
1

 Chapter 8

 Low-Density Parity- Check Codes

8.1 Introduction

8.2 LDPC Code and Tanner Graph

8.3 Construction of LDPC Codes

8.4 Iterative Decoding of LDPC Codes

 8.4.1 Principle of Iterative Decoding

 8.4.2 Iterative Decoding Algorithms

 8.4.3 Bit-Flipping Decoding

 8.4.4 Belief Propagation Algorithm

2

Major References

1. S. J . Johnson ,Iterative Error Correction, Cambridge University Press,

2010

2. Bernhard M.J. Leiner, “ LDPC Codes – a brief Tutorial , April, 2005 (can be

downloaded from Google)

3 3

8.1 Introduction
 LDPC codes were first discovered by R.G. Gallager in 1962.

 These codes have performance exceeding , in some cases,

that of turbo codes with iterative decoding algorithms

which are easy to implement, and are also parallelizable in

hardware.

 However, LDPC codes have a significantly higher encode

 complexity than the turbo codes. Also, decoding of LDPC

codes may require many more iterations than turbo

decoding which means longer latency.

4

 Gallager’s remarkable discovery was mostly ignored by

 communications community researchers for almost 20
years.

 In 1981 , R. Tanner presented a new interpretation of the

 LDPC codes from a graphical point of view. Tanner’s

 work was also ignored by the coding theorists for another

 14 years until the late 1990s.

 D.J. C.MacKay and R.M.Neal rediscovered LDPC codes

 in 1995 (after the turbo codes were introduced), and

 generated great interest and activity on the subject.

 Richardson and Urbanke in 2001 demonstrated that by

 using back-substitution , one can build encoders for most

 LDPC codes with complexity that grows almost linearly in

 block length.

5 5

 The standard iterative decoding algorithm uses a two-pass
message-passing algorithm , proposed by Gallager in his

 Ph.D. thesis.

 The feature of LDPC codes to perform near the Shannon
limit of a channel exists only for large block lengths .

 For example, there have been simulations of irregular

 codes that perform within 0.04 dB of the Shannon limit at

 a bit error rate of 10-6 with a block length of 107

 (S. Chung et al.) .

 The LDPC codes have been adopted in the second-

 generation digital video broadcasting (DVB-S2) via satellite,

 Wireless LAN (IEEE 802.11n), Wireless MAN (IEEE

 802.16m), mobile broadband wireless access (MBWA)

 network (IEEE 802.20) , and advanced magnetic and

 magneto-optic storage/recording systems.

6

7 7

8.2 LDPC Code and Tanner Graph

 LDPC codes are linear block codes defined by a sparse

parity – check matrix H . The set of valid n-bit codewords

 v is defined by H. vT = 0 (8.1)

 where v = (v0 , v1 , … , vn-1)

 Tanner introduced an effective graphical representation for

 LDPC codes. The parity-check matrix H can be efficiently

 represented a bipartite (Tanner) graph , as shown in

 Fig.8.1 .

 The graphs not only provide a complete representation of the

codes, they also help to describe the decoding algorithm.

8 8

 In bipartite graphs , the nodes in these graphs are

separated into two distinct types , and edges are only

connecting nodes of two different types. These two types of

nodes in Tanner graphs are denoted as variable-nodes

(V- nodes) and check-nodes (C- nodes).

 Fig. 1 is an example of Tanner graph for a (8, 4) code .

The corresponding parity-check matrix is given by

 0 1 0 1 1 0 0 1

 H = 1 1 1 0 0 1 0 0

 0 0 1 0 0 1 1 1

 1 0 0 1 1 0 1 0

9 9

Fig.8.1

In this example , the parity-check equations are expressed by

At c1 v 2 + v 4 + v 5 + v 8 = 0

At c2 v 1 + v2 + v3 + v 6 = 0

 At c3 v3 + v6 + v7 + v 8 = 0

 At c4 v 1 + v4 + v5+ v7 = 0

10 10

 This Tanner graph consists of m C- nodes (the number of
check bits) and n V- nodes (the number of bits in a
codeword). Check-node zi is connected to variable node cj

if the element hij of H is a 1 .

