
1 1

Chapter 7 Turbo Codes

7.1 Turbo Codes

 7.1.1 Shannon Limit on Performance

 7.1.2 Turbo coding

 7.1.3 Decoding of Turbo Codes

7.2 BCJR Algorithm

 7.2.1 ML decoding vs. MAP decoding

 7.2.2 Log-likelihood Ratio 7.2.3 BCJR Algorithm

7.3 Logarithmic BCJRs

7.4 BCJR for Decoding BPSK Signal over AWN Channel

7.5 Application of BCJR Algorithm : Iterative Decoding of Turbo Codes

2

References
1. Berrou ,C. , Glavieux ,A., and Thitimajshima ,P. , ” Near Shannon-Limit Error

Correcting Coding and Decoding : Turbo Codes ,” Proc. 1993 IEEE Int. Conf.
on Communications , pp.1064-1070 , Geneva , Switzerland , May 1993.

2 .Berrou ,C. and A. Glavieux ,” Near Optimum Error Correcting coding and
decoding : Turbo Codes ,” IEEE Trans. Commun. Vol.44, No.10, pp.1261-1271,
Oct.1996.

3. Bahl, L.R. , Cocke,J., Jelinek , F.,and Raviv, J. ,” Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rates ,” IEEE Trans. Inform. Theory , Vol.
IT-20 Pp. 284-287 , Mar. 1974.

4. Hanzo , L., Woodward, J.P. and Robertson, P.l , “ Turbo Decoding and Detection
for Wireless Applications “ , Proc. IEEE , Vol. No.95 ,No.6 , pp.1178-1200, June
2007.

5. Sivio A. Abrantes,” From BCJR to turbo decoding : MAP algorithms made easier
“ Universidade de Porto , Porto , Portugal ,April 2004.

6.Robertson, P., Villebrun,E. and Hoeher,P., “ A comparison of optimal and
suboptimal MAP decoding algorithm operating in the log domain, “ 1995 IEEE
Int. Conf. On Communications, pp.1009-1013.

7. ten Brink , S., “Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes ,: IEEE Trans. Commun. , vol.49, no.10,

 pp. 1727-1737, Oct.2001

8. Lin,S .& Costello , Jr. , D.J. , Error Control Coding , Prentice-Hall, 2004

3 3

7.1 Turbo Codes

7.1.1 Shannon Limit on Performance

• The capacity of an AWGN channel is given by

 C = W log2 (1+ S /N)

 where W is the bandwidth of the channel in Hz , S is the

average power of the signal and N is the noise power.

• Shannon bound

• In the limit as the signal is allowed to occupy an infinity

amount of bandwidth, one obtains the Shannon bound

 Eb / N0 = - 1.59 dB

 for reliable transmission.

4 4

 In 1948, Shannon defined the concept of channel capacity.

He shown that, as long as the rate at which information is

transmitted is less than the channel capacity, there exists

error control codes that can provide arbitrarily high levels

of reliability at the receiver output

 The 1993 paper by C. Berrou, A. Glavieux, and P.

Thitimasjshima entitled „‟Near Shannon Limit Error

Correcting Coding and Decoding : Turbo Codes‟‟ has

brought us within a hair‟s breadth of achieving Shannon‟s

promise. This paper was presented at 1993 IEEE

International Conference on Communications in Geneva.

 In their presentation, Berrou et al claimed that a

combination of parallel concatenation and iterative decoding

can provide reliable communication at a SNR that is within

a few tenth of a dB of the Shannon limit.

5

Turbo code encoder (Berrou et al , 1993)

6

 Decoding result of (37,21 ,65536) turbo code

 Note : Octal numbers 37 =11 111 , 21 = 10001 .Block length N =65536

7

Standard structure for turbo code encoder

8 8

• One key to the effectiveness of turbo coding systems is the

 interleaver.

• The interleaver allows the constituent decoders to generate

 separate estimates of the a posteriori probability (APP) for a

given information symbol based on data sources that are

 not highly corrected.

• The pseudorandom interleaver in this circuit is used to permute

the input bits in such a manner that the two encoders operate

on the same set of input bits, but with different input sequence

to the encoders.

9 9

7.1.3 Decoding of Turbo Codes

 The iterative decoder uses a soft-in/soft-out maximum a

posteriori probability (MAP) decoding algorithm.

• This algorithm was first applied to convolutional codes by

BCJR algorithm , introduced by Bahl, Cocke, Jelinek, and Raviv

in 1974.

• The BCJR algorithm differs from the Viterbi algorithm in the

sense that it produces soft outputs . The soft output weights the

confidence or log-likelihood of each bit estimate.

• The BCJR algorithm attempts to minimize the bit-error-rate

 by estimating the a posteriori probability (APP) of the

 individual bits of the codeword, rather than the ML

 estimate of the transmitted codeword .

