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7.1  Turbo Codes 

7.1.1  Shannon Limit on Performance 

• The capacity of an AWGN channel is given by 

       C = W log2 ( 1+ S /N ) 

    where W  is the bandwidth of the channel in Hz , S is the 

average power of the signal and  N is the noise power. 

• Shannon bound 

• In the limit as the signal is allowed to occupy an infinity 

amount of bandwidth, one obtains the Shannon bound 

    Eb / N0  = - 1.59 dB 

   for reliable transmission.    
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 In 1948, Shannon defined the concept of channel capacity. 

He shown that, as long as the rate at which information is 

transmitted is less than the channel capacity, there exists 

error control codes that can provide arbitrarily high levels 

of reliability at the receiver output 

 The 1993 paper by C. Berrou, A. Glavieux, and P. 

Thitimasjshima entitled „‟Near Shannon Limit Error 

Correcting Coding and Decoding : Turbo Codes‟‟  has 

brought us within a hair‟s breadth of achieving Shannon‟s 

promise. This paper was presented at 1993 IEEE 

International Conference on Communications in Geneva.  

 In their presentation, Berrou et al claimed that a 

combination of parallel concatenation and iterative decoding 

can provide reliable communication at a SNR that is within 

a few tenth of a dB of the Shannon limit.  
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Turbo code encoder ( Berrou et al , 1993) 
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 Decoding  result of (37,21 ,65536)  turbo code 

     Note :  Octal numbers  37 =11 111 , 21 = 10001 .Block length N =65536 
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Standard structure for  turbo code encoder 
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• One key to the effectiveness of turbo coding systems is the 

     interleaver. 

• The interleaver allows the constituent decoders to generate 

     separate estimates of the a posteriori probability (APP) for a 

given information symbol based on data sources that are  

    not highly corrected. 

• The pseudorandom interleaver in this circuit is used to permute 

the input bits in such a manner that the two encoders operate 

on the same set of input bits, but with different input sequence 

to the encoders. 
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7.1.3  Decoding of Turbo Codes 

 The iterative decoder uses a soft-in/soft-out maximum a 

posteriori probability (MAP) decoding algorithm. 

• This algorithm was first applied to convolutional codes by 

BCJR algorithm , introduced by Bahl, Cocke, Jelinek, and Raviv      

in 1974. 

• The BCJR algorithm differs from the Viterbi algorithm in the 

sense that it produces soft outputs . The soft output weights the 

confidence or log-likelihood of each bit estimate. 

• The BCJR algorithm attempts to minimize the bit-error-rate 

     by estimating the a posteriori probability (APP) of the  

     individual bits of the codeword, rather than the ML  

    estimate of the transmitted codeword . 
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• For encoder given in Fig.8.4, there are two elementary  

     decoders that are interconnected as shown in Fig. 8.xx 

 The BCJR algorithm is employed in each decoder. 

    The data (r(0) , r(1) ) associated with the first encoder are fed   

     to  Decoder 1. This decoder initially uses uniform priors on 

     the  transmitted bits and produces probabilities of the bits  

     conditioned on the observed data. These probabilities are  

    called  the extrinsic probabilities. The output probabilities of  

    Decoder 1 are interleaved and passed to Decoder 2 , where  

    they are used  as “ prior “ probabilities in the decoder , along  

    with the data  associated the second encoder , which is r(0)  

     (interleaved ) and  r(2)  .  
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 The extrinsic output probabilities of Decoder II are 
deinterleaved  and passed back to become prior probabilities 
to Decoder 1. 

    The process of passing probability information back and 
forth  continues until the decoder determines (somehow) that 
the  process has converged, or until some maximum number 
of  iteration has reached. 

 When iterative decoding is employed (e.g. turbo  decoding),  

    and the a posteriori probabilities of the  information bits  

    change from iteration to iteration , a  MAP decoder gives  

    the best performance. 

    The term  turbo in the turbo coding has more to do with 
decoding than encoding. Indeed , it is successive feedback of 
extrinsic information from the SISO decoders in the iterative 
decoding process that mimics the feedback of exhaust gasses 
in a turbocharged engine. 
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A simplified Turbo decoder structure 
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7.2  BCJR Algorithm 

7.2.1  Log-likelihood Ratio 

 

 We consider transmitting message  over a binary- input  

    continuous output  memoryless channel . The input  uk  

    equals to  + 1 or  -1. 

 The log-likelihood ratio (LLR) of a transmitted 

     symbol  uk ,with the received sequence  r ,  is defined as 

            L(uk ) = ln [ p(uk  =+1｜r ) / p (uk =  -1｜r )  ]          (7.1) 

     L(uk) is also denoted as  a  posteriori probability (APP)  

      L-value . 

 

  The  a  priori  L-value of an information bit uk is defined as  

          La
 (uk ) = ln [ p(uk = + 1) / p(uk= - 1)  ]                          (7.2) 
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 An L-value can be interpreted as a measure of reliability 

for a binary random variable .  