 The check nodes correspond to the row of H. The edges in
the Tanner graph correspond to the 1s in H .

 Cycle : In a graph , a cycle is a path that starts from a

 node i and ends in i .

 Girth : The girth of a graph is the smallest cycle in that

 graph.

 Regular LDPC codes

 A LDPC code is called regular if the weight wc of each

 column of H is a constant and the weight wr of each row

 is also a constant , where wr = wc (n/m) .For the example in

 Fig.1 , wc =2 , wr = 4

11 11

 M.G.Luby et al in 1998 demonstrated that LDPC codes

based on irregular graphs can substantially outperform

similar codes based on regular graphs.

 Complexity in iterative decoding has three parts :

 (1) the complexity of the local computations

 (2) the complexity of the interconnection (i.e., the routing

 of information)

 (3) the number of times the local computation need to be

 repeated, usually referred to as the number of iterations .

12 12

8.3 Construction of LDPC Codes

 For large block sizes, LDPC codes are commonly

 constructed by first studying the behavior of decoders. As
the block-size tends to infinity, LDPC decoders can be

 shown to have a noise threshold below which decoding is

 reliably achieved, and above which decoding is not

 achieved. The construction of a specific LDPC code after

 this optimization falls into two main types of techniques:

 (a) Pseudo-random techniques

 (b) Combinatorial approaches

 (c) Finite geometry approach

 (Kou and Lin-Fossorier,” Low Density Parity Check Codes Based on Finite

 Geometry,” IEEE Trans. Inform. Theory, , pp.2711-36, Nov.2001)

13 13

• A random construction constructs LDPC codes by a

 pseudo-random approach based on theoretical results.

 For large block-size, a random construction gives good
decoding performance.

 In general, pseudo-random codes have complex encoders,

 however pseudo-random codes with the best decoders also

 can have simple encoders. Various constraints are often

 applied to help the good properties expected at the

 theoretical limit of infinite block size to occur at a finite

 block size.

• Combinatorial approaches can be used to optimize

 properties of small block-size LDPC codes or create codes

 with simple encoders.

• One more way of constructing LDPC codes is to use finite

 geometries. This method was proposed by Y. Kou et al. in

 2001.

14

Encoding of Regular LDPC Codes

 An (n ,k) LDPC code can be generated by an (n-k) x n

parity-check matrix H .

 The parity-check matrix H may be expressed as

 H = [A1
T A2

T]

 were A1 is a k x (n-k) matrix , and A2 is an (n-k)x (n-k)

matrix.

 Then the corresponding generator matrix of the LDPC

code is given by

 G = [1kxk A1
 A2

-1]

15 15

8.4 Iterative Decoding of LDPC Codes

8.4.1 Principle of Iterative Decoding
 Codes are constructed so that the relationship between

 their bits is locally simple , admitting simple local decoding .

 The local description of the codes are interconnected in a

 complex (e.g. random –like) manner , introducing long-range

 relationships between the bits . Relatively high global

 description complexity is thereby introduced in the

 interconnection between the simple local structures .

 Iterative decoding proceeds by performing the simple local

 decoding and then exchanging the results , passing messages

 between locals across the “ complex “ interconnection .

 The locals repeat their simple decodings , taking into account

 the new information provided to them from other locals.

 Tanner graph can be used to represent this process. Locals

 are nodes in the graph , and interconnections are represented

 as edges .

16 16

8.4.2 Iterative Decoding Algorithms
 The class of algorithms used to decode LDPC codes are

 collectively termed message –passing algorithm , since their

 operation depends passing of messages along the edges of

 the Tanner graph describing the LDPC code

 Each Tanner graph node works in isolation, having access

 only to the messages on the edges connected to it

 In message-passing decoders , messages are exchanged along

 the edges of the graph, and computations are performed at

 the nodes. Each message represents an estimate of the bit

 associated with the edge carrying the message . Each variable

 node in the decoder gets to see the bit that arrived at the

 receiver corresponding to the one that was transmitted from

 the equivalent node at the transmitter.

