
1

 Chapter 4 Convolutional Codes
4.1 Introduction

4.2 (n,k,M) Convolutional Codes

4.3 Systematic Form

4.4 Non-recursive and Recursive Structures for Encoder

4.5 State Diagram

4.6 Trellis Diagram

4.7 Minimum Free Distance

4.8 Maximum Likelihood Decoding of Convolutional Codes

 4.8.1 Maximum Likelihood Decoding

 4.8.2 Maximum Likelihood Decoding for a BSC

 4.8.3 The Viterbi Decoding Algorithm

 4.8.4 Modifications of Viterbi Algorithm : Truncation

4.9 Coding Gain

4.10 Punctured Convolutional Codes

 4.10.1 Rate R=(n-1)/n Punctured Convolutional Code

 4.10.2 Rate-Compatible Punctured Convolutional (RCPC) Codes

2

4.11 Tailbiting Convolutional Codes

 4.11.1 Tail-Biting Technique

 4.11.2 . Encoding Procedure for Tailbiting Codes

 4.11.3. Decoding Algorithms for Tailbiting Codes

4.12 Trellis Coded Modulation

 4.12.1 TCM Encoder

 4.12.2 Set-Partition and Distance Structure

 4.12.3 Decoding TCM

4.13 Bit-Interleaved Coded Modulation

3 3

4.1 Introduction to Convolutional Codes

• Convolutional codes were first discovered by P. Elias in 1955.

• The structure of convolutional codes is quite different from

that of block codes.

 During each unit of time, the input to a convolutional code

encoder is also a k-bit message block and the corresponding

output is also an n-bit coded block with k < n.

• Each coded n-bit output block depends not only the

corresponding k-bit input message block at the same time

unit but also on the M previous message blocks.

• Thus the encoder has k input lines, n output lines and a

memory of order M as shown in Figure 4.1 .

4

5 5

 Each message (or information) sequence is encoded into a
code sequence.

• The set of all possible code sequences produced by the
encoder is called an (n,k,M) convolutional code.

 The parameters, k and n , are normally small,

 say 1 k 8 and 2 n 9.

 The ratio R = k/n is called the code rate.

 The parameter M is called the memory order of the code.

• Note that the number of redundant (or parity) bits in each
coded block is small.

 However, more redundant bits are added by increasing the
memory order M of the code while holding k and n fixed.

6 6

4.2 Encoder of (n,k,M) Convolutional Code

• For (n,k,M) code , the encoder has k inputs and n outputs as

 shown in Fig. 4.1

 Time-Domain Representation

• At the i-th input terminal, the input message sequence is

u(i) = (u0

(i) , u1
(i) , … , ur

(i) , …) for 1 i k. (4.1)

• At the j-th output terminal, the output code sequence is

 v(j) = (v0
(j) , v1

(j) , … , vr
(j) , …) for 1 j n (4.2)

7 7

• An (n,k,M) convolutional code is specified by k × n generator

sequence:

 g1
(1) g2

(1) … gk
(1)

 g1
(2) g2

(2) … gk
(2)

 [. . .] (4.3)

 gk
(n) gk

n) … gk
(n)

 .

8 8

 The n output code sequences are then given by

 v(1) = u
(1) ＊ g1

(1) + u
(2) ＊ g2

(1) + … +u
(k) ＊ gk

(1)

 v(2) = u
(1) ＊ g1

(2) + u
(2) ＊ g2

(2) + … +u(k) ＊ gk
(2)

 .
 .

 v(n) = u(1) ＊ g1
(n) + u

(2) ＊ g2
(n) + … + u

(k) ＊ gk
(n)

 .

 (4.4)

where ＊ denotes discrete convolution operation.

Encoder

• The encoder of an (n,k,M) code consists of k shift-registers,
each has at most M stages. The feedforward connections are
based on the k× n generator sequences.

• The message bits stored in the k shift-registers together
represent the state of the encoder.