      For example, assuming that the a priori probabilities of 

the code bits u  are equally likely , that is,  

    p(u=1) = p(u = -1 ) =1/2 , then, using  Bayes‟  rule , we have  

            L (r) = ln [ p(r｜u= + 1) / p(r｜u = - 1)  ]   

                   =  ln [p( u = + 1 ｜r ) /  p( u = - 1 ｜r )  ]     (7.3) 

       From this equation, we see that given the received symbol 

       r , a large positive value of  L(r)  indicates a high  

       reliability  that  u= +1 , a large negative value of L(r)  

       indicates a high reliability that  u = -1 . 
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7.2.2  BCJR Algorithm 

 Here we describe the BCJR algorithm for the case of  rate 

      R = 1/n  convolutional codes used on a binary-input  

      continuous-output AWGN channel and on a discrete  

      memberless channel (DMC ).  

      The decoder inputs are the received sequence  r and the a  

       priori  L-values of the information bits La (uk ) , 

        k = 0, 1,2…,K-1 . 

       The algorithm calculates the  APP   L-values  

            L(uk ) =   ln [ p(uk = + 1｜r) / p(uk = - 1｜r )  ]               (7.4) 

      of each information bit. 

       The decoder output is given by  

 

                      +1      if  L(uk ) > 0 

        uk^  =                                            ,        k = 0,1,2 ,…,K-1 .     (7.5) 

                       - 1      if    L(uk ) < 0   
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 The APP value    p (uk = + 1｜r )  can be rewritten as  

        p( uk = + 1｜r ) =  p( uk = + 1 , r ) / p (r)  

 

                                     = ΣU+  p(sk= s’ , sk+1= s , r  )  /  p(r)     (7,6) 

 

         where U+  is the set of transition from state sk to the  

         state sk+1  that can occur if the input bit uk = + 1 . 

        Similarly, we  can rewritten   p(ul = - 1｜r )  as  

 

        p( uk =  - 1｜r)   =  p( uk = - 1, r) / p (r) 

     

                                      = ΣU-  p (sk = s’ , sk+1= s , r)  /  p(r)     (7.7) 

  

        where U-  is the set of transition from state sk  to the 

        state  sk+1  that can occur if the input bit uk = - 1 . 
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  The APP L-value can be expressed as 

      L(uk  )  =  ln  {ΣU+  p(sk=s’ , sk+1 = s , r  )  / 

                               ΣU-  p(sk =s’ ,sk+1 = s ,r ) }                            (7.8) 

 Now we will show how the joint pdf  p(s’,s,r) can be evaluated 

recursively.   

     Note that   p(s’, s, r) =  p(sk = s’ , sk+1 = s , r ) . 

    The convolutional code introduces a Markov  property into the 

probability structure: 

     Knowledge of the state at time t+1 renders irrelevant knowledge 

of the state at time t  or previous time. 

    The observation r is divided into three portions : rt < k  , rk  ,  rt > k  ,  

where rt < k  represents the portion of the received sequence 

before time k  , and  rt > k  represents the portion of the received 

sequence  y  after time k .      

       r  =   r1  r2   …   rk-1   rk   rk+1  … rN      =   rt<k   rk   rt >k                  (7.9) 
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 We then have  p(s’,s,r ) = p( s’,s, rt< k  , rk  ,  rt> k  ) and applying 
the Bayes‟s rule we obtain 

      p(s’,s,y) = p(rt >k ｜s’,s, rt < k  , rk )  p(s’,s, rt < k  , rk) 

                     = p (rt > k ｜s’,s, rt < k , rk  ) p(s, rt ｜s’ ,rt < k,) P(s’, rt < k ) 

                     = p (rt > k ｜s )  P(s, rk｜s’  ,)p(s’, rt < k )             (7.10) 

     where the last equality follows  from the fact that the 
probability of the received branch at time k depends only on 
the state and input bit at time k. 

 Defining  

   αk (s’)       ≡ p(s’, r < k )                                                    (7.11) 

    γk (s’, s)   ≡ p(s, rk ｜s’,)                                                  (7.12) 

    βk+1(s)         ≡ p(rt > k ｜s )                                                  (7.13) 

      we then can write  P(s’, s, r ) by the equation 

      p(s’,s,r ) = αk (s’) γk (s’, s) βk+1 (s)                               (7.14)                   
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• Forward Recursion  

    We can now rewrite αk (s) as  

    αk+1 (s)    ≡  p (s, rt < k +1 )   = Σs’     p(s’, s , rt < k , r k ) 

                   

                   = Σs’   p(s, r k ｜s’ ,  rt < k ) p(s’ , rt < k )  

 

                     =Σs’    p(s, r k ｜s’  ) p (s’ , rt < k )  

 

                     =  Σs’ αk (s’ ) γk (s’, s)                                  (7.15) 

   

   where the summation is taken over all states at time  k . 

    Thus , once the γk (s’, s) values  are known , the αk+1 (s)  can be 

    calculated recursively.    
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• Similarly, we can write the expression for the probability  

    βk -1 (s’)   as   

      βk (s’)  =  Σs βk +1(s) γk (s’, s)                                (7.16) 

   where the summation is taken over  all states at time k+1,   

   and  we can compute a backward metric βk (s’) for each 

   state s‟ at time  k  using the backward recursion  (7.16). 

