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8.1 Introduction  
 LDPC codes were first discovered by R.G. Gallager  in 1962.  

     These codes have  performance exceeding , in some cases, 

that  of turbo codes with iterative  decoding algorithms 

which are easy to implement, and are also parallelizable in 

hardware. 

  However, LDPC codes have a significantly higher encode  

      complexity than the turbo codes. Also, decoding of LDPC 

codes  may require many more iterations than turbo 

decoding which  means longer latency. 
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 Gallager’s  remarkable discovery was mostly ignored by  

     communications community researchers for almost 20 
years.  

     In 1981 , R. Tanner presented  a new interpretation of the  

     LDPC  codes from a  graphical point of view. Tanner’s  

     work was also   ignored by the coding theorists for another 

     14 years until the  late 1990s. 

 

 D.J. C.MacKay and R.M.Neal  rediscovered LDPC codes 

     in 1995 ( after the turbo codes were introduced ), and  

     generated great interest and activity on the subject. 

 

 Richardson and Urbanke  in 2001 demonstrated that by  

    using back-substitution , one can build encoders for most 

    LDPC  codes with complexity that grows almost  linearly in 

     block  length. 
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 The standard iterative decoding algorithm uses a two-pass 
message-passing algorithm , proposed by  Gallager in his  

    Ph.D. thesis. 

 The feature of LDPC codes to perform near the Shannon 
limit of a channel exists only for large block lengths .  

    For example,  there   have been simulations of irregular 

     codes that perform within 0.04  dB of the Shannon limit at  

     a bit error rate of 10-6  with a block  length of 107  

      (S. Chung et al. ) . 

 

 The LDPC codes have been adopted  in the second- 

     generation  digital video broadcasting (DVB-S2) via satellite, 

     Wireless LAN  ( IEEE 802.11n), Wireless MAN ( IEEE  

     802.16m), mobile broadband wireless access ( MBWA) 

     network ( IEEE  802.20) , and advanced  magnetic and 

     magneto-optic storage/recording systems. 
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8.2  LDPC Code and Tanner Graph 

 

 LDPC codes are linear block codes defined by a sparse 

parity – check matrix H . The set of valid  n-bit codewords  

    v  is defined   by     H. vT  =   0                               (8.1) 

    where  v = ( v0 , v1  , … , vn-1  ) 

 Tanner introduced an effective graphical representation for 

     LDPC codes. The parity-check matrix  H can be efficiently  

     represented a bipartite ( Tanner ) graph , as shown in 

     Fig.8.1 . 

    The graphs not only provide a complete  representation of the 

codes, they also  help to describe the decoding algorithm. 
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 In bipartite graphs , the nodes in these graphs  are 

separated into two distinct  types , and edges are only 

connecting nodes of two different types. These two types of 

nodes in Tanner graphs are  denoted as  variable-nodes 

( V- nodes ) and check-nodes ( C- nodes). 

 Fig. 1  is an example of  Tanner graph for a (8, 4 ) code . 

The corresponding parity-check matrix is given by  

                          

                          0 1 0 1 1 0 0 1 

            H =        1 1 1 0 0 1 0 0           

                          0 0 1 0 0 1 1 1 

                          1 0 0 1 1 0 1 0 
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Fig.8.1 

 

 

 

 

 

 

 

  

 

 

In this example ,  the parity-check equations are expressed by   

At  c1          v 2  + v 4  + v 5 +  v 8     = 0 

At  c2               v 1  + v2    + v3 +  v 6    = 0 

 At  c3               v3  + v6    + v7 +  v 8    = 0 

 At  c4             v 1 + v4  + v5+  v7      = 0 

 



10 10 

 This Tanner graph consists of  m  C- nodes ( the number of 
check bits) and  n   V- nodes ( the number of bits in a 
codeword). Check-node zi  is connected to variable node cj  

if the element hij   of H is  a 1 . 

     The check nodes correspond to the row of H. The edges in 
the Tanner graph  correspond to the 1s in H . 

    Cycle :  In a graph , a cycle is a path that starts from a  

                   node i  and ends in i . 

    Girth  : The girth of a graph is the smallest cycle in that  

                   graph. 