9 9

Example 4.1

 Let n=3, k=2, and M =1. Consider the (3,2,1) convolutional

code generated by the following 6 generator sequences:

 g1
(1) = (1 1) g1

(2) = (0 1) g1
(3) = (1 1)

 g2
(1) = (1 1) g2

(2) = (0 1) g2
(3) = (1 1)

 The output sequence are:

 v(1) = u
(1) ＊ g1

(1) +u
(2) ＊ g2

(1)

 v(2) = u(1) ＊ g1
(2) + u

(2) ＊ g2
(2) . .

 v(3) = u
(1) ＊ g1

(3) + u
(2) ＊ g2

(3) (4.5)

• The 3 code digits of the l-th code block are given by:

 vl
(1) = ul

(1) + ul-1
(1) + ul-1

(2)

 vl
(2) = ul-1

(1) + ul
(2)

 v
l
(3) = ul

(1) + ul-1
(1) + ul

(2)

 (4.6)

10

11

 Transform –Domain Representation

 It is well known in the field of digital signal analysis the

convolution operation in time-domain becomes multiplication in

transform- domain, also called D- transform domain .

 The message sequence u(i) = (u0
(i) , u1

(i) , u2
(i) , …) can be

represented in polynomial form

 u(i) (D) = u0
(i) + u1

(i) D + u2
(i) D2 + …

 where D represents a unit-delay .

 The generator sequences can be represented by generator

polynomials

 gj
(i) (D) = gi0

(i) + gj1
(1) D + gj2

(2) D2 + …

12 12

 In general , for a (n,k, M) convolutional code, the generator

polynomials can be represented in matrix form as

 g1
(1) (D) g1

(2)(D) … g1
(n)(D)

 g2
(1)(D) g2

(2)(D) … g2
(n)(D)

 . .

 G(D) = . . (4.7)

 . .

 gk
(1)(D) gk

(2)(D) … gk
(n)(D)

 and then

 v(D) = u(D) G (D) (4.8)

13 13

 Example 4.2 : The (3,2,1) encoder is shown in Fig.4.3

 1+D D 1+D v(D) = (u1 u2) 1+D D 1+D

 G(D) =

 D 1 1 D 1 1

Fig.4.3

14 14

4.3 Systematic Form
• An (n, k, M) convolutional code is said to be systematic if the

 first output sequence is identical to the input message
sequence , i.e.,

 v(1) = u (4.9)
Suppose the input message sequence is of finite length with

 L bits,

 u(i) = (u0
(i) , u2

(i) , … , uL-1
(i)) (4.10)

 It takes the last bit, uL-1 , M units of time to move out of the

 memory. Usually , M zeros are added to the message sequence

 to compute the last M output blocks and also clear the shift

 register . Thus ,each output sequence consists of L+M bits,

 v(j) = (v0
(j) , v1

(j) , … , vr
(j) , … , vL+M-1

(j))

 for i = 1, 2, …, n. (4.11)

The parameter K = M +1 is called the constraint length of the

code.

15

4.4 Non-recursive and Recursive Codes

 Encoders for convolutional codes can be implemented by finite

state sequential machines FSSMs) which fall into two general

categories : recursive and non-recursive .

 Finite state sequential machines can be constructed by using

basic memory units (such as shift registers), combined with

adders and scalar multipliers.

 The following figure (Fig.4.4) shows the functional diagram of

 a general finite state sequential machine , expressed by the

transfer function

 G(D) = (a0 + a1 D + a2 D
2 +…+ an D

n) / (1 + f1 D + f2 D
2 + … + fn D

n)

16

Fig.4.4

17

 Fig.4.5(a) shows the structure of a non-recursive (2,1,2)

convolutional code with generator matrix

 G(D)=[1+D+D2 , 1+D2] , while Fig.4.5(b) shows the

structure of the recursive convolutional code with generator

matrix G(D) = [1 (1+D2) / 1+D+D2)]

Fig.4.5

(a) (b)

18 18

4.5 State Diagram

• Since the encoder is a linear sequential circuit, its behavior
can be described by a state diagram.