 The forward recursion begins at time k= 0 with the initial 
condition 

                       1 ,  s = 0 

     α0(s)    = {                                                                      (7.17) 

                       0 ,  s≠0 

     since the encoder starts in the all-zero state  s=0 , and we  

     use (7.15) to recursively compute αk (s) , k = 0, 1,…,K-1, where   

     K = h+m  is the input sequence length ., m is the memory 

     length of the code. 
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• Similarly , the backward recursion begins at time k=K  
with the initial condition  

                           1      s = 0 

       βK (s)  = {                                                                (7.18) 

                           0      s≠0 

     since the decoder also ends in all-zero state, and we use  

     (7.18) to recursively compute βk (s) , k =, K-1 ,…,1 , 0 

 We can write the branch transition probability  

           γk (s’, s)   ≡  p(s, rk ｜s’ ,)  = P(s’ s, rk ,) / P(s’ ) 

 

                              =  p(rk ｜s’ ,s) P(s ｜s’ ) 

                              =  p (rk ｜s’ ,s)P(uk )  

                              =  p (rk ｜vk ) P(uk )                         (7.19) 

     where uk is the input bit necessary to cause the transition 

     from  sate s’ to state s  , P(uk )  is the a priori probability of  

     this bit;  vk is the transmitted codeword associated with  

     this transition   s’ → s  . 
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 Hence , the transition probability density γk (s’, s)  is given  

    by the product of the a priori probability of the input bit 

     uk  necessary for the transition and the conditional density 

of the received  channel sequence for the value  rk given 

that the codeword  vk associated with the transition was 

transmitted. 

 The  a priori probability p(uk ) is derived in an  iterative 

decoder from the output of the previous component 

decoder. 
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 In the following , trellis representation of a convolutional 

code is used to illustrate the algorithm. 

     The functional block diagram of a  (2,1,2)  recursive 

convolutional code  encoder is shown in ig.8.xx(a)  .   

                G = [ 1   (1+D2)/ 1+D + D2
  )   ] 
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 From (7.8 ) and (7.10) , we can compute the conditional 
LLR of  uk , given the received value rk  . 

 The MAP algorithm finds 

    αk (s )  and βk+1 (s) for all states s  throughout the trellis, 

     i.e., for  k = 0,1,2,…, K-1 , and   γk (s’, s) for all possible 

      transitions from state  sk = s’   to state sk+1 = s , and again  

      for   k  = 0,1,2,…, , K-1 

      These values are then used  to compute the conditional   

       LLR  L(uk )  that the MAP decoder delivers. 
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 Summary of  BCJR (MAP ) Algorithm : 

 

     The MAP decoding of a received sequence  r  to give the a  

      posteriori LLR  L(uk)   can carried out as follows.  

 

    (1) Initialize forward and backward recursions , α0 (s), and  

         βK (s’) . 

    (2)As the channel values  rki  are received, they and the a  

         priori  LLRs  La (uk ,) ,which are provided in an iterative  

         turbo  decoder by the other  components , are used to  

         calculate γk (s’, s) , according to (7-12). 

 

    (3) As the channel values yk l  and the γk (s’, s)  values are  

         calculated , the forward recursion from (7.15)  can be  

         used to calculate αk (s)  based on αk-1 (s) .  

 
 



32 

  

  (4) Once all the channel values have been received , and  

          γk (s‟, s) has been calculated  for all k = 0,1, 2,…,K-1  , 

        the backward recursion from (7.16) can be used to  

        calculate theβk-1(s’)  values  based on theβk  (s’) . 

 

   (5) Finally, all the calculated values of  αk (s), , γk (s‟, s) ,  

         and βk+1 (s’) are used to calculate the values of   L(uk ) . 

 

Note : The complexity is about  three times of  Viterbi 
algorithm 
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7.3  Logarithmic BCJR Algorithm :  

          Log-MAP and  Max-Log-MAP 

 

 The log-MAP algorithm was proposed by Robertson et al  

     in  1995 . It has performance close to that of  the MAP  

    algorithm,  but at a fraction of its complexity. 

     Also, it is easier to implement and numerically more stable . 

 In the log-MAP  algorithm,  additions substitute the BCJR  

     algorithm multiplications with the aid of the Jacobian  

      logarithm   ( The max operation). 

       max* (a,b ) = ln ( ea + eb  )  

                           = max (a,b ) + ln ( 1 + e - ｜a-b ｜)               (7.20) 
      The term  ln ( 1 + e - ｜a-b ｜)   is usually small  which can be  

    stored  in a simple look-up table . 

 The term  ln ( 1 + e - ｜a-b ｜)   is negligible in most practical  

      applications. Thus , max* (a,b ) is replaced by max (a,b )   

      when   ｜ max (a,b ) ｜ ≧ 7  . 
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 New variables are defined : 

           Ak(s) =  ln αk(s)  

           Bk(s) =  ln βk(s)  

          Γk(s’ , s ) =  ln γk(s’ ,s)                                                       (7.21) 

      

     With some mathematical manipulations, we can obtain the 
following equations : 

      Γk(s‟, s)=  uk La(uk ) / 2 + ( Lc / 2 )Σi =1
n vki rki     k = 0, 1,…, h-1 

                                  Σj =1
n vki rki                                                                k = h,h+1 ,…, K-1    

                                                                                                               (7.22) 

           