 The messages pass back and forth between the variable

 nodes and check nodes iteratively until a result is obtained

 (or the process is halted) .

17

 Two most popular message-passing algorithms are

 (a) bit-flipping decoding and

 (b) belief-propagation (or sum-product) decoding .

 In bit-flipping decoding , the message are binary . A bit-

flipping algorithm can be viewed as a hard-decision

message-passing algorithm for LDPC codes.

 In belief-propagation decoding , the message are

probabilities (or their log-likelihood ratio) that represent

a level of belief about the value of the codeword bits .

18

8.4.3 Bit-Flipping Decoding

 For the bit-flipping algorithm , the mth c-node determines its

 decision on the ith V-node by assuming that the nth bit has

 been erased and choosing the value 1 or 0 that satisfies the

 mth parity-check equation. The jth C-node thus determines

 a value for the nth bit that is completely independent of the

 value for the nth bit just received by it. The C-node is said to

 be creating extra, extrinsic , information about the nth bit.

 At the variable node vi , all the extrinsic information about

 a bit is compared with the information received from the

 channel to determine the most likely bit value.

 If the majority of the messages received by a variable node vi

 are different from its received value , the variable node

 changes (flips) its current value .

 The process is repeated until all parity-check equations are

 satisfied (or a maximum number of iterations has passed).

19

 The iterative process can be described as follows.

 Step 1 V-node vi send a message to their C- nodes cj .

 In the first round , vi only has the received bit yi .

 Step 2 C-nodes cj determine a response to every connected variable

 nodes . The response message contains the bit that cj believes

 to be the correct one for this V-node vi , assuming that the

 other V-nodes connected to cj are correct.

 The LDPC decoder might find out that the received bits are

 correct and terminates the decoding if all parity-check

 equations are fulfilled .

 Step 3 Each V-node receives these responses from C-nodes and use

 this information along with the received bit to find out that

 the originally received bit is correct or not .

 Step 4 go to Step 2.

20

Example

In this example , the parity-check equations are expressed by

At c1 v 2 + v 4 + v 5 + v 8 = 0

At c2 v 1 + v2 + v 3+ v 6 = 0

 At c3 v3 + v6 + v7 + v 8 = 0

 At c4 v 1 + v4 + v5+ v7 = 0

21

The received codeword is 1 1 0 1 0 1 0 1

Message received and sent by the C-nodes in Step 2 are given

in the following table .

Check nodes Received / Sent

 c0 Received v1 -->1 , v3 -->1 , v4 -->0 , v7 -->1

 Sent 0 --> v1 , 0 --> v3 , 1 --> v4 , 0 --> v7

 --

 c1 Received v0 -->1 , v1 -->1 , v2 -->0 , v5 -->1

 Sent 0 --> v0 , 0 --> v1 , 1 --> v2 , 0 --> v5

 c2 Received v2 -->0 , v5 -->1 , v6-->0 , v7-->1

 Sent 0 --> v2 , 1 --> v5 , 0 --> v6 , 1 --> v7

 --

 c3 Received v0 -->1 , v3 -->1 , v4 -->0 , v6 -->0

 Sent 1 --> v0 , 1 --> v3 , 0 --> v4 , 0 --> v6

22

In Step 3 of the decoding algorithm , each v-node has three

 sources of information concerning its bit , the original bit

 received and two suggestions from the check nodes.

Majority vote is used to make decision , as show in the

following table..