 

 Regular LDPC codes 

     A LDPC code is called regular if the weight wc of each  

     column of H is a constant and the weight  wr of each row 

     is also a constant , where wr = wc ( n/m ) .For the example in  

    Fig.1 , wc =2 , wr = 4    
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 M.G.Luby et al  in 1998 demonstrated that   LDPC  codes 

based on irregular graphs can substantially outperform 

similar codes based on regular graphs. 

 Complexity in iterative decoding has three parts :  

     (1) the complexity of the local computations 

     (2) the complexity of the interconnection ( i.e., the routing 

          of information )   

     (3) the number of times the local computation need to be    

           repeated, usually referred to as the number of iterations . 
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8.3  Construction of LDPC Codes 

 For large block sizes, LDPC codes are commonly  

    constructed by first studying the behavior of decoders. As 
the block-size tends to infinity, LDPC decoders can be  

    shown to have a noise threshold below which decoding is  

    reliably achieved, and above which decoding is not  

    achieved. The construction of a specific LDPC code after  

    this optimization falls into two main types of techniques: 

       (a) Pseudo-random techniques  

       (b) Combinatorial approaches  

       (c)  Finite geometry approach 

         ( Kou and Lin-Fossorier,” Low Density Parity Check Codes Based on Finite  

                Geometry,”  IEEE Trans. Inform. Theory, , pp.2711-36, Nov.2001) 
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• A random construction constructs  LDPC codes  by a  

    pseudo-random approach based on theoretical results. 

     For large block-size, a random construction gives good 
decoding performance.  

     In general, pseudo-random codes have complex encoders, 

    however pseudo-random codes with the best decoders also 

    can have simple encoders. Various constraints are often  

    applied to help the good properties expected at the  

    theoretical limit of infinite block size to occur at a finite  

    block size. 

• Combinatorial approaches can be used to optimize  

     properties of small block-size LDPC codes or create codes  

     with simple encoders. 

• One more way of constructing LDPC codes is to use finite 

     geometries. This method was proposed by Y. Kou et al. in  

     2001. 
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Encoding  of  Regular LDPC Codes 

 An (n ,k) LDPC code can be generated  by an (n-k ) x n  

parity-check matrix H . 

 The parity-check matrix  H may be  expressed as 

                       H = [ A1
T      A2

T   ] 

     were A1   is a k x (n-k) matrix , and  A2  is an (n-k)x (n-k) 

matrix. 

    Then the  corresponding generator matrix of the LDPC 

code is given by  

                       G = [ 1kxk   A1
 A2

-1  ]  
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8.4  Iterative Decoding of LDPC Codes 

8.4.1  Principle of Iterative  Decoding 
 Codes are constructed so that the relationship between  

     their bits is locally simple , admitting simple local decoding . 

     The local description of the codes are interconnected in a  

      complex ( e.g. random –like ) manner , introducing long-range  

     relationships between the bits . Relatively high global  

     description complexity is thereby  introduced  in the  

     interconnection between the simple local structures . 

 Iterative decoding proceeds by performing the simple local  

    decoding and then exchanging the results , passing messages  

     between locals across the  “ complex “ interconnection . 

     The locals repeat their simple decodings , taking into account  

     the new information provided to them from other locals.  

     Tanner graph can be used to represent this process.  Locals  

      are nodes in the graph , and interconnections are represented  

     as edges . 
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8.4.2  Iterative Decoding Algorithms 
 The class of algorithms used to decode LDPC codes are 

         collectively termed  message –passing algorithm , since their 

         operation depends passing of messages along the edges of  

         the Tanner graph describing the LDPC code 

 Each Tanner graph node works in isolation, having access  

        only to the messages on the edges connected to it  

 In message-passing decoders , messages are exchanged along  

       the edges of the graph, and computations are performed at   

       the nodes. Each message represents an estimate of the bit  

        associated with the edge carrying the message . Each variable 

        node in the decoder gets to see the bit that  arrived at the 

        receiver corresponding to the one that was transmitted from  

        the equivalent node at the transmitter. 