 Define the encoder state at the time l as the M-tuple,

 (ul -1 , ul -2 , …, ul -M)

 which consists of the M message bits stored in the shift
register.

• There are 2M possible states. At any time instant, the
encoder must be in one of these states.

• The encoder undergoes a state transition when a message
bit is shifted into the encoder register as shown below.

 Input State

 ul (ul -1 , ul -2 ,…, ul -M)

 ↓

 ul+1 (ul , ul -1,…, ul -M+1)

19 19

• At each time unit, the output block depends on the input and

the state,

 Vl= f (ul , Sl) (4.12)

 State Diagram (Pictorial Representation)

 Each state is represented by a vertex (or point) on a plane.

 The transition from one state to another state is represented

by a directed line (arc).

 Each directed line is labeled with I/O (input/output) pair.

20 20

• Suppose ml is the current input. The current state of the
encoder is Sl =(ul-1 , ul-1 , …, ul-M) (4.13)

 When cl is shifted into the encoder, the encoder moves into
the state Sl+1 = (ul , ul-1 , …, ul-M +1) (4.14)

 which is called the next state.

21 21

• The state diagram of the (2,1,2) convolutional coder (Fig. 4.3(a)) is

is shown in Fig.4.6 .

 Each state is one of the forms: (0 0), (0 1), (1 1), and (1 0).

 Fig.4.6

22 22

4.6 Trellis Diagram

• The state diagram can be expanded in time to display the
state transition of a convolutional encoder in time. This
expansion in time results in a trellis diagram.

• Normally the encoder starts from the all-zero state,

 (0, 0, …, 0).

• When the first message bit m1 is shifted into the encoder
register, the encoder is in one of the two following states:

 (u1 = 0, 0, 0, …, 0) ; (u1 = 1, 0, 0, …, 0);

• When the second message bit m2 is shifted into the encoder
register, the encoder is in one of the following states:

 (u2 = 0, u1= 0, 0, 0, …, 0); (u2 = 1, u1 = 0, 0, 0, …, 0);

 (u2 = 0, u1 = 1, 0, 0, …, 0); (u2 = 1, u1 = 1, 0, 0, …, 0);

• Every time, when a message bit is shifted into the encoder
register, the number of state is doubled until the number of
states reaches 2M.

23 23

• At the time M, the encoder reaches the steady state.

• At the time l > M, the encoder is in the state,

 (ul -1, ul -2, …, ul -M).

• At the time l+1, the encoder can move into one of the
following states:

 (ul = 0, ul -1, ul -2, …, ul -M+1).

 (ul = 1, ul -1, ul -2, …, ul -M+1).

• Therefore, in trellis diagram, there are two branches (or
transitions) leaving a state.

• Now, suppose the state of the encoder is

 (ul , ul -1, ul -2, …, ul -M+1). for l > M.

• This state can be reached from two states,

 (ul -1, ul -2, …, ul -M+1 = 0)

 (ul , ul -1, ul -2, …, ul -M+1, ul –M = 1)

• Thus, for l >M, there are two branches merging into a state
in the trellis diagram.

24 24

Example 4.4

 Consider the (2,1,2) nonrecursive convolutional code with

generator polynomial given by

 g1 (D) = 1 + D + D2 , g2(D) = 1 + D2

 Its encoder and trellis diagram are shown in Figure 4.7

• We see that there are two branches leaving each state,

depending on the input symbol, ul = 0 or ul = 1.

• The upper branch corresponds to an input symbol ml = 0,

while the lower branch corresponds to an input symbol

 ul = 1.

• For l > M = 2, we see that there are two branches merging

into a state.

• The encoding of a message sequence is equivalent to tracing

a path through the trellis.