10 10

• For encoder given in Fig.8.4, there are two elementary

 decoders that are interconnected as shown in Fig. 8.xx

 The BCJR algorithm is employed in each decoder.

 The data (r(0) , r(1)) associated with the first encoder are fed

 to Decoder 1. This decoder initially uses uniform priors on

 the transmitted bits and produces probabilities of the bits

 conditioned on the observed data. These probabilities are

 called the extrinsic probabilities. The output probabilities of

 Decoder 1 are interleaved and passed to Decoder 2 , where

 they are used as “ prior “ probabilities in the decoder , along

 with the data associated the second encoder , which is r(0)

 (interleaved) and r(2) .

11

 The extrinsic output probabilities of Decoder II are
deinterleaved and passed back to become prior probabilities
to Decoder 1.

 The process of passing probability information back and
forth continues until the decoder determines (somehow) that
the process has converged, or until some maximum number
of iteration has reached.

 When iterative decoding is employed (e.g. turbo decoding),

 and the a posteriori probabilities of the information bits

 change from iteration to iteration , a MAP decoder gives

 the best performance.

 The term turbo in the turbo coding has more to do with
decoding than encoding. Indeed , it is successive feedback of
extrinsic information from the SISO decoders in the iterative
decoding process that mimics the feedback of exhaust gasses
in a turbocharged engine.

12

A simplified Turbo decoder structure

13

14

7.2 BCJR Algorithm

7.2.1 Log-likelihood Ratio

 We consider transmitting message over a binary- input

 continuous output memoryless channel . The input uk

 equals to + 1 or -1.

 The log-likelihood ratio (LLR) of a transmitted

 symbol uk ,with the received sequence r , is defined as

 L(uk) = ln [p(uk =+1｜r) / p (uk = -1｜r)] (7.1)

 L(uk) is also denoted as a posteriori probability (APP)

 L-value .

 The a priori L-value of an information bit uk is defined as

 La
 (uk) = ln [p(uk = + 1) / p(uk= - 1)] (7.2)

15

 An L-value can be interpreted as a measure of reliability

for a binary random variable .

 For example, assuming that the a priori probabilities of

the code bits u are equally likely , that is,

 p(u=1) = p(u = -1) =1/2 , then, using Bayes‟ rule , we have

 L (r) = ln [p(r｜u= + 1) / p(r｜u = - 1)]

 = ln [p(u = + 1 ｜r) / p(u = - 1 ｜r)] (7.3)

 From this equation, we see that given the received symbol

 r , a large positive value of L(r) indicates a high

 reliability that u= +1 , a large negative value of L(r)

 indicates a high reliability that u = -1 .

16

7.2.2 BCJR Algorithm

 Here we describe the BCJR algorithm for the case of rate

 R = 1/n convolutional codes used on a binary-input

 continuous-output AWGN channel and on a discrete

 memberless channel (DMC).

 The decoder inputs are the received sequence r and the a

 priori L-values of the information bits La (uk) ,

 k = 0, 1,2…,K-1 .

 The algorithm calculates the APP L-values

 L(uk) = ln [p(uk = + 1｜r) / p(uk = - 1｜r)] (7.4)

 of each information bit.

 The decoder output is given by

 +1 if L(uk) > 0

 uk^ = , k = 0,1,2 ,…,K-1 . (7.5)

 - 1 if L(uk) < 0

17

 The APP value p (uk = + 1｜r) can be rewritten as

 p(uk = + 1｜r) = p(uk = + 1 , r) / p (r)

 = ΣU+ p(sk= s’ , sk+1= s , r) / p(r) (7,6)

 where U+ is the set of transition from state sk to the

 state sk+1 that can occur if the input bit uk = + 1 .

 Similarly, we can rewritten p(ul = - 1｜r) as

 p(uk = - 1｜r) = p(uk = - 1, r) / p (r)

 = ΣU- p (sk = s’ , sk+1= s , r) / p(r) (7.7)

 where U- is the set of transition from state sk to the

 state sk+1 that can occur if the input bit uk = - 1 .

18

 The APP L-value can be expressed as

 L(uk) = ln {ΣU+ p(sk=s’ , sk+1 = s , r) /

 ΣU- p(sk =s’ ,sk+1 = s ,r) } (7.8)

 Now we will show how the joint pdf p(s’,s,r) can be evaluated

recursively.

 Note that p(s’, s, r) = p(sk = s’ , sk+1 = s , r) .

 The convolutional code introduces a Markov property into the

probability structure:

 Knowledge of the state at time t+1 renders irrelevant knowledge

of the state at time t or previous time.