 The messages pass back and forth between the variable  

        nodes and check nodes iteratively  until  a result is obtained  

        (  or the process is halted ) . 



17 

 Two most  popular  message-passing algorithms are 

      (a) bit-flipping decoding  and  

       (b) belief-propagation ( or sum-product ) decoding . 

    

    In bit-flipping  decoding , the message are binary . A bit-

flipping algorithm can be viewed as  a hard-decision 

message-passing algorithm  for LDPC codes. 

    In belief-propagation decoding , the message are 

probabilities  ( or their log-likelihood ratio ) that represent 

a level of belief about the value of the codeword bits . 
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8.4.3  Bit-Flipping Decoding 
 

 For the bit-flipping algorithm , the mth c-node determines its  

    decision on the  ith V-node by  assuming that the nth bit has  

     been erased and choosing the value 1 or 0 that satisfies the  

     mth parity-check equation. The jth C-node thus determines  

     a  value for the nth  bit  that is completely independent of the  

     value for the nth bit just received by it. The C-node is said to 

     be creating extra, extrinsic , information about the nth  bit. 

 At the variable node vi  , all the extrinsic information about  

     a bit is compared with the information received from the  

     channel to determine the most likely bit value. 

 If the majority of the messages received by a variable node vi  

     are different from its received value , the variable node  

     changes ( flips ) its current value . 

 The process is repeated until all parity-check equations  are  

     satisfied ( or a maximum number of iterations has passed ). 
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 The iterative process can be described as follows.  

     Step 1    V-node  vi send a message to their  C- nodes  cj .   

                   In the first  round ,  vi only has the received bit  yi  . 

 

      Step 2    C-nodes cj  determine a response to every  connected  variable  

                      nodes . The response message contains the bit that  cj  believes 

                      to be the  correct one for this  V-node    vi , assuming that the 

                      other V-nodes connected to  cj  are correct. 

                      The LDPC decoder might find out  that the received bits are  

                      correct  and terminates the decoding if  all  parity-check  

                     equations are  fulfilled . 

 

      Step 3     Each V-node receives these responses from C-nodes and use  

                     this information along with the  received bit to find out that 

                     the originally received bit is correct or not .  

                        

      Step 4      go to Step 2. 
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Example 

In this example ,  the parity-check equations are expressed by   

At  c1          v 2  + v 4  + v 5 +  v 8     = 0 

At  c2               v 1  + v2    + v 3+  v 6   = 0 

 At  c3               v3  + v6    + v7 +  v 8    = 0 

 At  c4             v 1 + v4  + v5+  v7      = 0 
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The received codeword  is    1 1 0 1 0 1 0 1 

Message received and sent by the C-nodes in Step 2 are given 

in the  following table . 
 

 

Check nodes                      Received  /  Sent 

     c0                                 Received   v1  -->1  ,  v3  -->1  ,    v4 -->0  ,  v7  -->1 

                                   Sent            0 --> v1   , 0  --> v3   , 1 --> v4   , 0 --> v7  

                                    ---------------------------------------------------------- 

      c1                        Received   v0  -->1  ,  v1  -->1  ,    v2 -->0  ,  v5  -->1 

                                   Sent            0 --> v0  , 0  --> v1   , 1 --> v2   , 0 --> v5  

                                   ---------------------------------------------------------------------  

      c2                        Received   v2  -->0  ,  v5  -->1  ,    v6-->0  ,  v7-->1 

                                   Sent           0 --> v2  , 1  --> v5   , 0 --> v6 , 1 --> v7 

                                             ---------------------------------------------------------- 

      c3                      Received   v0  -->1  ,  v3  -->1  ,    v4 -->0  ,  v6 -->0 

                                   Sent        1 --> v0  , 1  --> v3  ,   0 --> v4  , 0 --> v6 

                                   --------------------------------------------------------------------- 
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In Step 3 of the decoding algorithm , each v-node has three   

 sources of information concerning its bit , the original  bit 

 received  and two suggestions from the check nodes.   

Majority vote is used to make decision , as show in the  

following table..  