          Ak(s)  =    max*
S‟  [Ak-1(s’ ) + Γk(s’ , s ) ] ,          

                                                                                    k= 0,1, …  , K-1 

                                                                                                       (7.23) 
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       Bk (s)  =   max*
S  [Bk+1 (s ) + Γk(s’ , s ) ]    

                                     k =  K-1  , K -2, …1 ,0                    (7.24) 

     The initial values of A and B in the terminal trellis are 

        A0(s) =   0       s =0                              BK(s) =     0          s= 0        

- ∞   s ≠ 0                                          - ∞       s ≠0    

                                                                                             (7.25) 

     Consequently ,we have 

        L(uk)  =    max* 
U+

  [Ak  (s’ ) + Γk(s’ , s ) + Bk+1(s) ] 

 

                      -   max* 
U -

 [Ak(s’ ) + Γk(s’ , s ) + Bk+1(s) ]     

                                                                                            (7.26) 
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  Summary  : 

   The log-BCJR  Algorithm  : 

    Step1.  Initialize the forward and backward metrics  A0 (s) and 

                BK(s)  using ( 7.25) . 

    Step2. Compute the branch metrics Γk (s’ , s )  using (7.22) . 

    Step3.  Compute the forward metrics Ak -1 (s) using (7.23) . 

    Step 4. Compute the backward  metrics Bk-1 (s), 

                   k =  K   , K -1 , …,1 ,    using (7.24) 

    Step 5 . Compute  the APP  L-values L(uk) using (7.26) . 

    Step 6.  (optional) Compute the hard-decision uk 

 

 The algorithm that compute  L(uk) using Eq. (7.26) is called the 

     log-MAP algorithm ; if max*   function is replaced by  max  

     function , then the algorithm is called  Max-log- MAP  

     algorithm. 
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 The max-log-MAP algorithm relies on the MAP algorithm 

but significantly reduces the complexity by neglecting the 

correction term in  (7.20) , that is, 

                ln ( ea + eb  ) ≒ max* (a,b ) 

 

Remarks :  

     It was shown by Fossorier  et al.  in 1998  that the 

performance of  a modified SOVA ( soft-output Viterbi 

algorithm ) is equivalent to the  max-log-MAP algorithm if 

the soft-update rule is extended. 

    Fossorirt, M.P. , Bunkert, F., Lin,S., and  Hagenauer,J., “ On the Equivalence 

Between SOVA and Max-Log-MAP Decoding ,” IEEE Comm. Letters , vol. 2 , 

no.5 , pp. 137-139 , May 1998. 

 



38 

 Note 1 : 

     From  ln ( ea + eb  ) = max* (a,b )  = max (a,b ) + ln ( 1 + e - ｜a-b ｜) 

     we obtain the formula 

      ln Σi =1
n ea i     =  ln ( ea1  +     ea2  + … +     ean  ) 

                                         =  ln (Δ +   ean   )  

     with  Δ= ea1  +     ea2  + … +     ea (n-1)   =  eδ 

      Therefore , 

        ln Σ ea I   =  ln (eδ +   ean   )  

                        = max ( δ + an ) + ln ( 1 + e - ｜ δ - an
 
｜)  

                        = … 

                        = A M + ln [ 1+ Σ e (Ai –AM )  ] 

       where   A M  = max (ai )    i ≠ m 

 Note 2:  

     max* (x,y,z ) = max*( max*(x,y), z ) 
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7.4  BCJR for Decoding BPSK Signal over 

       AWGN Channel 

 

 For  a  system with memoryless AWGN channel and BPSK 

     modulation,  The conditional received  sequence probability 

     density p(rk ｜vk )  is given by 

 

         p(rk ｜vk ) =  Πi =1
n   p( rk i｜vki ) 

 

                          = Πi =1
n √(Ec / πN0 ) exp{- ( Ec/N0  ) (rk i - a vki ) 

2   

                                                                                                                                   (7.27)  
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 where  

     rk i   and  vki  are the individual bits within the  received and 

transmitted codeword, respectively, 

     n is the  number of these bits in the codeword, and a is the 

channel gain . 

     a =1 for non-fading AWGN channel.   

     Ec is the transmitted  energy per coded bit , N0 /2  is the    

power spectral  

     density of the  noise . 

    Ec = Rc Eb , and  Eb is the energy of  a message bit . 

• (rk - vk )
2  = Σi (rk i - a vki ) 

2  is the squared Euclidean 

distance between  the received branch and transmitted 

branch at time k . 
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 For a continuous –output AWGN channel, if  s‟ → s is a valid 

state transition , 

         γk (s’, s) =  p(rk ｜vk ) p(uk ) 

                         =   P(uk ) ﹝√(Ec / πN0 ) ﹞
n 

                              exp [- ( Es /N0  ) ∥ (rk - vk ) ∥2  ] 

     

    The constant factor﹝√(Ec / πN0 ) ﹞
n   is usually dropped for 

simplicity. 