25

Fig.4.7 (a) (2,1,2) convolutional code encoder

26

Fig.4.7(b) Trellis Diagram for (2,1,2) code

Note that a dashed line is for an for input 1 and a solid line is for an input 0

27 27

 Termination of a Trellis

• Suppose the message sequence is of L bits long,

 u = (u1
 , u2 , … , uL

)

• When the entire sequence has been encoded, the encoder
must return to the starting state. This can be done by
appending M zeros to the message sequence u .

• When the first appended “0” is shifted into the encoder
register, the encoder is in the state,

 (0, uL-1
 , uL-2 , … , uL- M+1

)

• There are 2M-1 such states.

28 28

• When the second “0” is shifted into the encoder register,
the encoder is in the state,

 (0, 0, uL-1
 , uL-2 , … , uL- M+2

)

 There are 2M-2 such states.

• When the M-th “0” is shifted into the register, the encoder
is back to the all-zero state, (0, 0, …, 0).

• At this instant, the trellis converges into a single vertex.

• During the termination process, the number of states is
reduced by half as each “0” is shifted into the encoder
register.

29

30 30

4.7 Minimum Free Distance

• The most important distance measure for convolutional

codes is the minimum free distance, denoted dfree.

• The minimum free distance of a convolutional code is

simply the minimum Hamming distance between any two

code sequences in the code.

• It is also the minimum weight of all the code sequences,

which are produced by the nonzero message sequences.

• The minimum free distance of the (2,1,2) convolutional code

given in Example 4.4 is 5 , i.e., dfree= 5.

31 31

The Most Widely Used Convolutional Codes

• The most widely used convolutional code is (2,1,6)
Odenwalter code generate by the following generator
sequence,

 g(1) (D) = 1 + D + D3 + D4 + D6

 g2(D) = 1 + D3 + D4 + D5+ D6

 This code has dfree=10.

 With hard-decision decoding, it provides a 3.98dB coding
gain over the uncoded BPSK modulation system.

 With soft-decision decoding, the coding gain is 6.98dB.

Remarks :

 Note that good convolutional codes have as large a free distance as

possible; at high signal-to- noise ratios these codes are optimum. Some
non-systematic convolutional codes have a superior distance structure.
Therefore non-systematic codes are sometimes preferred over
systematic codes .

32 32

Summary :

• A (n.k,M) convolutional code can be represented by :

 1. Encoder block diagram using

 digital circuits (shift registers , adders , etc.)

 2. Generator polynomials, g (i) (D) .

 3. State diagram

 4. Trellis diagram

 Note : constraint length K = M+1

 number of states = 2M

33 33

4.8. Maximum Likelihood Decoding of

 Convolutional Codes

4.8.1 Maximum Likelihood Decoding

• For a convolutional code, each code sequence is a path in the
trellis diagram of the code.

• Suppose each message sequence consists of L message blocks of
k bits each, u = (u0

 , u1 , … , uL-1)

 Then each code sequence c is a path of L+M branches long in
the trellis diagram.

• Suppose a code sequence is transmitted , v = (v0
 , v1 , … , v L+M-1)

 where the j-th branch (or code block) vj = (vj
(1) , vl

(2) , … , vl
(n))

• Let r = (r0
 , r1 , … , r L+M-1)

 be the received sequence where rj the j-th received block. .

34 34

 MLD: Find the path through the trellis diagram such that the

 conditional probability, P(r ｜v) is the largest.

 For a binary input, Q-ary output discrete memoryless channel

 (DMC), v is a binary sequence and r is a Q-ary sequence.

 The conditional probability P(r ｜v) can be computed as

 follows:

 P(r ｜v) = Π l =0
L+m-1 P(rl ｜vl) (4.15)

 where P(rl ｜vl) is the branch conditional probability.

 The branch conditional probability is given by

 P(rl ｜vl) = Πi =0
n P(rl

(i) ｜vl
(i)) (4.16)

 where P(rl
(i) ｜vl

(i)) is the channel transition probability.

