, have been proposed in 

the literature. 

     One of the suboptimum algorithm due to  Ma and Wolf  is 

the  so-called two-step algorithm .The number of trials that 

the decoder uses grows exponentially in the code memory 

and the algorithm is only somewhat simpler than the 

optimum decoder. 
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 Recently , a decoding algorithm called  Wrap-around 

Viterbi Algorithm was proposed by Shao, Lin and 

Fossorier ( 2003), denotes as WAVA . 

      R.Y.Shao, S.Lin and  P.C.Fossorier , “ Two decoding algorithms for  

         tailbiting codes,”  IEEE Trans. Commun. Vol.51, , pp. 1658-1665 

,Oct.2003. 
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4.12 Trellis Coded Modulation 

 Error correcting coding such as convolutional coding or 

block coding, leads to a coding gain at the cost of spectral 

efficiency Although this is attractive  for power-limited 

applications , it is not desirable for band-limited 

applications. 

 In 1982, Ungerboeck published a  paper in which he 

proposed a technique  to achieve  the coding gain without 

bandwidth expansion or reducing  data rate. The basic 

concept of this technique  is to perform coding gain onto an 

expanded modulation  signal set. 

 That is, the number of signal points  in the constellation 

used is larger ( usually twice) than what is required for the 

modulation format  of interest.  
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 Ungerboeck presented an effective method , denoted as  set  

     partitioning, for mapping the code bits into signal points  

     such that the minimum Euclidean  distance is maximized. 

 In this joint approach to coding and modulation ,  

    convolutional codes and MPSK ( or QAM) are mostly  

    employed. The combined convolutonal code and modulation  

    is denoted as Trellis Coded Modulation (TCM). Decoding is 

    performed  by using a soft-decision Viterbi decoder . 

 TCM experienced a fast transition from research to practical  

     applications. In 1984,a generation of modems using TCM 

     became available, achieving reliable transmission at speed of 

     14.4 kbits/s on private  modems and 9.6 kbits/s  on switshed 

     –network modems. 

     TCM was adopted in the ITU-T Rec. V.32/33/34 for data  

     communications over the standard telephone network.  
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4.12.1  TCM Encoder 

 Fig. 4.Xa shows an example of TCM , a combination of  

(3,2 ,2) convolutional encoder and 8-PSK modulator. The 

corresponding trellis diagram is shown below . 
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4.12.2  Set-Partition and Distance Structure 
 

 Consider the 8-PSK signal constellation (expanded constellation  

      from QPSK) as shown  in Fig.6xa , where each signal point is 

      labeled with by   a 3-tuple ( y0
 , y

1
 , y

2 ) . 

     The constellation  points are partitioned into subsets . The  

      points in each  subset are far apart  in Euclidean distance and 

      are made to correspond to the uncoded bits . 

     If the average signal power is chosen equal to r 2  , then the  

     minimum distance between any two points is equal to  

     d0 =  2  r sin ( π/ 8 ) =0.765 r . 

    In the first partitioning , the eight   points  are subdivided  into  

    two subsets of four points each , such that the minimum distance 

    between points becomes   

     d1 =  √2 r .        
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     In the second  level of partitioning , each of the two subsets is 
subdivided into two subsets of two points , such that the 
minimum distance becomes d2 =  2 r .  

     The partitioning process continues until only one point  is left 
in the subset . 

 Fig.4.xx shows the set-partition  diagram of a 16-point QAM 
constellation , where the average power of the QAM signal  
(amplitude-square ) is chosen equal to 1. 

 The assignment process can be viewed  in terms of a trellis and 
proceeds according to the following set partitioning rules : 

     1. All parallel transitions in the trellis are assigned  the  

         maximum possible  Euclidean distance. 

     2. All transition emanating  or merging into a trellis state  

         are  assigned next  to largest possible Euclidean  distance. 

      3. All signals are used  equally often .      
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4.12.3   Decoding TCM 

 Due to the one-to-one correspondence between signal  

sequence (baseband) and paths traversing the trellis , 

maximum likelihood (ML) decoding consists of searching 

trellis path with the minimum  Euclidean distance to the 

received signal  sequence. 

 If a sequence of  length K is transmitted , and the sequence  

     y0  , y1  , …, yK-1  is observed at the   output of  the AWGN 

channel , then the ML receiver look for the  sequence        

x0  , x1  , …, xK-1        that minimizes  ∑  I =0 
K-1

   (yi - xi )
2 

       This is done by Viterbi algorithm . 
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