 The observation r is divided into three portions : rt < k , rk , rt > k ,

where rt < k represents the portion of the received sequence

before time k , and rt > k represents the portion of the received

sequence y after time k .

 r = r1 r2 … rk-1 rk rk+1 … rN = rt<k rk rt >k (7.9)

19

 We then have p(s’,s,r) = p(s’,s, rt< k , rk , rt> k) and applying
the Bayes‟s rule we obtain

 p(s’,s,y) = p(rt >k ｜s’,s, rt < k , rk) p(s’,s, rt < k , rk)

 = p (rt > k ｜s’,s, rt < k , rk) p(s, rt ｜s’ ,rt < k,) P(s’, rt < k)

 = p (rt > k ｜s) P(s, rk｜s’ ,)p(s’, rt < k) (7.10)

 where the last equality follows from the fact that the
probability of the received branch at time k depends only on
the state and input bit at time k.

 Defining

 αk (s’) ≡ p(s’, r < k) (7.11)

 γk (s’, s) ≡ p(s, rk ｜s’,) (7.12)

 βk+1(s) ≡ p(rt > k ｜s) (7.13)

 we then can write P(s’, s, r) by the equation

 p(s’,s,r) = αk (s’) γk (s’, s) βk+1 (s) (7.14)

20

• Forward Recursion

 We can now rewrite αk (s) as

 αk+1 (s) ≡ p (s, rt < k +1) = Σs’ p(s’, s , rt < k , r k)

 = Σs’ p(s, r k ｜s’ , rt < k) p(s’ , rt < k)

 =Σs’ p(s, r k ｜s’) p (s’ , rt < k)

 = Σs’ αk (s’) γk (s’, s) (7.15)

 where the summation is taken over all states at time k .

 Thus , once the γk (s’, s) values are known , the αk+1 (s) can be

 calculated recursively.

21

• Similarly, we can write the expression for the probability

 βk -1 (s’) as

 βk (s’) = Σs βk +1(s) γk (s’, s) (7.16)

 where the summation is taken over all states at time k+1,

 and we can compute a backward metric βk (s’) for each

 state s‟ at time k using the backward recursion (7.16).

 The forward recursion begins at time k= 0 with the initial
condition

 1 , s = 0

 α0(s) = { (7.17)

 0 , s≠0

 since the encoder starts in the all-zero state s=0 , and we

 use (7.15) to recursively compute αk (s) , k = 0, 1,…,K-1, where

 K = h+m is the input sequence length ., m is the memory

 length of the code.

22

• Similarly , the backward recursion begins at time k=K
with the initial condition

 1 s = 0

 βK (s) = { (7.18)

 0 s≠0

 since the decoder also ends in all-zero state, and we use

 (7.18) to recursively compute βk (s) , k =, K-1 ,…,1 , 0

 We can write the branch transition probability

 γk (s’, s) ≡ p(s, rk ｜s’ ,) = P(s’ s, rk ,) / P(s’)

 = p(rk ｜s’ ,s) P(s ｜s’)

 = p (rk ｜s’ ,s)P(uk)

 = p (rk ｜vk) P(uk) (7.19)

 where uk is the input bit necessary to cause the transition

 from sate s’ to state s , P(uk) is the a priori probability of

 this bit; vk is the transmitted codeword associated with

 this transition s’ → s .

23

 Hence , the transition probability density γk (s’, s) is given

 by the product of the a priori probability of the input bit

 uk necessary for the transition and the conditional density

of the received channel sequence for the value rk given

that the codeword vk associated with the transition was

transmitted.

 The a priori probability p(uk) is derived in an iterative

decoder from the output of the previous component

decoder.

24

 In the following , trellis representation of a convolutional

code is used to illustrate the algorithm.

 The functional block diagram of a (2,1,2) recursive

convolutional code encoder is shown in ig.8.xx(a) .

 G = [1 (1+D2)/ 1+D + D2
)]

25

26

27

28

29

30

 From (7.8) and (7.10) , we can compute the conditional
LLR of uk , given the received value rk .

 The MAP algorithm finds

 αk (s) and βk+1 (s) for all states s throughout the trellis,

 i.e., for k = 0,1,2,…, K-1 , and γk (s’, s) for all possible

 transitions from state sk = s’ to state sk+1 = s , and again

 for k = 0,1,2,…, , K-1

 These values are then used to compute the conditional

 LLR L(uk) that the MAP decoder delivers.

31

 Summary of BCJR (MAP) Algorithm :

 The MAP decoding of a received sequence r to give the a

 posteriori LLR L(uk) can carried out as follows.

 (1) Initialize forward and backward recursions , α0 (s), and

 βK (s’) .

 (2)As the channel values rki are received, they and the a

 priori LLRs La (uk ,) ,which are provided in an iterative

 turbo decoder by the other components , are used to

 calculate γk (s’, s) , according to (7-12).

 (3) As the channel values yk l and the γk (s’, s) values are

 calculated , the forward recursion from (7.15) can be

 used to calculate αk (s) based on αk-1 (s) .

32

 (4) Once all the channel values have been received , and

 γk (s‟, s) has been calculated for all k = 0,1, 2,…,K-1 ,

 the backward recursion from (7.16) can be used to

 calculate theβk-1(s’) values based on theβk (s’) .