 V-node yi received Messages from check–node Decision

 v0 1 c1 0 c3 1 1

 v1 1 c1 0 c3 0 0

 v2 0 c1 1 c2 0 0

 v3 1 c1 0 c3 1 1

 v4 0 c0 1 c3 0 0

 v5 1 c1 0 c2 1 1

 v6 0 c2 0 c30 0

 v7 1 c0 1 c2 1 1

23

 In this example, the second execution of Step 2 would

terminate the decoding process since v1 has voted for 0 in the

last step . This corrects the transmission error and all check

equations are now satisfied. Note that a bit-flipping algorithm

is the name given to hard decision message-passing algorithm

for LDPC codes.

8.4.4 Belief Propagation Algorithm

 The belief propagation (BP) algorithm , also known as Sum-

Product algorithm) ,was presented in Gallager’s work. The

message passed along the edges in the Tanner graph are

probabilities , or beliefs .

24

 Before presenting the algorithm , some notations will be
introduced as follows.

 (a) Conditional probability pi = p (vi=1 ｜ yi) (8.2)

 (b) qij is a message sent by the variable nodes vi to the

 check node cj .

 Every message contains always the pair qij (0) and

 qij (1) which stands for the amount of belief that xi

 is a “0” or a “1” .

 (c) rji is a message (extrinsic information) sent by the

 check node cj to the variable node vi .

 Again , there are a rji(0) and a rji (1) to indicate the

 current amount of belief in that yi is a “0” or a “1” ,

 respectively.

25

 SPA

 At the beginning , all variable nodes send their qij messages

to C-nodes . Since no other information is available at this
step ,

 qij(1) = pi

 and qij (0) = 1- pi ,

 Then the check nodes calculate their response messages rjij :

 rji(0) = ½ + ½ Π (1- 2 qi’j (1)) (8.3)

 i’ ε Vj﹨i

 and rji(1) = 1 - rji (0) (8.4)

 where Vj﹨i means all V-nodes except vi. .

 Note that rji(0) is basically the probability that there

 is an even number of 1s among Vj﹨i .

26

 Remarks : Eq. (8.3) uses the following result from Gallager .

 Lemma : For a sequence of K independent binary digits ai

 with an probability of pi for ai =1 , the probability that the

 whole sequence contains an even number of 1’s is

 ½ + ½ Πi =1
K (1 - 2 pi)

27

 Next ,the V-nodes update their response messages to the

 check- nodes. This is done according to following

 equations ,

 q ij(0) = Kij (1- pi) Π rj’ i(0)

 j ’ ε Ci﹨j

 q ij(1) = Kij pi Π rj’ i (0)

 j’ ε Ci﹨j

 where Ci﹨j means all C-nodes except cj .

 The constants Kij are chosen to ensure that

 q ij(0) + q ij(1) = 1

 Also , at this step V-nodes update the decision vn with

 information from every C-nodes .

 If the estimated v satisfies Hv =0 , then the algorithm

 terminates.

28

 In practical computations , we perform the algorithm in

log-domain . Denote that the APP log-likelihood ratio is
expressed by

 Ri = ln [p (vi=1 ｜yi) / p (vi= 0 ｜y i)]

 ln ε/ (1- ε) if y i = 0

 (a) For BSC , Ri= {

 ln (1- ε) /ε if yi = 1

 (b) For AWGN channel ,

 Ri = (2 / σn
2) vi

 In the log-domain , we can expressed the extrinsic

 information from C- node m to V-node n as

 Rji= ln [rji(1) / rji(0)] = ln { [½ - ½ Π (1- 2 qi’j (1))] /
 i’ ε V j﹨i

 [½ + ½ Π (1- 2 qi’j (1))]
 i’ ε V j﹨i

29

 By defining a LLR measure Qi’j as

 Q i’j = ln qi’j / (1-qi’j) (8.)

 and using the relationship

 tanh [½ ln (1-p)/p] = 1-2p , p< 1 .