    Thus, we have a modified  branch metric 

       γk (s’, s) = p(uk)  exp ( -  Ec/N0  ∥ (rk - vk ) ∥ 2  )          (7.28) 

 

  La (uk ) = ln [ p(uk = + 1) / p(uk = - 1)  ]                              (7.29) 

       is the a priori   L-value of the bit uk . 
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• We can express the a priori probabilities  P(uk =  ±  1 )  as 
exponential terms by written 

        p(uk = ± 1 ) = [ p(uk = + 1) /  p(uk = - 1)  ] ±  1 /  

                             ｛ 1 + [ P(uk = + 1) /  P(uk = - 1)  ] ±  1 ｝ 

                      =  exp [ La (uk )] 
±  1 / ｛1+ exp [ La (uk )] 

±  1 ｝ 

                       =  exp [- La (uk )/2 ]   exp [uk La (uk )/2 ]  / 

                          ｛ 1 + exp [- La
 (uk ) ｝  

                              = C1k  exp [ uk La
 (uk ) / 2 ]                          (7.30) 

                                                   k = 0,1,….h-1 

      

    where, since L-values do not depend on the value of their 
argument , the parameter Ak  is independent  of the actual  

     value of  uk . 

                C1k=  exp [- La (uk )/2 ] /  { 1+ exp [- La
 (uk ) ｝  
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• For termination bits uk  , k =  h,… , h+m-1 = K-1 , where  

      p(uk ) = 1 and,  La (uk ) =  ± ∞   for each valid state transition  

      we simply use  (7.28) . 

      Thus we  can write the modified  branch metric as  

            γk (s’, s) = C1k   exp [uk La (uk )/2 ]  

                               exp [ -  ( Ec /N0 ) ∥(rk - vk )∥ 2  ]  = … 

                            = C1k C2k exp [uk La (uk )/2 ]  

                                 exp [  (Lc / 2   ) (rk.. vk ) ]         

                                                                    k=0,1,…, h-1                  (7.31) 

 

            γk (s’, s) =  p(uk )  exp [ - ( Ec/N0 )  ∥ (yk - xk ) ∥ 2  ] = … 

                            = C2k exp [  (Lc / 2   ) (rk.. vk ) ] 

                                                              k =  h,…, K-1             (7.32) 

      where C2k = ∥rk ∥ 2   + n  is a constant independent of the  

      codeword  vk ,  and  Lc =  4  Es /N0  is the channel reliability factor. 
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• Thus in the calculation of  p(s’, s, y) , the factors Πk=0
h-1 C1k  

      and Πk =0
K-1 C2k are both contained in the numerators and 

      denominators summations, we can drop these factors 

      and use the exponential function 

          γk (s’, s) =   exp [ uk La(uk )/2 ]  exp [  (Lc / 2   ) (rk . vk ) ]   

                                                              k = 0,1,…, h-1                          

                                                                                         (7.33a) 

 

          γk (s’, s) =   exp [  (Lc / 2   ) (rk.. vk ) ]     

                                                              k= h, h+1,…, K -1  

                                                                                         (7.33b) 

      as a simplified branch metric . 

 Note that when the input bits are equally likely, La (uk ) = 0 , 
and the simplified branch metric is given by 

               γk (s’, s) =   exp [ ( Lc / 2   ) (rk . vk ) ]  

                                                             k = 0,1,… h, h+1,…, K-1    

                                                                                         (7.34)  
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Example ( Lin & Costello, p. 572) 

   BCJR Decoding of a (2,1,1 ) systematic recursive  convolutional 

     code  on an AWGN Channel. 

-- The generator  matrix of the  (2,1,1) systematic recursive convolutional code 

code is given by  

          G(D) = [ 1   1/ ( 1+ D )  ] 

      The block diagram of the encoder and the corresponding trellis diagram are 
shown in  the following figure . 

--   The input sequence   has a length of  4 and mapping rule is  

         0 --> -1   ,  1--> +1  

-- Assume that the channel  has SNR  of  Es/ N0   = ¼    ( -6.02 dB )   and  a 
( normalized by  √ Es   ) receiver vector  

        R = ( r0    r1    r2   r3 ) = (r1
(1)

 r1
(2)

  r1
(1)

 r1
(2)  r2

(1)
 r2

(2)
  r3

(1)
 r3

(2)
 )  

                                   = ( 0.8  0.1   1.0  -0.5   -1.8  1.1   1.6 -1.6 ) 

 

Note :  Eb/ N0 = Es/ (3/8)N0     = 2/3 
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• Assuming that the a priori probability of the information 
bits are equally likely , i.e. La(uk) = 0 , k = 1,2 ,..  , 

     the log-domain branch metrics are calculated as follows. 
      

       Γ0 ( s0 , s0 ) =  ( -1/2) La(u0)  + (1/2) ( r0. v0 ) 

                            =  (1/2) ( - 0.8-0.1 ) =  - 0.45 

        Γ0 ( s0 , s1 ) =  (1/2) La(u0)  + (1/2) ( r0. v0 ) 

                             = (1/2) ( 0.8 +0.1)     =  0.45 

      Γ1 ( s0 , s0) =  (-1/2) La(u1)  + (1/2) ( r1 . v1 ) 

                          = (1/2) ( -1.0 + 0.5 ) = - 0.25 

       Γ1 ( s0 , s1 ) =  (1/2) La(u1)  + (1/2) ( r1 . V1  ) 

                           =  (1/2)  (1.0-0.5)  =  0.25 

      Γ1 ( s1 , s0) =  (1/2) La(u1)  + (1/2) ( r1 . v1 ) 