 

        V-node     yi  received     Messages from check–node      Decision 

      v0                      1                    c1     0            c3 1                  1 

        v1                      1                   c1     0            c3 0                  0 

        v2                      0                    c1     1            c2  0                  0       

        v3                      1                    c1     0            c3 1                   1 

        v4                     0                     c0    1            c3 0                   0 

        v5                    1                    c1     0            c2 1                   1 

        v6                     0                     c2     0           c30                   0   

        v7                     1                     c0     1            c2 1                   1 
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    In this example, the second execution of Step 2 would 

terminate the decoding  process since  v1  has voted for 0 in the 

last step . This corrects the transmission error and all  check 

equations are now satisfied.   Note that a bit-flipping algorithm 

is the name given to hard decision message-passing algorithm 

for LDPC codes. 

 

 

8.4.4  Belief Propagation Algorithm 

 

 The  belief propagation  ( BP) algorithm , also known as Sum-

Product algorithm )  ,was presented in Gallager’s  work. The 

message  passed along the edges in the Tanner graph are 

probabilities , or beliefs . 
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 Before presenting the algorithm , some notations will be 
introduced  as follows. 

      (a) Conditional probability     pi =  p ( vi=1 ｜ yi)    ( 8.2 )  

      (b) qij is a message sent by the variable nodes vi to the  

            check  node cj .  

            Every message contains always the pair qij (0) and 

            qij (1)  which stands for the amount of belief that xi 

            is a “0” or  a  “1”  . 

      (c ) rji is a message ( extrinsic information ) sent by the  

             check node  cj  to the variable node  vi  .   

           Again , there are a  rji(0) and  a  rji (1)  to indicate the 

           current amount of belief  in that   yi  is  a  “0” or a “1” ,  

           respectively. 
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 SPA 

  At the beginning , all  variable nodes send their   qij  messages 

to C-nodes  .   Since no other information is available at this 
step ,  

                 qij(1)  =  pi   

       and    qij (0) = 1- pi   ,  

       

    Then the check nodes calculate their response messages  rjij   : 

                   rji(0) =  ½  +  ½   Π  ( 1- 2  qi’j (1) )             (8.3) 

                                                i’ ε Vj﹨i 

         and     rji(1)  = 1 - rji (0)                                          (8.4) 

 

      where  Vj﹨i   means all V-nodes except  vi.  . 

    Note that  rji(0) is basically the  probability   that there  

    is an even number of 1s among  Vj﹨i . 
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  Remarks :  Eq. (8.3)  uses the following result from Gallager . 

     Lemma : For a sequence of  K  independent binary digits ai   

       with an probability of pi    for ai  =1  , the probability that the 

     whole sequence contains an even number of 1’s  is  

 

              ½ + ½ Πi =1
K  ( 1 - 2 pi  ) 
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       Next ,the V-nodes update their response messages to the  

       check- nodes.  This is done  according to following  

       equations , 

 

               q ij(0) =  Kij ( 1- pi )   Π  rj’ i(0)  

                                                 j ’ ε Ci﹨j 
 

               q ij(1) =  Kij pi  Π  rj’ i (0) 

                                         j’ ε Ci﹨j 

       where  Ci﹨j means all  C-nodes except  cj  .  

      The constants   Kij are   chosen   to ensure that   

                 q ij(0) + q ij(1) = 1 

 

      Also , at this step V-nodes update the decision  vn  with  

       information from  every C-nodes .  

       If the estimated v satisfies Hv  =0 , then the algorithm  

       terminates. 
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    In practical computations ,  we perform the algorithm in 

log-domain . Denote that the APP log-likelihood  ratio is 
expressed by 

               Ri =  ln  [ p ( vi=1 ｜yi)  / p ( vi= 0 ｜y i)  ] 

 

                                             ln ε/ (1- ε)       if    y i = 0  

      (a) For BSC ,      Ri=  {                                                      

                                              ln (1- ε) /ε        if    yi  = 1   

       (b) For AWGN channel , 

                             Ri = (2 / σn
2 ) vi 

 In the log-domain , we can expressed the extrinsic  

     information from C- node   m  to V-node  n  as    

          Rji=  ln [rji(1) / rji(0)] = ln { [ ½   - ½  Π ( 1- 2  qi’j (1) ) ]  /      
                                                                 i’ ε V j﹨i 

                                               [½ + ½  Π ( 1- 2  qi’j (1) ) ]  
                                                                                         i’ ε V j﹨i 
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 By defining  a LLR  measure  Qi’j  as 

                   Q i’j =  ln  qi’j / (1-qi’j )                       (8. ) 

 

     and using the relationship   

                    tanh [ ½  ln (1-p)/p ] = 1-2p  , p< 1 . 