 Ri can be expressed as

 Rji= ln {[1 -Π(1- e- Q i’j)/ (1+ e- Q i’j)] /
 i’ ε Vj﹨i

 [1 +Π (1- e- Q i’j)/ (1+ e- Q i’j)] }

 i’ ε V j﹨i

 = ln { [1 -Π tanh (Qi’j /2)] /
 i’ ε Vj﹨i

 [1 +Π tanh (Qi’j /2) } (8.)

 i’ ε Vj﹨i

30

 Alternatively , using the relationship

 2 tanh -1p = ln (1+p)/ (1-p) ,

 the extrinsic information can be expressed as

 Rji = - 2 tanh-1 Πtanh (Qi’j / 2) (8.)

 i’ ε Vj﹨i

 Each variable node has access to the input LLR , Ri , and

 to the LLR from every connected check node .

 The total LLR of the ith bit is the sum of these LLRs :

 Li = R i+ Σj Rji

 The message sent from the ith V-node to the jth C-node is

 the sum of Li without the component Rji just received

 from the j-th C-node :

 Qij = Σ Rj’i + Ri

j’ ε Ci﹨j

31 31

Summry : Decoding Procedures

 Step 0 (initial condition)

 Initially , the inputs to the decoder are the log likelihood

 ratios for the a priori message probabilities from each

 channel . That is,

 Rji = Ri j =1,2,..,m i = 1,2,…, n

 Qij = ln [pi / (1- pi)]

Step 1

 Compute

 Rji= ln { [1 - Π tanh (Qi’j /2)] /
 i’ ε Vj﹨i

 [1 +Π tanh (Qi’j /2) } (8.)

 i’ ε Vj﹨i

 j =1,2,..,m i = 1,2,…, n

32

 Step 2

 Compute

 Li = Σj Rji + Ri

 vi ˆ = 1 Li ≧ 0

 0 Li < 0

 Step 3

 Check if H cT = 0 or I = Imax

 If not , go to next step .

 Step 4

 Compute

 Qij = Σ Rj’i + Ri

j’ ε Ci﹨j

 and go to Step 1 and repeat the procedure.

33

Example: (Johnson , pp.65-67)

The LDPC code is used to encode a message sequence ,

The codeword from the encoder output is

 c = [0 0 1 0 1 1]

The vector c is sent through a BSC with crossover probability ε= 0.2 ,

and the received signal is

 y = [1 0 1 0 1 1]

 ln ε/ (1- ε) if yi = 0

 For BSC Ri= {

 ln (1- ε) / ε) if yi = 1

For this channel ε= 0.2

Thus, ln ε/ (1- ε) = -1.3863 if yi = 0

 ln (1- ε) / ε) = 1.3863 if yi = 1

and then R = [1.3863 -1.3863 1.3863 - 1.3863 1.3863 1.3863]

34

 1 1 0 1 0 0

 H = (0 1 1 0 1 0)

 1 0 0 0 1 1

 0 0 1 1 0 1

35

 Decoding (Log-BP)

 To begin the decoding we set the maximum number of iterations to 3 .

 At initialization , Qij = Ri

 The first bit is included in the first and third checks and so Q11 and

 Q13 are initialized to R1 ..

 Q11 = R1 = 1.3863 and Q13 = R1 = 1.3863

 Repeating this for the remaining bits gives :

 For i =2 Q21 = R2 = - 1.3863 and Q23 = R2 = - 1.3863

 For i =3 Q32 = R3 = 1.3863 and Q34 = R3 = 1.3863

 For i = 4 Q41 = R4 = - 1.3863 and Q44 = R4 = - 1.3863

 For i =5 Q52 = R5= 1.3863 and Q53 = R5 = 1.3863

 For i =6 Q63= R6= 1.3863 and Q64= R6 = 1.3863

36

 Calculation of extrinsic probabilities for check-to-variable message

passing

 The first parity-check includes the first, second and fourth bits and so

the extrinsic probability from the first check node to the first variable

node depends on the probabilities of the second and fourth bits :