• Define the log-likelihood function of a path v as follows:

 M(r ｜v) = log P(r ｜v) (4.17)

 which is called the metric of path v .

c

35 35

• From (4.15) and (4.17), we have

 M(r ｜v) = Σl=0
L+m-1 log P(rl ｜cl)

 = Σl=0
L+m-1 M(rl ｜cl) (4.18)

 where M(rl ｜cl) = log P(rl ｜cl) (4.19)

 is called the branch metric.

• From (4.16) and (4.19), we have the branch metric

 M(rl ｜cl) = Σi =1
n log P(rl

(i) ｜cl
(i)) (4.20)

 where M(rl
(i) ｜cl

(i)) = log P(rl
(i) ｜cl

(i)) (4.21)

 is called the bit metric.

• MLD: Find the path v in the trellis diagram such that

 M(r ｜v) is maximized. Then v is the estimate of

 the transmitted code sequence.

• For the first j branches of a path through the trellis, the

 partial path metric is

 M([r ｜c]j) = Σl =0
j-1 M(rl ｜cl) (4.22)

c

36 36

4.8.2 ML Decoding for Binary Symmetric Channel

 For a BSC (Q=2) with transition probability p < ½ , the

 log-likelihood function becomes

 log P(r ｜v) = d(r,v) log [p/(1-p)] + (L+m) n log (1-p)

 (4.23)

 where d(r,v) is the Hamming distance between r and v .

 Since log [p/(1-p)] < 0 and (L+m) n log (1-p) is a constant

 for all code sequences , log P(r ｜v) is maximized if and

 only if d(r,v) is minimized.

 MLD: The received sequence r is decoded into the code

 sequence v if d(r,v) is minimized.

37 37

4.8.3 The Viterbi Decoding Algorithm

• The Viterbi algorithm performs maximum likelihood

decoding but reduces the computational complexity by

taking advantage of the special structure of the code trellis.

• It was first introduced by A. Viterbi in 1967 and was first

recognized by D. Forney in 1973 that it is a MLD algorithm

for convolutional code.

38 38

 The Viterbi Algorithm

• Step 1. Starting at the level l = m in the trellis, compute the

partial metric for the single path entering each m-th order

node. Store the path (the survivor) and its metric for each

node.

• Step 2.

 Increasing l by 1.

 Compute the partial metric for all the paths entering a

(l+1)-th order node by adding the branch metric entering

 that node to the metric of the connecting survivor at a

previous l-th order node.

 For each (l+1)-th node, store the path with the largest metric

(the survivor) , together with its metric, and eliminate all the

other paths.

• Step 3. If l < L+M, repeat Step2. Otherwise, stop.

39 39

Example 4.5

• Consider the (2,1,2) convolutional code given in Example

 4.4 , whose trellis diagram is shown in Fig.4.8.

 Suppose the code is used for a BSC. In this case, we may

use the Hamming distance as the path metric. The survivor

at each node is the path with the smallest Hamming

distance from the received sequence.

• The message length L = 6.

 received sequence : 10 10 10 11 11 10 01 11

 (answer : decoded sequence : 11 10 11 11 01 10 01 11)

40

Fig.4.8 (a) Truncated trellis diagram

 G(D) = (1+D+D2 1+D2)

41

Fig.4.8 (b)

42

Fig. 4.8(c)

43

Fig.4.8(d)

44

Fig.4.8(e)

45

Fig. 4.8(f)

46

Fig.4.8(g)

47

Fig.4.8(h)

48 48

4.8.4 Modifications of Viterbi Algorithm : Truncation

• For very large L, this is practically impossible, and some
trade-offs must be made.

• One approach to this problem is to truncate the path
memory of the decoder by storing only the most recent q
blocks of message bits for each survivor, where q<< L.

• After the first q blocks of the received sequence have been
processed by the decoder, the decoder memory is full.

• As soon as the next received block is processed, a decoding
decision must be made on the first block of k message bits,
since they can no longer be stored in the decoder memory.

49 49

• The optimum strategy to make this decision is to select the

survivor with the best metric, and the first block of k

message bits of this survivor is chosen as the decoded

message block and released to the user.