 (5) Finally, all the calculated values of αk (s), , γk (s‟, s) ,

 and βk+1 (s’) are used to calculate the values of L(uk) .

Note : The complexity is about three times of Viterbi
algorithm

33

7.3 Logarithmic BCJR Algorithm :

 Log-MAP and Max-Log-MAP

 The log-MAP algorithm was proposed by Robertson et al

 in 1995 . It has performance close to that of the MAP

 algorithm, but at a fraction of its complexity.

 Also, it is easier to implement and numerically more stable .

 In the log-MAP algorithm, additions substitute the BCJR

 algorithm multiplications with the aid of the Jacobian

 logarithm (The max operation).

 max* (a,b) = ln (ea + eb)

 = max (a,b) + ln (1 + e - ｜a-b ｜) (7.20)
 The term ln (1 + e - ｜a-b ｜) is usually small which can be

 stored in a simple look-up table .

 The term ln (1 + e - ｜a-b ｜) is negligible in most practical

 applications. Thus , max* (a,b) is replaced by max (a,b)

 when ｜ max (a,b) ｜ ≧ 7 .

34

 New variables are defined :

 Ak(s) = ln αk(s)

 Bk(s) = ln βk(s)

 Γk(s’ , s) = ln γk(s’ ,s) (7.21)

 With some mathematical manipulations, we can obtain the
following equations :

 Γk(s‟, s)= uk La(uk) / 2 + (Lc / 2)Σi =1
n vki rki k = 0, 1,…, h-1

 Σj =1
n vki rki k = h,h+1 ,…, K-1

 (7.22)

 Ak(s) = max*
S‟ [Ak-1(s’) + Γk(s’ , s)] ,

 k= 0,1, … , K-1

 (7.23)

35

 Bk (s) = max*
S [Bk+1 (s) + Γk(s’ , s)]

 k = K-1 , K -2, …1 ,0 (7.24)

 The initial values of A and B in the terminal trellis are

 A0(s) = 0 s =0 BK(s) = 0 s= 0

- ∞ s ≠ 0 - ∞ s ≠0

 (7.25)

 Consequently ,we have

 L(uk) = max*
U+

 [Ak (s’) + Γk(s’ , s) + Bk+1(s)]

 - max*
U -

 [Ak(s’) + Γk(s’ , s) + Bk+1(s)]

 (7.26)

36

 Summary :

 The log-BCJR Algorithm :

 Step1. Initialize the forward and backward metrics A0 (s) and

 BK(s) using (7.25) .

 Step2. Compute the branch metrics Γk (s’ , s) using (7.22) .

 Step3. Compute the forward metrics Ak -1 (s) using (7.23) .

 Step 4. Compute the backward metrics Bk-1 (s),

 k = K , K -1 , …,1 , using (7.24)

 Step 5 . Compute the APP L-values L(uk) using (7.26) .

 Step 6. (optional) Compute the hard-decision uk

 The algorithm that compute L(uk) using Eq. (7.26) is called the

 log-MAP algorithm ; if max* function is replaced by max

 function , then the algorithm is called Max-log- MAP

 algorithm.

37

 The max-log-MAP algorithm relies on the MAP algorithm

but significantly reduces the complexity by neglecting the

correction term in (7.20) , that is,

 ln (ea + eb) ≒ max* (a,b)

Remarks :

 It was shown by Fossorier et al. in 1998 that the

performance of a modified SOVA (soft-output Viterbi

algorithm) is equivalent to the max-log-MAP algorithm if

the soft-update rule is extended.

 Fossorirt, M.P. , Bunkert, F., Lin,S., and Hagenauer,J., “ On the Equivalence

Between SOVA and Max-Log-MAP Decoding ,” IEEE Comm. Letters , vol. 2 ,

no.5 , pp. 137-139 , May 1998.

38

 Note 1 :

 From ln (ea + eb) = max* (a,b) = max (a,b) + ln (1 + e - ｜a-b ｜)

 we obtain the formula

 ln Σi =1
n ea i = ln (ea1 + ea2 + … + ean)

 = ln (Δ + ean)

 with Δ= ea1 + ea2 + … + ea (n-1) = eδ

 Therefore ,

 ln Σ ea I = ln (eδ + ean)

 = max (δ + an) + ln (1 + e - ｜ δ - an

｜)

 = …

 = A M + ln [1+ Σ e (Ai –AM)]

 where A M = max (ai) i ≠ m

 Note 2:

 max* (x,y,z) = max*(max*(x,y), z)

39

7.4 BCJR for Decoding BPSK Signal over

 AWGN Channel

 For a system with memoryless AWGN channel and BPSK

 modulation, The conditional received sequence probability

 density p(rk ｜vk) is given by

 p(rk ｜vk) = Πi =1
n p(rk i｜vki)

 = Πi =1
n √(Ec / πN0) exp{- (Ec/N0) (rk i - a vki)

2

 (7.27)

40

 where

 rk i and vki are the individual bits within the received and

transmitted codeword, respectively,

 n is the number of these bits in the codeword, and a is the

channel gain .

 a =1 for non-fading AWGN channel.