                            =   (1/2) ( -1.0 + 0.5 ) = 0.75 

       Γ1 ( s1 , s1 ) =  ( -/2) La(u1)  + (1/2) ( r1 . v1 ) 

                            = (1/2) ( -1.0 - 0.5 ) =  - 0.75 
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       Γ2 ( s0 , s0) =  (-1/2) La(u2)  + (1/2) ( r2. v2 ) 

                          = (1/2) ( 1.8 -1.1 ) = 0.35 

       Γ2 ( s0 , s1 ) =  (1/2) La(u2)  + (1/2) ( r2 . v2  ) 

                           =  (1/2)  (-1.8+1.1)  =  -0.35 

      Γ2 ( s1 , s0) =  (1/2) La(u2)  + (1/2) ( r2 . v2) 

                            =   (1/2) ( -1.8-1.1 ) =  -1.45 

       Γ2 ( s1 , s1 ) =  ( -1/2) La(u2)  + (1/2) ( r2 . v2 ) 

                            = (1/2) ( 1.8+1.1 ) =  1.45 

        

       Γ3 ( s0 , s0) = (1/2) ( r3 . v3 ) 

                          = (1/2) ( -1.6+1.6 ) = 0 

       Γ3 ( s1 , s0) = (1/2) ( r3 . v3) 

                           = (1/2) (1.6+1.6 ) = 1.60 
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 Then we calculate log-domain metrics using (7.23  ) as follows. 

      A1(s0) = Γ0 ( s0 , s0 ) +  A0( s0) = -0.45+ 0 = -0.45 

      A1(s1) = Γ0 ( s0 , s1) +  A0( s0) = 0.45+ 0 = 0.45 

      A2(s0) =  max*{ [Γ1 ( s0 , s0) + A1( s0)] , [Γ1 ( s1 , s0) +  A1( s1)]  

                  = max*{ [- 0.25 + ( -0.45)] , [ ( 0.75 )+(=0.45 ) ]} 

                  = max*( -0.70 ,+1.20 ) 

                  = 1.20 + ln ( 1 + e-1.9   )  = 1.34  

      A2(s1) =  max*{ [Γ1 ( s0 , s1) + A1( s0)] , [Γ1 ( s1 , s1) +  A1( s1)] 

                  = max * ( -0.20 ,- 0.30)  = 0.44 

 Similarly , we calculate log-doman backward metrics as follows. 

     B3(s0) = Γ3 ( s0 , s0 ) +  B4( s0) = 0 + 0  = 0 

     B3(s1) = Γ3 ( s1 , s0 ) +  B4( s0) = 1.60 + 0  = 1.60 

     B2(s0) = max* { [Γ2 ( s0 , s0 ) +  B3( s0) ] ,[Γ2 ( s0 , s1) +  B3( s1) ]} 

                = max* {[ 0.35 + 0] ,[ -0.35 +1.60 ] } 

                = max* ( 0.35 , 1.25 )  = 1.25 + ln ( 1+ e-0.90  ) = 1.59 

     B2(s1) = max* { [Γ2 ( s1 , s0 ) +  B3( s0) ] ,[Γ2 ( s1 , s1) +  B3( s1) ]} 

                =max*( -1.45 , 3.05 ) =3.06 
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      B1(s0) = max*{ [Γ1 ( s0 , s0 ) + B2( s0) ] ,[Γ1( s0 , s1) +  B2( s1) ]} 

                = max*(1.34 ,3.31 )  = 3.44 

      B1(s1) = max*{ [Γ1 ( s1 , s0 ) + B2( s0) ] ,[Γ1( s0 , s1) +  B2( s1) ]} 

                =max*( 2.34 , 2.31) = 3.02 

 

 Finally , we calculate the APP L-values for the three  information  
bits as follows. 

     L(u0) = [B1(s1) +Γ0 ( s0 , s1 ) +A0 ( s0 ) ] 

                  - [B1(s0) +Γ0 ( s0 , s0 ) +A0 ( s0 ) ]  

                = 3.47 -2.99  = 0.48 

      L(u1) = max * { [B2(s0) +Γ1 ( s1 , s0 ) +A1 ( s1 ) ], [B2(s1) + 

                                Γ1 ( s0 , s1) +A1 ( s0 ) ] 

                                 - [B2(s0) +Γ1 ( s0 , s0 ) +A1( s0 ) ] + [B2(s1) + 

                                Γ1 ( s1 , s1) +A1 ( s1 ) ] } 

                = max* (2.79, 2.86) –max* (  0.89, 2.76 )  = 0.62                                   
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      L(u2) = max * { [B3(s0) +Γ2( s1 , s0 ) +A2( s1 ) ], [B3(s1) + 

                                Γ2( s0 , s1) +A2( s0 ) ] 

                                 - [B3(s0) +Γ2( s0 , s0 ) +A2( s0 ) ] + [B3(s1) + 

                                Γ2( s1 , s1) +A2 ( s1 ) ] } 

                = max* (-1.01, 2.59) –max* (  1.69, 3.49 )  = -1.02 

 The hard-decision outputs of the BCJR decoder  for the  

three information bits are 

               u ^  = ( 1,1 , -1 ) 
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7. 5  Application of BCJR Algorithm :  

          Iterative Decoding of Turbo Codes 

           

 Consider a rate 1 / 3  systematic convolutional encoder in  

     which the first coded bit , vk0  ,, is equal to the information  

     bit   uk  . 