• After the first decoding decision is made, subsequent

decoding decisions are made in the same manner for each

new received block processed.

• Note that decoding decisions made in this way are

no longer maximum likelihood, but can be almost

as good if q is large enough.

50 50

• Experience and analysis have shown that if r is in the

 order of 5 times of the encoder memory K or more, with

 probability approaching “1”, all the 2K survivors stem from

 the same branch r levels back as shown in Fig.4.9.

• Hence there is no ambiguity in making decoding decision.

 The parameter q is called the decoding span (or depth).

51

Fig. 4.9

 Decoding decision with a finite path memory q

52 52

4.9 Coding Gain
• Coding gain is defined as the reduction in the require

Eb/N0 (usually expressed in decibels) to achieve a specified
error probability of a coded system over an uncodeed
system with the same modulation and channel
characteristic , as illustrated in Fig.4.10.

• For an uncoded coherent BPSK system with an AWGN
channel, the bit-error rate simply the transition probability,

 Pb(E) = Q (√ (2Eb /No))

• For large Eb/N0, this error rate (without coding) is
approximated by

 Pb(E) ≒ 0.282 exp (-Eb / N0)

 (4.24)

53

Fig.4.10 Illustration of coding gain

54 54

4.10 Punctured Convolutional Codes

 In many bandwidth-limited application s , high-rate or low-
redundancy convolutional codes are desirable . However, the
Viterbi decoder for these codes is often quite complicated . For
the (n,k.M) binary convolutional code , the complexity of the
Viterbi decoding is proportional to 2kM .

• Puncturing is a technique used to make a k/n rate code from a
"basic" rate 1/2 code. It is reached by deletion of some bits in
the encoder output. Bits are deleted according to puncturing
matrix.

• This has the same effect as encoding with an error-correction
code with a higher rate, or less redundancy. However, with
puncturing the same decoder can be used regardless of how
many bits have been punctured, thus puncturing considerably
increases the flexibility of the system without significantly
increasing its complexity

55 55

• A pre-defined pattern of puncturing is used in an
encoder. Then, the inverse operation, known as
depuncturing, is implemented by the decoder.
Puncturing is often used with the Viterbi Algorithm in
coding systems.

4.10.1 Rate R= (n-1)/ n Punctured Convolutional Code

 We are to make a code with rate 2/3 using the 4-state ,

 rate R =1/2 mother code generated by the (2,1,2) non-
systematic feedforward convolutional encoder with the
generator matrix

 G(D) = [1+ D+ D2 1+D2]

 This code has free distance dfree = 5 .

 we should take a basic encoder output and transmit
every second bit from the first branch and every bit
from the second one, that is, deleting the first bit on
every other branch of the trellis, as shown in Fig, 4.11

56

Example :Puncturing Pattern of 2/3 and 4/5 codes

 In each of the above case, the puncturing pattern is
indicated using a 2 x T binary matrix P , where T is
the puncturing period. The first row of P indicates the
bits to be deleted from the first encode sequence , and
the second row of P indicates the bits to be deleted
from the second encoded sequence. In the matrix P , a 0
indicates a bit to be deleted , and a 1 indicated a bit to
be transmitted.

 The puncturing patterns in Fig. 4.11 and Fig.4.12 are
given by

 1 0 1 110

 P = P =

 1 1 10 01

 Fig. (a) Fig. (b)

57

Fig.4.11 Trellis diagram of R= 2/3 ,M=2 code produced by

puncturing R= 1/2 , M =2 convolutional code

58

Fig.4.12 R = 4/5 code obtained by puncturing (2,1,2) code

59

4.10.2 Rate-Compatible Punctured Convolutional

 (RCPC) Codes

 In applications where it is necessary to support two or

 more different code rates, it is sometimes convenient to

 make use of rate-compatible punctured convolutional

 (RCPC) codes.

 An RCPC code is a set of two or more convolutional codes

 punctured from the same mother code in such a way that

 the codewords of a higher-rate code can be obtained from

 the codewords of a lower-rate code simply by deleting
additional bits.