 Ec is the transmitted energy per coded bit , N0 /2 is the

power spectral

 density of the noise .

 Ec = Rc Eb , and Eb is the energy of a message bit .

• (rk - vk)
2 = Σi (rk i - a vki)

2 is the squared Euclidean

distance between the received branch and transmitted

branch at time k .

41

 For a continuous –output AWGN channel, if s‟ → s is a valid

state transition ,

 γk (s’, s) = p(rk ｜vk) p(uk)

 = P(uk) ﹝√(Ec / πN0) ﹞
n

 exp [- (Es /N0) ∥ (rk - vk) ∥2]

 The constant factor﹝√(Ec / πN0) ﹞
n is usually dropped for

simplicity.

 Thus, we have a modified branch metric

 γk (s’, s) = p(uk) exp (- Ec/N0 ∥ (rk - vk) ∥ 2) (7.28)

 La (uk) = ln [p(uk = + 1) / p(uk = - 1)] (7.29)

 is the a priori L-value of the bit uk .

42

• We can express the a priori probabilities P(uk = ± 1) as
exponential terms by written

 p(uk = ± 1) = [p(uk = + 1) / p(uk = - 1)] ± 1 /

 ｛ 1 + [P(uk = + 1) / P(uk = - 1)] ± 1 ｝

 = exp [La (uk)]
± 1 / ｛1+ exp [La (uk)]

± 1 ｝

 = exp [- La (uk)/2] exp [uk La (uk)/2] /

 ｛ 1 + exp [- La
 (uk) ｝

 = C1k exp [uk La
 (uk) / 2] (7.30)

 k = 0,1,….h-1

 where, since L-values do not depend on the value of their
argument , the parameter Ak is independent of the actual

 value of uk .

 C1k= exp [- La (uk)/2] / { 1+ exp [- La
 (uk) ｝

43

• For termination bits uk , k = h,… , h+m-1 = K-1 , where

 p(uk) = 1 and, La (uk) = ± ∞ for each valid state transition

 we simply use (7.28) .

 Thus we can write the modified branch metric as

 γk (s’, s) = C1k exp [uk La (uk)/2]

 exp [- (Ec /N0) ∥(rk - vk)∥ 2] = …

 = C1k C2k exp [uk La (uk)/2]

 exp [(Lc / 2) (rk.. vk)]

 k=0,1,…, h-1 (7.31)

 γk (s’, s) = p(uk) exp [- (Ec/N0) ∥ (yk - xk) ∥ 2] = …

 = C2k exp [(Lc / 2) (rk.. vk)]

 k = h,…, K-1 (7.32)

 where C2k = ∥rk ∥ 2 + n is a constant independent of the

 codeword vk , and Lc = 4 Es /N0 is the channel reliability factor.

44

• Thus in the calculation of p(s’, s, y) , the factors Πk=0
h-1 C1k

 and Πk =0
K-1 C2k are both contained in the numerators and

 denominators summations, we can drop these factors

 and use the exponential function

 γk (s’, s) = exp [uk La(uk)/2] exp [(Lc / 2) (rk . vk)]

 k = 0,1,…, h-1

 (7.33a)

 γk (s’, s) = exp [(Lc / 2) (rk.. vk)]

 k= h, h+1,…, K -1

 (7.33b)

 as a simplified branch metric .

 Note that when the input bits are equally likely, La (uk) = 0 ,
and the simplified branch metric is given by

 γk (s’, s) = exp [(Lc / 2) (rk . vk)]

 k = 0,1,… h, h+1,…, K-1

 (7.34)

45

Example (Lin & Costello, p. 572)

 BCJR Decoding of a (2,1,1) systematic recursive convolutional

 code on an AWGN Channel.

-- The generator matrix of the (2,1,1) systematic recursive convolutional code

code is given by

 G(D) = [1 1/ (1+ D)]

 The block diagram of the encoder and the corresponding trellis diagram are
shown in the following figure .

-- The input sequence has a length of 4 and mapping rule is

 0 --> -1 , 1--> +1

-- Assume that the channel has SNR of Es/ N0 = ¼ (-6.02 dB) and a
(normalized by √ Es) receiver vector

 R = (r0 r1 r2 r3) = (r1
(1)

 r1
(2)

 r1
(1)

 r1
(2) r2

(1)
 r2

(2)
 r3

(1)
 r3

(2)
)

 = (0.8 0.1 1.0 -0.5 -1.8 1.1 1.6 -1.6)

Note : Eb/ N0 = Es/ (3/8)N0 = 2/3

46

47

• Assuming that the a priori probability of the information
bits are equally likely , i.e. La(uk) = 0 , k = 1,2 ,.. ,

 the log-domain branch metrics are calculated as follows.