     In this case, the a posteriori  log-likelihood ratio L(uk )   

     can be generally decomposed into a sum of three elements : 

         

                L (uk )  = Lc rk  + La (uk) + Le
 (uk )                   (7.35) 

      

    The first two terms are related with the information bit uk  . 

    The third term, Le
 (uk) is the  extrinsic information  provided 

by the decoder based on both the received sequence and on 
the a  priori information , excluding both the received sample  

    representing the systematic bit uk and the  a priori  

    information La (uk ) .  Derivation  is given in Appendix  7A      
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 The basic structure of a turbo decoder is shown in Fig. 8.xx . 

     Here, we assume a rate 1/3 parallel concatenated code 

without puncturing. It uses two MAP decoders. 

 At each time unit k , three output values are received from 

the channel , one for the information bit uk , denoted by rk
(0) , 

and two for the parity bits , denoted by rk
(1) and rk

(1)  . 

    The received sequence can be expressed by a 3K-dimensional 

vector  r as 

             r = (r0
(0) r0

(1) r0
(2)  , r1

(0) r1
(1) r1

(2)  , …, rK-1
(0) rK-1

(1) rK-1
(2)  ) 

                 = (r(0)   r(1)   r(2)  )                                               (7.36) 

 

    Also, let each transmitted bit be represented using the 

mapping  “0” → -1  and  “ 1” → +1 . 
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 For an AWGN channel with soft ( unquantized) outputs , the  

     LLR   of a transmitted information bit uk  , denoted as the  

     L(uk｜rk 
(0) )  , is expressed by 

        L(uk｜rk 
(0) ) = ln {   p(uk = +1 ｜rk 

(0) ) /  p(uk = - 1 )｜rk 
(0) ) } 

                           = ln {  p(rk 
(0) ｜ uk = +1 )  p(uk= +1 ) /  

                                         p(rk 
(0) ｜ uk = -1 ) p(uk = -1 ) } 

                              = ln {exp [- ( Es /N0  ) ( (rk
(0)

 - 1) 2  ] / 

                                       exp [- ( Es /N0  ) ( (rk
(0)

 +1) 2  ] } 

                                  + ln {  p(uk = +1 ) /  p(uk = - 1 )  } 

                              = (4 Es / N0 ) rk 
(0) + La (uk)  

                              = Lc rk 
(0) +La (uk)                                  (7.37) 

    where  Lc = 4 Es / N0   is the channel reliability factor and 

    La (uk) is the a priori L-value of the bit uk  . 
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 In the case of a transmitted parity bit vk
(j)  , giving the 

received  value rk
(j) , j =1,2 , the L-value ( before decoding ) 

is given by 

         L(vk
(j) ｜rk 

(j) ) = Lc rk 
(j) +La (vk

(j) ) 

                                 = Lc rk 
(j)  ,        j =1,2                    (7.38) 

     since in a linear code with equally likely information bits , 

the parity bits are also equally to be +1 or -1 , and thus the 

a priori L-values of the parity bits are 0 ;that is , 

        La (vk
(j) ) = 0  ,         j =1,2                                     (7.39) 

     Note that La (uk) also equals 0 for the first iteration of the 

decoder 1 but that thereafter the  a priori L-values of the 

information bits ate replaced by extrinsic l-values from the 

other decoder ( say , decoder 2 ). 
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 Iterative decoding Process 

  a. The received soft channel L-values Lc rk 
(0)  and Lc   rk 

(1)  

       enter decoder 1 , and Lc rk 
(0)  and the properly interleaved  

       soft channel L-values  Lc rk 
(2)   enter decoder 2 . 

      The output od decoder 1 contains two parts : 

       (1)  L(1) (uk) = ln {   p(uk = +1 ｜r 
(0) , r 

(1) ; La
(1) ) / 

                                      p(uk = - 1 )｜r 
(0) , r 

(1); La
(1) ) }       (7.40) 

 

       (2)  Le
(1) (uk  ) = L(1)(uk) – [ Lc  rk  

(0) + Le
(1)(uk)               (7.41) 

   where  La
(1)  = [  La

(1)(u0) , La
(1)(u1) ,...,

 La
(1)(uK-1)  ]  is  a priori  

input vector  for decoder 1 

    The extrinsic information Le
(1) (uk ) , after interleaving , is then 

passed to the input of decoder 2  as  a priori  value L2
(2)

 (uk ).  