 In other words, the set of puncturing patterns must be such
that the P matrix of a higher-rate code is obtained from the
P matrix of a lower-rate code by simply changing some of
the 1’s to 0’s .

 .

60

 An RCPC code then has the property that all the codes

in the set have the same encoder and decoder

 Example : Puncturing (2,1.2) convolutional code

61

Example of RCPC codes

 Rate 1/ 2 , M =2 convolutional codes

 puncturing period P =4

62

4.11 Tail-Biting Convolutional Codes

 4.11.1 Tail-Biting

 4.11.2 Encoding Procedure for Tailbiting Codes

 4.11.3. Decoding Algorithms for Tailbiting Codes

References

1. H.H. Ma and J.K. Wolf , “ On tailbiting convolutional codes”, IEEE Trans. Commun., vol.

34 , pp. 104-111 , Feb.1986.

3. R.Y.Shao, S.Lin and P.C.Fossorier , “ Two decoding algorithms for tailbiting codes,”

IEEE Trans. Commun. Vol.51, , pp. 1658-1665 ,Oct.. 2003.

63

4.11 Tail-Biting Convolutional Codes

4.11.1 Tail-Biting Technique

 A tail-biting convolutional code is obtained by terminating

 the encoder output sequence after the last information block

 in the input sequence.

 In other words, no “ tail “ of input blocks is used to force the

 encoder to the all-zero state. In this case, the input sequence

 has length hk , the output sequence has length hn , and the

 rate of the resulting tail-biting convolutional code is

 R = hk/hn = k/n

 There is no rate loss associated with this trellis termination

 technique.

 The tail-biting convolutional codes have been adopted as the

 forward error correcting code for data and/or overhead

 channels in many wireless communications , such as

 EDGE, WiMAX and LTE.

64

 For the tail-biting case, the allowable codewords are those
that start and end in the same state. Thus , one approach to
implement a ML decoder for a tail-biting code , as
suggested by Ma and Wolf, is to run M parallel Viterbi
algorithms , where M is the number of states in the trellis
structure of the convolutional code. Each Viterbi
algorithm has a different postulate for the starting and
ending states.

 The Viterbi algorithm that produces the globally best
metric gives the ML estimate of the transmitted bits.

 The obvious disadvantage of this method is that the
decoding method for tail-biting codes is M times as complex
as the decoding algorithm for the code with tail bits .

65

4.11.2 . Encoding Procedure for Tailbiting Codes

 In the tailbiting convolutional coding system, we encode

and decode a block of N trellis sections without a known

tail, thus keeping the effective rate of transmission equal to

the code rate. This is done by letting the encoder start and

end in the same (for the decoder unknown) state , as

illustrated in the following figure.

 The encoding procedure to achieve this is straightforward.

In its simplest form , the encoder starts encoding in the

state given by the last M information bits of message. This

will also be the ending state. The decoder now has to make

a decision about the unknown information and starting (=

ending) state.

66

Zero-tail and taibiting encoders

67

Tailbiting technique

68

• A rate 1/3 tailbiting convolutional code , constraint length K=7 . The initial

values of the shift registers are set to equal to the last six information bits in

the input stream. This code is defined for LTE .

69

• A tailbiting convolutional code for IEEE 802.16e-2005

70

4.11.3. Decoding Algorithms for Tailbiting Codes

 To perform optimum ML decoding for tail-biting

convolutional codes, all Viterbi decoders with all possible

2M different starting and ending states are performed

exhaustively, the decoded path with the best metric is

chosen.

 Several suboptimum algorithms which are more or less

complex and more or less efficient, have been proposed in

the literature.

 One of the suboptimum algorithm due to Ma and Wolf is

the so-called two-step algorithm .The number of trials that

the decoder uses grows exponentially in the code memory

and the algorithm is only somewhat simpler than the

optimum decoder.

71

 Recently , a decoding algorithm called Wrap-around

Viterbi Algorithm was proposed by Shao, Lin and

Fossorier (2003), denotes as WAVA .