      Ri can be expressed as 

 

        Rji= ln {[ 1 -Π( 1- e-  Q i’j )/ ( 1+ e-  Q i’j ) ]      /  
                                          i’ ε Vj﹨i 

                       [1 +Π (1- e- Q i’j )/ ( 1+ e- Q i’j )] } 

                            i’ ε V j﹨i  

                      = ln { [ 1 -Π tanh (Qi’j /2) ]  /  
                                            i’ ε Vj﹨i 

                        [1 +Π tanh (Qi’j /2)  }                          (8. ) 

                              i’ ε Vj﹨i  
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      Alternatively , using the relationship  

             2 tanh -1p  =  ln (1+p)/ (1-p) ,  

       the extrinsic information can be expressed as 

           Rji = - 2  tanh-1 Πtanh (Qi’j / 2)                       (8. ) 

                                   i’ ε Vj﹨i 

  Each variable node has access to the  input  LLR , Ri , and  

      to the LLR from every connected check node . 

      The total LLR of the  ith bit is the sum of these LLRs :  

              Li  = R i+ Σj   Rji 

     

    The message sent  from the ith  V-node to the jth C-node is  

     the sum of   Li  without the component  Rji   just received  

     from the j-th  C-node : 

              Qij  =  Σ  Rj’i     +  Ri 

                                      
j’ ε Ci﹨j  
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Summry : Decoding  Procedures 

 Step 0     (initial condition ) 

     Initially , the inputs to the decoder are the  log likelihood  

     ratios for the a priori message probabilities from each  

     channel . That is, 

      Rji = Ri                          j =1,2,..,m             i = 1,2,…, n 

      Qij  = ln [ pi /  (1- pi) ] 

 

Step 1  

     Compute                                              

      Rji= ln { [ 1 - Π tanh (Qi’j /2) ]  /  
                                          i’ ε Vj﹨i 

                        [1 +Π tanh (Qi’j /2)  }                              (8. ) 

                              i’ ε Vj﹨i  

          j =1,2,..,m             i = 1,2,…, n 
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   Step 2 

       Compute 

             Li =  Σj  Rji     +  Ri 

                                      
 

                    vi ˆ  =  1       Li ≧ 0 

                        0       Li <  0 

     Step 3  

       Check if   H cT   =  0   or  I  = Imax 

       If not , go to next step . 

    Step 4 

       Compute 

       Qij =  Σ  Rj’i     +  Ri 

                      
j’ ε Ci﹨j 

        and  go to Step 1 and repeat the procedure. 
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Example: ( Johnson , pp.65-67 ) 

The LDPC code  is used to  encode a message sequence , 

The codeword from the encoder output  is 

        c = [ 0 0 1 0 1 1] 

The vector c  is sent through a BSC with crossover probability ε= 0.2 ,  

and the received signal is  

         y  = [ 1 0 1 0 1 1 ] 

                                            ln ε/ (1- ε)       if    yi = 0  

      For BSC       Ri=  {                                                      

                                              ln (1- ε) / ε)      if    yi = 1   

 

For this channel  ε= 0.2  

Thus,    ln ε/ (1- ε) = -1.3863     if    yi = 0  

              ln (1- ε) / ε) = 1.3863    if    yi = 1   

and  then    R  =  [1.3863    -1.3863  1.3863   - 1.3863   1.3863    1.3863  ] 
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                                1 1 0 1 0 0 

            H = (      0 1 1 0 1 0      )     

                          1 0 0 0 1 1  

                          0 0 1 1 0 1 
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  Decoding (Log-BP) 

 To begin the decoding we set the maximum number of iterations to 3 . 