 Γ0 (s0 , s0) = (-1/2) La(u0) + (1/2) (r0. v0)

 = (1/2) (- 0.8-0.1) = - 0.45

 Γ0 (s0 , s1) = (1/2) La(u0) + (1/2) (r0. v0)

 = (1/2) (0.8 +0.1) = 0.45

 Γ1 (s0 , s0) = (-1/2) La(u1) + (1/2) (r1 . v1)

 = (1/2) (-1.0 + 0.5) = - 0.25

 Γ1 (s0 , s1) = (1/2) La(u1) + (1/2) (r1 . V1)

 = (1/2) (1.0-0.5) = 0.25

 Γ1 (s1 , s0) = (1/2) La(u1) + (1/2) (r1 . v1)

 = (1/2) (-1.0 + 0.5) = 0.75

 Γ1 (s1 , s1) = (-/2) La(u1) + (1/2) (r1 . v1)

 = (1/2) (-1.0 - 0.5) = - 0.75

48

 Γ2 (s0 , s0) = (-1/2) La(u2) + (1/2) (r2. v2)

 = (1/2) (1.8 -1.1) = 0.35

 Γ2 (s0 , s1) = (1/2) La(u2) + (1/2) (r2 . v2)

 = (1/2) (-1.8+1.1) = -0.35

 Γ2 (s1 , s0) = (1/2) La(u2) + (1/2) (r2 . v2)

 = (1/2) (-1.8-1.1) = -1.45

 Γ2 (s1 , s1) = (-1/2) La(u2) + (1/2) (r2 . v2)

 = (1/2) (1.8+1.1) = 1.45

 Γ3 (s0 , s0) = (1/2) (r3 . v3)

 = (1/2) (-1.6+1.6) = 0

 Γ3 (s1 , s0) = (1/2) (r3 . v3)

 = (1/2) (1.6+1.6) = 1.60

49

 Then we calculate log-domain metrics using (7.23) as follows.

 A1(s0) = Γ0 (s0 , s0) + A0(s0) = -0.45+ 0 = -0.45

 A1(s1) = Γ0 (s0 , s1) + A0(s0) = 0.45+ 0 = 0.45

 A2(s0) = max*{ [Γ1 (s0 , s0) + A1(s0)] , [Γ1 (s1 , s0) + A1(s1)]

 = max*{ [- 0.25 + (-0.45)] , [(0.75)+(=0.45)]}

 = max*(-0.70 ,+1.20)

 = 1.20 + ln (1 + e-1.9) = 1.34

 A2(s1) = max*{ [Γ1 (s0 , s1) + A1(s0)] , [Γ1 (s1 , s1) + A1(s1)]

 = max * (-0.20 ,- 0.30) = 0.44

 Similarly , we calculate log-doman backward metrics as follows.

 B3(s0) = Γ3 (s0 , s0) + B4(s0) = 0 + 0 = 0

 B3(s1) = Γ3 (s1 , s0) + B4(s0) = 1.60 + 0 = 1.60

 B2(s0) = max* { [Γ2 (s0 , s0) + B3(s0)] ,[Γ2 (s0 , s1) + B3(s1)]}

 = max* {[0.35 + 0] ,[-0.35 +1.60] }

 = max* (0.35 , 1.25) = 1.25 + ln (1+ e-0.90) = 1.59

 B2(s1) = max* { [Γ2 (s1 , s0) + B3(s0)] ,[Γ2 (s1 , s1) + B3(s1)]}

 =max*(-1.45 , 3.05) =3.06

50

 B1(s0) = max*{ [Γ1 (s0 , s0) + B2(s0)] ,[Γ1(s0 , s1) + B2(s1)]}

 = max*(1.34 ,3.31) = 3.44

 B1(s1) = max*{ [Γ1 (s1 , s0) + B2(s0)] ,[Γ1(s0 , s1) + B2(s1)]}

 =max*(2.34 , 2.31) = 3.02

 Finally , we calculate the APP L-values for the three information
bits as follows.