 R.Y.Shao, S.Lin and P.C.Fossorier , “ Two decoding algorithms for

 tailbiting codes,” IEEE Trans. Commun. Vol.51, , pp. 1658-1665

,Oct.2003.

72

4.12 Trellis Coded Modulation

 Error correcting coding such as convolutional coding or

block coding, leads to a coding gain at the cost of spectral

efficiency Although this is attractive for power-limited

applications , it is not desirable for band-limited

applications.

 In 1982, Ungerboeck published a paper in which he

proposed a technique to achieve the coding gain without

bandwidth expansion or reducing data rate. The basic

concept of this technique is to perform coding gain onto an

expanded modulation signal set.

 That is, the number of signal points in the constellation

used is larger (usually twice) than what is required for the

modulation format of interest.

73

 Ungerboeck presented an effective method , denoted as set

 partitioning, for mapping the code bits into signal points

 such that the minimum Euclidean distance is maximized.

 In this joint approach to coding and modulation ,

 convolutional codes and MPSK (or QAM) are mostly

 employed. The combined convolutonal code and modulation

 is denoted as Trellis Coded Modulation (TCM). Decoding is

 performed by using a soft-decision Viterbi decoder .

 TCM experienced a fast transition from research to practical

 applications. In 1984,a generation of modems using TCM

 became available, achieving reliable transmission at speed of

 14.4 kbits/s on private modems and 9.6 kbits/s on switshed

 –network modems.

 TCM was adopted in the ITU-T Rec. V.32/33/34 for data

 communications over the standard telephone network.

74

4.12.1 TCM Encoder

 Fig. 4.Xa shows an example of TCM , a combination of

(3,2 ,2) convolutional encoder and 8-PSK modulator. The

corresponding trellis diagram is shown below .

75

76

4.12.2 Set-Partition and Distance Structure

 Consider the 8-PSK signal constellation (expanded constellation

 from QPSK) as shown in Fig.6xa , where each signal point is

 labeled with by a 3-tuple (y0
 , y

1
 , y

2) .

 The constellation points are partitioned into subsets . The

 points in each subset are far apart in Euclidean distance and

 are made to correspond to the uncoded bits .

 If the average signal power is chosen equal to r 2 , then the

 minimum distance between any two points is equal to

 d0 = 2 r sin (π/ 8) =0.765 r .

 In the first partitioning , the eight points are subdivided into

 two subsets of four points each , such that the minimum distance

 between points becomes

 d1 = √2 r .

77

 In the second level of partitioning , each of the two subsets is
subdivided into two subsets of two points , such that the
minimum distance becomes d2 = 2 r .

 The partitioning process continues until only one point is left
in the subset .

 Fig.4.xx shows the set-partition diagram of a 16-point QAM
constellation , where the average power of the QAM signal
(amplitude-square) is chosen equal to 1.

 The assignment process can be viewed in terms of a trellis and
proceeds according to the following set partitioning rules :

 1. All parallel transitions in the trellis are assigned the

 maximum possible Euclidean distance.

 2. All transition emanating or merging into a trellis state

 are assigned next to largest possible Euclidean distance.

 3. All signals are used equally often .

78

79

80

4.12.3 Decoding TCM

 Due to the one-to-one correspondence between signal

sequence (baseband) and paths traversing the trellis ,

maximum likelihood (ML) decoding consists of searching

trellis path with the minimum Euclidean distance to the

received signal sequence.

 If a sequence of length K is transmitted , and the sequence

 y0 , y1 , …, yK-1 is observed at the output of the AWGN

channel , then the ML receiver look for the sequence

x0 , x1 , …, xK-1 that minimizes ∑ I =0
K-1

 (yi - xi)
2

 This is done by Viterbi algorithm .

References:

1.Ungerboeck,G.,” Channel coding with multi-level/phase signals, “ IEEE Trans.

Inform., vol.28, no.1 ,pp 55-67, 1982.