     It is noted that we assume La
(1) (uk   ) = 0 in the first iteration . 
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b. The output of decoder 2  contains two parts : 

       (1) L(2) (uk) = ln {  p(uk = +1 ｜r 
(0) , r 

(2) ; La
(2) ) / 

                                        p(uk = - 1 )｜r 
(0) , r 

(2); La
(2) ) }     (7.42)  

       (2)  Le
(2) (uk  ) = L(2)(uk) – [ Lc  rk  

(0) + Le
(1)(uk) ]           (7.43) 

     The extrinsic information Le
(2) (uk ) , after interleaving , is 

      then passed to the input of decoder 2  as  a priori  value  

      La
(1)(uk ).  

c. Decoding then proceeds iteratively. With each deco0der 

passing its respectively extrinsic L-values back to the other 

decoder . This results in a turbo effect in which each estimate 

becomes successively more reliable. After a sufficient  

number of iterations , the decoded information 

     bits are determined from the a posteriori L-values L(2) (uk) ,  

     k =0,1,2,…, K-1 . 
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Fig. 8.   Block diagram of a turbo decoder 
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Appendix 7A :   

      BPSK signal transmitted over   AWGN channel 

 

 The probability   p(rk ｜vk )  that  n values   rk  = rk1 rk2 … rkn 

    are received given L  values  vk  = vk1  vk2 … vkn   were 
transmitted  will be equal to the product of the individual 
probabilities p(rki｜vki ) ,i =1,2,…, n. 

     In a memoryless channel , the successive transmissions are 
statistically independent . 

           p(rk ｜vk ) =  Πi =1
n   p( rk i｜vki )                             (A-1) 

 With BPSK modulation , the transmitted signals  have 
amplitudes  vki Ec  , where   vki  = + 1 or  -1 , and  Ec  is the energy 
transmitted  per code bit . 

 Let us  consider an AWGN  channel with noise power spectral 
density  N0 /2  and fading  amplitude a . 
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 At the receiver‟s matched filter output , the signal amplitude 
is now  r’ki =  ±  a   (√ Ec ) + w’  , where w‟ is a sample of 
Gaussian noise with zero mean and variance  

        σw‟
2   = N0 /2  .   

     Normalizing amplitudes  in the receiver we get 

        rk i =  r’ki  / (√ Ec )  =  a vki + w  

     where  the noise  w has variance σw
2   = N0 / (2 Ec ) 

     Finally we have  

         p(rki ｜vki ) =√(Ec / πN0 ) exp{- ( Ec/N0  ) (rk i - a vki ) 
2  

                                                                                                                                           (A-2) 
       and then 

        p(rk ｜vk ) = [√( √(Ec / πN0 ) ]
n  exp{- ( Ec/N0  )[ Σi =1

n rk i
 2  

                                          +a2  Σi =1
L  vk i

 2 ]}   exp {2a ( Ec/N0  )Σi =1
n  rk i

 vk i
 } 

                         = C2i  exp { 2a ( Ec/N0  )Σi =1
n rk i

 vk I   
 }     (A-3) 

       

The product factors C2i   do not depend either on the uk  sign  

      or the codeword vk  .       
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Appendix  7B :  

      Derivation of  L(uk)  = La (uk) + Lc yk1 + Le
 (uk)     (7.35) 

 For a 1/n systematic convolutional code , the first coded bit 

xk1 is equal to the first  coded bit yk1 . 

  From the relation  

  γk (s’, s) =   exp [uk L
a(uk )/2 ]  exp [  (Lc / 2   ) (yk ..xk ) ]   

                                    k=1,2,…, K                                        (A-4) 

 where  Lc = 4a Rc Eb / N0  . Then , we have 

 γk (s’, s) =   exp [uk L
a(uk )/2 ]  exp [  (Lc / 2   ) Σj =2

n (ykj xkj ) ] 

                                                                                              (A-5) 

  Let us define 

    χk( s‟ ,s ) =  exp [  (Lc / 2   ) Σj =2
n (ykj xkj ) ]                  (A-6) 
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• If  n = 2  (e.g. , the (2,1,2 ) RSC as the constituent code for  

    turbo code), then       χk( s‟ ,s ) =  exp [  (Lc (yk2 xk2 )/ 2 ]    

                                                                                          (A-7) 

     Then we get 

       γk (s’, s) =   exp{ [uk L
a(uk ) + Lc (yk2 xk2 )] /2 } χk( s‟ ,s )  

                                                                                          (A-8) 

 

   The APP  L-value  from (A-2) 

     L(uk  )  =  ln  {ΣU+   p (sk-1=s’ , sk = s , y  ) / ΣU-- (sk-1=s’ ,sk= s ,y ) } 

                             

                  = ln {ΣU+  βk (s) χk (s’, s) αk-1 (s’)  exp [ uk L
a(uk )  

                                     +   Lc (yk1 )] /2 }   / 
 

                                                   ΣU--   βk (s) χk (s’, s) αk-1 (s’) exp [uk L
a(uk )  

                                         +  Lc (yk1  )] /2 }  

                                                                                           (A-9) 
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      Then   

          L(uk  )  =  La(uk ) + Lc yk1 + ΣU+ βk (s) χk (s’, s) αk-1 (s’) / 

       

                                             ΣU-- βk (s) χk (s’, s) αk -1(s’) 

                                                                                         (A-10) 

 

        We now define 

             Le (uk )  = ΣU+ βk (s) χk (s’, s) αk-1 (s’) / 

 

                           ΣU-- βk (s) χk (s’, s) αk-1 (s’)              (A-11 

        

       Finally we get  

             L (uk )  =  La
 (uk ) + Lc yk1  + Le (uk )                    (A-12) 
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 Appendix  7 C : Turbo code in LTE 

                    g2(D) = 1+D+D3         g1(D) = 1+D2 +D3 
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Turbo code in  WiMAX  ( IEEE 802.16-e) 

                     