 L(u0) = [B1(s1) +Γ0 (s0 , s1) +A0 (s0)]

 - [B1(s0) +Γ0 (s0 , s0) +A0 (s0)]

 = 3.47 -2.99 = 0.48

 L(u1) = max * { [B2(s0) +Γ1 (s1 , s0) +A1 (s1)], [B2(s1) +

 Γ1 (s0 , s1) +A1 (s0)]

 - [B2(s0) +Γ1 (s0 , s0) +A1(s0)] + [B2(s1) +

 Γ1 (s1 , s1) +A1 (s1)] }

 = max* (2.79, 2.86) –max* (0.89, 2.76) = 0.62

51

 L(u2) = max * { [B3(s0) +Γ2(s1 , s0) +A2(s1)], [B3(s1) +

 Γ2(s0 , s1) +A2(s0)]

 - [B3(s0) +Γ2(s0 , s0) +A2(s0)] + [B3(s1) +

 Γ2(s1 , s1) +A2 (s1)] }

 = max* (-1.01, 2.59) –max* (1.69, 3.49) = -1.02

 The hard-decision outputs of the BCJR decoder for the

three information bits are

 u ^ = (1,1 , -1)

52

7. 5 Application of BCJR Algorithm :

 Iterative Decoding of Turbo Codes

 Consider a rate 1 / 3 systematic convolutional encoder in

 which the first coded bit , vk0 ,, is equal to the information

 bit uk .

 In this case, the a posteriori log-likelihood ratio L(uk)

 can be generally decomposed into a sum of three elements :

 L (uk) = Lc rk + La (uk) + Le
 (uk) (7.35)

 The first two terms are related with the information bit uk .

 The third term, Le
 (uk) is the extrinsic information provided

by the decoder based on both the received sequence and on
the a priori information , excluding both the received sample

 representing the systematic bit uk and the a priori

 information La (uk) . Derivation is given in Appendix 7A

53

 The basic structure of a turbo decoder is shown in Fig. 8.xx .

 Here, we assume a rate 1/3 parallel concatenated code

without puncturing. It uses two MAP decoders.

 At each time unit k , three output values are received from

the channel , one for the information bit uk , denoted by rk
(0) ,

and two for the parity bits , denoted by rk
(1) and rk

(1) .

 The received sequence can be expressed by a 3K-dimensional

vector r as

 r = (r0
(0) r0

(1) r0
(2) , r1

(0) r1
(1) r1

(2) , …, rK-1
(0) rK-1

(1) rK-1
(2))

 = (r(0) r(1) r(2)) (7.36)

 Also, let each transmitted bit be represented using the

mapping “0” → -1 and “ 1” → +1 .

54

 For an AWGN channel with soft (unquantized) outputs , the

 LLR of a transmitted information bit uk , denoted as the

 L(uk｜rk
(0)) , is expressed by

 L(uk｜rk
(0)) = ln { p(uk = +1 ｜rk

(0)) / p(uk = - 1)｜rk
(0)) }

 = ln { p(rk
(0) ｜ uk = +1) p(uk= +1) /

 p(rk
(0) ｜ uk = -1) p(uk = -1) }

 = ln {exp [- (Es /N0) ((rk
(0)

 - 1) 2] /

 exp [- (Es /N0) ((rk
(0)

 +1) 2] }

 + ln { p(uk = +1) / p(uk = - 1) }

 = (4 Es / N0) rk
(0) + La (uk)

 = Lc rk
(0) +La (uk) (7.37)

 where Lc = 4 Es / N0 is the channel reliability factor and

 La (uk) is the a priori L-value of the bit uk .

55

 In the case of a transmitted parity bit vk
(j) , giving the

received value rk
(j) , j =1,2 , the L-value (before decoding)

is given by

 L(vk
(j) ｜rk

(j)) = Lc rk
(j) +La (vk

(j))

 = Lc rk
(j) , j =1,2 (7.38)

 since in a linear code with equally likely information bits ,

the parity bits are also equally to be +1 or -1 , and thus the

a priori L-values of the parity bits are 0 ;that is ,

 La (vk
(j)) = 0 , j =1,2 (7.39)

 Note that La (uk) also equals 0 for the first iteration of the

decoder 1 but that thereafter the a priori L-values of the

information bits ate replaced by extrinsic l-values from the

other decoder (say , decoder 2).

56

 Iterative decoding Process

 a. The received soft channel L-values Lc rk
(0) and Lc rk

(1)

 enter decoder 1 , and Lc rk
(0) and the properly interleaved

 soft channel L-values Lc rk
(2) enter decoder 2 .

 The output od decoder 1 contains two parts :

 (1) L(1) (uk) = ln { p(uk = +1 ｜r
(0) , r

(1) ; La
(1)) /

 p(uk = - 1)｜r
(0) , r

(1); La
(1)) } (7.40)

 (2) Le
(1) (uk) = L(1)(uk) – [Lc rk

(0) + Le
(1)(uk) (7.41)

 where La
(1) = [La

(1)(u0) , La
(1)(u1) ,...,

 La
(1)(uK-1)] is a priori

input vector for decoder 1

 The extrinsic information Le
(1) (uk) , after interleaving , is then

passed to the input of decoder 2 as a priori value L2
(2)

 (uk).

 It is noted that we assume La
(1) (uk) = 0 in the first iteration .