 R11= ln { [1 - tanh (Q21 /2) tanh (Q41 /2)] /

 [1+ tanh (Q21 /2) tanh (Q41 /2)] }

 = ln { [1- tanh (1.3863/2) tanh(1.3863/2)] /

 [1+ tanh (1.3863/2) tanh(1.3863/2)] }

 = ln { (1- 0.6 x 0.6)/ (1 + 0.6x0.6) }

 = - 0.7538

 Similarly , R12 = ln { [1 - tanh (Q11 /2) tanh (Q41 /2)] /

 [1+ tanh (Q11 /2) tanh (Q41 /2)] }

 = 0.7538

 R14 = ln { [1 - tanh (Q11 /2) tanh (Q21 /2)] /

 [1+ tanh (Q11 /2) tanh (Q21 /2)] }

 = 0.7538

37

 Next, the second check node connects to the second , third and fifth

bits and so the extrinsic probabilities are :

 R22 = ln { [1 - tanh (Q32/2) tanh (Q52 /2)] /

 [1+ tanh (Q32 /2) tanh (Q52 /2)] }

 = - 0.7538

 R23 = ln { [1 - tanh (Q22/2) tanh (Q52 /2)] /

 [1+ tanh (Q22 /2) tanh (Q52 /2)] }

 = 0.7538

 R25 = ln { [1 - tanh (Q22/2) tanh (Q32 /2)] /

 [1+ tanh (Q22 /2) tanh (Q32 /2)] }

 = 0.7538

 Repeating for all check , we obtain :

 R31 = - 0.7538 R35 = - 0.7538 R36 = - 0.7538

 R43 = 0.7538 R44 = - 0.7538 R46 = 0.7538

38

 Check for a valid codeword :

 calculating the LLR for each bit, making a hard-decision , and
checking the syndromes .

 The total LLR for the first bit , L1 , includes the extrinsic LLRs
from the first and third check bits and an intrinsic LLR from the
channel :

 L1 = R1 + R11 + R31 = 1.3863 - 0.7538 - 0.7538 = - 0.1213

 Similarly , the total LLRs of other bits are

 L2 = R2 + R21 + R22 = -1.3863

 L3 = R3 + R23 + R4 3= 2.8938

 L4 = R4 + R14 + R44 = -1.3863

 L5 = R5 + R25 + R35= 1.3863

 L6 = R6 + R36 + R46 = 1.3863

 The estimated codeword is then given by

 vˆ = (001011)

 and the syndrome is

 s = (vˆ)T H = (0000)

 Thus , vˆ = (001011) is the decode word.

39

40

Appendix :LDPC Code Encoder (IEEE 802.11n)

• For each of the three available codeword block lengths, the

LDPC encoder supports rate 1/2, 2/3, 3/4 and 4/5 encoding.

The LDPC encoder is systematic, which means it encodes an

information block, c=(i0, i1, ……, ik-l) , of size k, into a

codeword, c, of size n, c=(i0, i1, ……, i(k-l), p0, p1,……,

 p (n – k - 1)), by adding (n-k) parity bits obtained so that H*cT=0,

 where H is the parity-check matrix.

41

– Parity Check Matrices

• Each of the parity-check matrices can be partitioned into

square sub-blocks (sub-matrices) of size Z × Z. These sub-

matrices are either cyclic-permutation of the identity matrix or

null sub-matrices.

• The cyclic-permutation matrix Pi is obtained from the Z × Z

identity matrix by cyclically shifting the columns to the right

by i elements. The matrix P0 is the Z × Z identity matrix.

• The parity check matrices for each kind of code length and

code rate are shown below .

• The - entry means a null (all zero) block ,

• The 0 entry means an identity matrix

42

• Table 1 Parity check matrix for codeword block length

 n= 648 bits, sub-block size is Z =27 bits . Code rate R = 1/2

0 0 0 0 0 1 0

22 0 17 0 0 12 0 0

6 0 10 24 0 0 0

2 0 20 25 0 0 0

23 3 0 9 11 0 0

24 23 1 17 3 10 0 0

25 8 7 18 0 0 0

13 24 0 8 6

 0 0

7 20 16 22 10 23 0 0

11 19 13 3 17 0 0

25 8 13 18 14 9 0 0

3 16 2 25 5 1 0

43

• Table 2 Parity check matrix for codeword block length n=1944

bits, sub-block size is Z=81 bits. Code rate R = ½

01165127606124

00123557562

0097707045

003230521464

002772573865

0005256797969

008504280

002822662040

00353535362

001456372430

007550283

017950115057

44

45 45

References

1. R.G. Gallager ,” Low Density Parity Check Codes,” IRE Trans. Inform. Theory , IT-8,

pp.21-28 , 1962 .