 At initialization ,  Qij  =  Ri   

      The first bit is included in the first and third checks and so  Q11  and 

      Q13   are initialized to R1  .. 

                          Q11  = R1  =  1.3863      and      Q13  = R1  =  1.3863  

      Repeating this for the remaining bits gives : 

      For   i =2     Q21  = R2 =  - 1.3863    and     Q23  = R2  = - 1.3863  

      For   i =3    Q32  = R3 = 1.3863        and     Q34 = R3  =    1.3863  

      For   i = 4    Q41  = R4 =  - 1.3863    and     Q44  = R4 = - 1.3863  

      For   i =5    Q52  = R5=   1.3863        and     Q53 = R5 =    1.3863  

      For   i =6    Q63= R6=   1.3863        and      Q64= R6  =    1.3863  
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 Calculation of  extrinsic probabilities  for check-to-variable   message  

passing 

    The first  parity-check includes the first, second and fourth bits and so 

the extrinsic probability from the first check node to the first variable 

node depends on the probabilities of the second and fourth bits : 

                    R11=  ln { [ 1 - tanh (Q21 /2) tanh (Q41 /2) ]  /  

                                                [1+ tanh (Q21 /2) tanh (Q41 /2) ]  } 

                        = ln { [1- tanh (1.3863/2) tanh(1.3863/2)]  / 

                                [1+ tanh (1.3863/2) tanh(1.3863/2)] }  

                         =  ln { (1- 0.6 x 0.6 )/ (1 + 0.6x0.6) } 

                          =  - 0.7538 

      Similarly , R12 =  ln { [ 1 - tanh (Q11 /2) tanh (Q41 /2) ]  /  

                                                [1+ tanh (Q11 /2) tanh (Q41 /2) ]  } 

                               =  0.7538 

                         R14 =  ln { [ 1 - tanh (Q11 /2) tanh (Q21 /2) ]  /  

                                                   [1+ tanh (Q11 /2) tanh (Q21 /2) ]  } 

                               =  0.7538 
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    Next, the second  check node connects to the second , third  and fifth 

bits and so the extrinsic probabilities are : 

                 R22 =  ln { [ 1 - tanh (Q32/2) tanh (Q52 /2) ]  /  

                                                [1+ tanh (Q32 /2) tanh (Q52 /2) ]  } 

                           = - 0.7538 

                  R23 =  ln { [ 1 - tanh (Q22/2) tanh (Q52 /2) ]  /  

                                                [1+ tanh (Q22 /2) tanh (Q52 /2) ]  } 

                           =   0.7538 

                  R25 =  ln { [ 1 - tanh (Q22/2) tanh (Q32 /2) ]  /  

                                                [1+ tanh (Q22 /2) tanh (Q32 /2) ]  } 

                           =   0.7538 

     Repeating for all check , we obtain : 

                  R31 =  - 0.7538        R35 =  - 0.7538               R36 = -  0.7538 

                  R43 = 0.7538        R44 =  - 0.7538               R46 =  0.7538 
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 Check for a valid codeword :  

      calculating  the LLR  for each bit, making a hard-decision  , and 
checking the syndromes . 

       The  total LLR for the first bit  , L1   ,  includes the extrinsic LLRs 
from  the first and  third check bits  and an intrinsic LLR from the 
channel  :  

                L1    = R1 + R11  + R31  = 1.3863 - 0.7538 - 0.7538  =  - 0.1213 

      Similarly , the total LLRs of other bits  are 

               L2    = R2 + R21  + R22 =  -1.3863 

               L3   = R3 + R23  + R4 3=  2.8938 

               L4   = R4 + R14 + R44 =  -1.3863 

               L5   = R5 + R25 + R35=  1.3863 

               L6  = R6 + R36 + R46  =  1.3863  

      The estimated codeword is then given by 

              vˆ  =  ( 001011 ) 

      and the syndrome is               

               s = ( vˆ )T H =   ( 0000)  

      Thus , vˆ  =  ( 001011 )  is the decode word. 
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Appendix :LDPC Code Encoder  ( IEEE 802.11n) 

• For each of the three available codeword block lengths, the 

LDPC encoder supports rate 1/2, 2/3, 3/4 and 4/5 encoding. 