57

b. The output of decoder 2 contains two parts :

 (1) L(2) (uk) = ln { p(uk = +1 ｜r
(0) , r

(2) ; La
(2)) /

 p(uk = - 1)｜r
(0) , r

(2); La
(2)) } (7.42)

 (2) Le
(2) (uk) = L(2)(uk) – [Lc rk

(0) + Le
(1)(uk)] (7.43)

 The extrinsic information Le
(2) (uk) , after interleaving , is

 then passed to the input of decoder 2 as a priori value

 La
(1)(uk).

c. Decoding then proceeds iteratively. With each deco0der

passing its respectively extrinsic L-values back to the other

decoder . This results in a turbo effect in which each estimate

becomes successively more reliable. After a sufficient

number of iterations , the decoded information

 bits are determined from the a posteriori L-values L(2) (uk) ,

 k =0,1,2,…, K-1 .

58

Fig. 8. Block diagram of a turbo decoder

59

Appendix 7A :

 BPSK signal transmitted over AWGN channel

 The probability p(rk ｜vk) that n values rk = rk1 rk2 … rkn

 are received given L values vk = vk1 vk2 … vkn were
transmitted will be equal to the product of the individual
probabilities p(rki｜vki) ,i =1,2,…, n.

 In a memoryless channel , the successive transmissions are
statistically independent .

 p(rk ｜vk) = Πi =1
n p(rk i｜vki) (A-1)

 With BPSK modulation , the transmitted signals have
amplitudes vki Ec , where vki = + 1 or -1 , and Ec is the energy
transmitted per code bit .

 Let us consider an AWGN channel with noise power spectral
density N0 /2 and fading amplitude a .

60

 At the receiver‟s matched filter output , the signal amplitude
is now r’ki = ± a (√ Ec) + w’ , where w‟ is a sample of
Gaussian noise with zero mean and variance

 σw‟
2 = N0 /2 .

 Normalizing amplitudes in the receiver we get

 rk i = r’ki / (√ Ec) = a vki + w

 where the noise w has variance σw
2 = N0 / (2 Ec)

 Finally we have

 p(rki ｜vki) =√(Ec / πN0) exp{- (Ec/N0) (rk i - a vki)
2

 (A-2)
 and then

 p(rk ｜vk) = [√(√(Ec / πN0)]
n exp{- (Ec/N0)[Σi =1

n rk i
 2

 +a2 Σi =1
L vk i

 2]} exp {2a (Ec/N0)Σi =1
n rk i

 vk i
 }

 = C2i exp { 2a (Ec/N0)Σi =1
n rk i

 vk I
 } (A-3)

The product factors C2i do not depend either on the uk sign

 or the codeword vk .

61

Appendix 7B :

 Derivation of L(uk) = La (uk) + Lc yk1 + Le
 (uk) (7.35)

 For a 1/n systematic convolutional code , the first coded bit

xk1 is equal to the first coded bit yk1 .

 From the relation

 γk (s’, s) = exp [uk L
a(uk)/2] exp [(Lc / 2) (yk ..xk)]

 k=1,2,…, K (A-4)

 where Lc = 4a Rc Eb / N0 . Then , we have

 γk (s’, s) = exp [uk L
a(uk)/2] exp [(Lc / 2) Σj =2

n (ykj xkj)]

 (A-5)

 Let us define

 χk(s‟ ,s) = exp [(Lc / 2) Σj =2
n (ykj xkj)] (A-6)

62

• If n = 2 (e.g. , the (2,1,2) RSC as the constituent code for

 turbo code), then χk(s‟ ,s) = exp [(Lc (yk2 xk2)/ 2]

 (A-7)

 Then we get

 γk (s’, s) = exp{ [uk L
a(uk) + Lc (yk2 xk2)] /2 } χk(s‟ ,s)

 (A-8)

 The APP L-value from (A-2)

 L(uk) = ln {ΣU+ p (sk-1=s’ , sk = s , y) / ΣU-- (sk-1=s’ ,sk= s ,y) }

 = ln {ΣU+ βk (s) χk (s’, s) αk-1 (s’) exp [uk L
a(uk)

 + Lc (yk1)] /2 } /

 ΣU-- βk (s) χk (s’, s) αk-1 (s’) exp [uk L
a(uk)

 + Lc (yk1)] /2 }

 (A-9)

63

 Then

 L(uk) = La(uk) + Lc yk1 + ΣU+ βk (s) χk (s’, s) αk-1 (s’) /

 ΣU-- βk (s) χk (s’, s) αk -1(s’)

 (A-10)

 We now define

 Le (uk) = ΣU+ βk (s) χk (s’, s) αk-1 (s’) /

 ΣU-- βk (s) χk (s’, s) αk-1 (s’) (A-11

 Finally we get

 L (uk) = La
 (uk) + Lc yk1 + Le (uk) (A-12)

64

 Appendix 7 C : Turbo code in LTE

 g2(D) = 1+D+D3 g1(D) = 1+D2 +D3

65

66

Turbo code in WiMAX (IEEE 802.16-e)