2. R.M. Tanner, “ A Recursive Approach to Low Complexity Codes ,” IEEE Trans. Inform.

Theory , IT -27 ,pp.533- 547 , Sep. 1981.

3. D.J.C. MacKay and R.M. Neal, “ Good Codes Based on Very Sparse Matrices , ”

 in “ Cryptograph and Coding” , 5th IMA Conf. 1995, C.Boyd , Ed. ,Springer ,1995 ,

 vol. 1025 , pp.100-111.

4. D.J.C. MacKay and R.M. Neal, “ Near Shannon Limit Performance of Low Density

 Parity Check Codes “, Electronics Lett. Mar.1997, vol.33, no.6, pp.457-458 .

5. T. J. Richardson and R. Urbanke , “ Efficient Encoding of Low-Density

 Parity- Check Codes ,” IEEE Trans. Inform. Theory , pp.638-656 , Feb. 2001 .

6. S.-Y.Chung , G.D. Forney , Jr. , T. J. Richardson and R. Urbanke ,”On the Design

 of Low-density Parity- Check Codes within 0.0045 dB of the Shannon Limit ,

 “ IEEE Commun. Lett. , vol.5 , Feb. 2001 , pp.58-60

7. T.J. Richardson and M. Amin Shokrollahi and Rüdiger L. Urbanke , “Design of

Capacity-Approaching Irregular Low-Density Parity-Check Codes, “ IEEE Trans.

Inform. Theory, 47(2), February 2001 , pp.673-680.

8. S. J . Johnson ,Iterative Error Correction, Cambridge University Press, 2010

46

Appendix : Min-Sum Algorithm

 The sum-product algorithm can be modified to reduce the
implementation complexity of the decoder. This can be
done by altering the equation

 Rji = - 2 tanh-1 Π tanh (Qi’j / 2)

 i ’ ε Vj﹨i

 in such a way as to replace the product term by sum.

 For simplicity , we will write

 Π ≡ Π

 i’ i’ ε Vj﹨i

 in the following presentations.

 First , Qi’j can be factored as follows :

 Mi’j = αi’jβi’j

 where αi’j = sign Qi’j , βi’j = ｜ Qi’j ｜

47

 Thus we have that

 Π tanh (Qi’j / 2) = Π αi’j Π tanh (βi’j / 2)

 i’ n’ i’

 and then

 Rji = - 2 tanh-1 (Π αi’j Π tanh (βi’j / 2)
 i’ i’

 =- 2 (Π αmn’) tanh-1 Π tanh (βmn’ / 2)
 i’ i’

 = - 2 (Π αmn’) tanh-1 (log-1 log)Π tanh (βmn’ / 2)
 i’ i’

 Next , we define

 ψ(x) = -ln tanh(x/2) = ln[(ex+1)/ (ex-1)]

 and note that ψ (ψ(x)) = ln[(eψ(x)+1)/ (eψ(x) -1)] = x

 ψ -1 (x) = ψ(x) for x> 0

 Finally, we obtain

 Rji= - (Π αi’j) ψ(Σi’ ψ(βi’j))

48

 The product of the signs can be calculated by using modulo-2

addition of the hard decisions on each Qi’j , while the function

ψ can be implemented easily using a lookup table.

 Since the term corresponding to the smallest Qi’j ’ dominates

the product term and so the product can be approximated by a

minimum : Rji= - (Πsign Qi’j) min ｜ Qi’j

 i’