The LDPC encoder is systematic, which means it encodes an 

information block, c=(i0, i1, ……, ik-l) , of size k, into a 

codeword, c, of size n, c=(i0, i1, ……, i(k-l), p0, p1,……,  

         p (n – k - 1) ), by adding (n-k ) parity bits obtained so that H*cT=0,  

         where H is the parity-check matrix. 



41 

– Parity Check Matrices 

• Each of the parity-check matrices can be partitioned into 

square sub-blocks (sub-matrices) of size Z × Z. These sub-

matrices are either cyclic-permutation of the identity matrix or 

null sub-matrices. 

• The cyclic-permutation matrix Pi  is obtained from the Z × Z 

identity matrix by cyclically shifting the columns to the right 

by  i elements. The matrix P0 is the Z × Z  identity matrix. 

• The parity check matrices for each kind of code length and 

code rate are shown below . 

• The - entry means a null ( all zero ) block , 

• The 0 entry means an identity matrix 
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• Table 1   Parity check matrix for codeword block length  

      n= 648   bits, sub-block size is Z =27 bits . Code rate R = 1/2 

0 0 0 0 0 1 0

22 0 17 0 0 12 0 0

6 0 10 24 0 0 0

2 0 20 25 0 0 0

23 3 0 9 11 0 0

24 23 1 17 3 10 0 0

25 8 7 18 0 0 0

13 24 0 8 6

                

               

                

                

                

               

                

          0 0

7 20 16 22 10 23 0 0

11 19 13 3 17 0 0

25 8 13 18 14 9 0 0

3 16 2 25 5 1 0
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• Table 2  Parity check matrix for codeword block length n=1944 

bits, sub-block size is  Z=81 bits.  Code rate R = ½  

 

 

 

01165127606124

00123557562

0097707045

003230521464

002772573865

0005256797969

008504280

002822662040

00353535362

001456372430

007550283

017950115057
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Appendix : Min-Sum Algorithm 

 The sum-product algorithm can be modified to reduce the 
implementation complexity of the decoder. This can be 
done by altering the equation 

             Rji = - 2  tanh-1 Π   tanh (Qi’j / 2) 

                                     i ’ ε Vj﹨i 

       in such a way as to replace the product term by sum.  

  For simplicity  , we will write 

               Π  ≡ Π 

               i’        i’ ε Vj﹨i 

      in the following presentations. 

    First , Qi’j  can be factored as follows :  

              Mi’j = αi’jβi’j  

    where  αi’j = sign Qi’j     ,   βi’j = ｜ Qi’j ｜ 
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     Thus we have that 

             Π   tanh (Qi’j / 2 ) = Π αi’j   Π tanh (βi’j /  2 ) 

              i’                                                   n’                  i’ 

          and then 

              Rji = - 2  tanh-1 ( Π αi’j  Π tanh (βi’j /  2 ) 
                                                               i’             i’ 

                               =- 2  ( Π αmn’ ) tanh-1 Π tanh (βmn’ /  2 ) 
                                               i’                                   i’ 

                    = - 2 (Π αmn’ )  tanh-1 (  log-1 log )Π tanh (βmn’ /  2 )  
                                           i’                                                                   i’  

               Next , we define  

                 ψ(x) = -ln tanh(x/2) = ln[( ex+1)/ ( ex-1)] 

 

         and note that ψ (ψ(x)) = ln[( eψ(x)+1)/ (eψ(x) -1)]  =  x 

                  ψ -1 (x) = ψ(x)    for   x> 0 

         Finally, we obtain 

               Rji= - (Π αi’j ) ψ(Σi’ ψ(βi’j ) )                        
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 The product of the signs can be calculated by using modulo-2  

addition of the hard decisions on each  Qi’j  , while the function  

ψ can be implemented easily using a  lookup table.  

 Since the term corresponding to the smallest Qi’j ’  dominates 

the product term and so the product can be approximated by a 

minimum :       Rji= - (Πsign Qi’j )  min ｜ Qi’j  

                                           i’ 

                                                                    

                 

 


