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2. 1  Random Variable
 A random variable X(A) represents the fundamental 

relationship between a random event A and a real 

number .  For notational convenience, we usually 

designate the random variable by X .

 The random variable may be discrete or continuous.

2.1.1  Probability Distribution Function
 The distribution function FX(x) of the random

variable X is given by

FX(x) = P( X≦ x )  (2.1)

where  P( X≦ x ) is the probability that the value taken by 

the random variable X is less than or equal to a real 

number x .

 FX(x) is also called the cumulative distribution function 

(CDF) .
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 The distribution function FX (x) has the following 

properties :

1.   0 ≦ FX (x) ≦ 1           2.  FX (x1 ) ≦ FX (x2 ) if  x1 ≦ x2

3.  FX (- ∞) = 0               4. FX (+ ∞) = 1

 The probability distribution function (PDF) of the random

variable X is defined as

pX (x) = d FX (x) / dx                                (2.2)

The probability of the event x1 ≦ X ≦ x2   equals

P (x1 ≦ X ≦ x2 )  = P( X≦ x2 ) - P( X≦ x1 ) 

= FX (x2) - FX (x1)

=     ∫ pX (x)dx               (2.3)           
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 The probability function has the following properties :

1.  pX (x) ≧ 0

2. ∫- ∞
∞ pX (x)dx =1

 In the following , for ease of notation , we often omit the 
subscript X and write the PDF  of a continuous random 
variable  X simply as  p(x) .

We  will use the designation  p (X= xi )  for the probability 
of a discrete random variable  X , where X can take  on 
discrete values only .

 Example 1.1 : Exponential Random Variable

P (X > x) =  e –λx                     x ≧ 0

The CDF of  X is   FX (x) = P (X ≦ x)  = 1- P (X > x)                

=  0                   x < 0

1- e -λx              x ≧ 0
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• Example 1.1.2 : Uniform Random Variable

p(x) =     1/ ( b-a)        a ≦ x ≦ b

0                      otherwise                                         (2.4)

Here we have  

E[X] =  (b-a) / 2

VAR [X] =  (b-a)2 /  12  

 Example 1.1.3 Gaussian Random Variable

p(x) =   1/ √(2πσ2 )   exp { - (x-m)2 / 2σ2  }                      (2.5)
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2.1.2  Statistical Averages

 The mean value mX of a random variable X is defined by 

mX = E[  X ] = ∫- ∞
∞ x pX (x) dx                          (2.6)

 The mean-square value of  X is given by

E[X2 ] = ∫- ∞
∞ x2 pX (x) dx (2.7)

 The variance  of   X is defined as

var (X) =  σX
2   = E[ (X- mX )2]

= ∫- ∞
∞ ( x – mX )2 pX (x) dx                     (2.8)

 The variance and the mean-square  are related by
σ

X
2   =  E[ X2 - 2 mX X  + mX

2 ]

=  E [X2 ] - mX
2 (2.9)       
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 Chebyshev’s Inequality

The variance  σX
2 of a random variable X is a measure of 

the spread  of the x values  about their mean . 

The Chebyshev inequality  states that the x-values tend to 

cluster about their  mean in the sense that the probability  

of a value not occurring in the near vicinity of the mean is 

small ; and it is the smaller the variance.

Pro [｜x-m｜≧ Δ ]   ≦ σ 2  / Δ2                                         (2.10)
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 Appendix

1. We have

Pro [｜x-m｜≧ Δ ]   ≦ σ 2  / Δ2

For Δ = k σ , then

Pro [｜x-m｜≧ k σ ]   ≦ 1 / k2

2. Schwarz Inequality 

｜ ( h, g ) ｜ = ∥ h ∥ ∥ g ∥

3. Chi-squared density function

Foe a gaussian distribution  function 

f X(x)   =   1/ √(2πσ2 )   exp { - x2 / 2σ2  }

define  Y= X2  

The pdf of Y is given by 

f Y(y)   =   1/ √(2πyσ2 )   exp { - y2 / 2σ2  }.
This  is a Chi-squared distribution function.            
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2.1.3 Conditional Probability and Bayes’  Rule
 Consider  a combined experiment in which a joint event occurs 

with joint probability P (A, B ) . 

 Suppose that the event B has occurred and we wish to determine 
the probability of occurrence of the event A . 

This is called the conditional probability of the event A given the 
occurrence  of the event B and is defined as

P(A｜B ) =  P(A,B ) / P(B)                               (2.11)

provided that P(B) > 0 . 

In a similar manner , the probability of  the event B conditioned

on the occurrence  of the event A is defined as

P(B｜A ) =  P(A,B ) / P(A)                                (2.12)

provided that P(A) > 0 . 

These relations may also expressed as 

P(A,B) = P(A｜B ) P(B) = P(B｜A ) P(A) (2.13)
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2.1.4  Conditional Probability Density

 A pair of two different random variables ,

X = (X1 , X2 ) ,  may be thought  of as a vector-valued random

variable.  Its statistical description requires knowledge of the 
joint probability density p (x 1 , x2 ) . .

 A quantity that provides  a measure for the degree of 
dependence of the two random variables on each other is the 
conditional probability density  p (x 1 ｜ x2 )  of  x 1 given x2  ,
and  p (x2 ｜x1 )  of  x2   given x 1 .

 Bayes’  rule :

p (x 1 , x2 ) = p (x 1 ｜ x2 ) p(x2 ) = p (x2 ｜ x1 )  p(x1 ) (2.14)

 Two  random variables are independent if they do not 
conditioned  each other  , that is , if

p (x2 ｜ x1 ) =  p(x2 )   and    p (x 1 ｜ x2 )  = p (x 1 )

Then,  p (x 1 , x2 ) = p (x1 ) p (x2 )
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2.1.5  Gaussian  Random Variable

 A Gaussian random variable X  is one whose  probability 
density function can be written in the general form

p (x) = { 1 / √(2πσ2 ) }  exp [ - ( x- m )2 / 2σ2  ) ]

where m is the mean  and σ2  is the  variance.

 CDF  of a Gaussian random variable

FX(x) =  ∫- ∞
x p (y) dy

= ∫- ∞
(x-m ) / σ 1 / √(2π ) }  exp [ - t 2 / 2 ) dt

=  1- Q[(x-m)/σ]                                                    (2.15)

where Q(x) = 1 / √(2π ) } ∫- ∞
x exp (- t 2 / 2 ) dt     (2.16)
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Gaussian function  with  mean =  0  ,   variance = 1       

g(x) = { 1/ √(2π ) } exp ( - x 2 / 2 ) (2.17)

Error function 

erf (x) = { 2 / √(π ) } ∫0
x exp (- x 2 ) dt         (2.18)

Complementary  error function 

erfc (x) = 1- erf (x)

=  2 / √(π ) } ∫x
∞ exp ( - x 2 ) dt      (2.19)

Q-function   

Q(x)  =  { 1/ √(2π ) } ∫x
∞ exp ( - x 2 / 2 ) dt   (2.20)

Relation between erfc (x) and Q- function :

Q (x)  = ½ erfc (x /√2 )

erfc (x)  = 2  Q(x √2 )  
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2.1.6  Multiple Random Variables

 Joint CDF

The joint CDF  of multiple random variable  Xi  , i =1, 2,…,n , 

is defined as 

F (x1 , x2 , …, xn ) = P ( X1 ≦ x1 , X2 ≦ x2  , …, Xn ≦ xn )

= ∫- ∞
x 1 ∫- ∞

x 2 … ∫- ∞
x n p (x1 , x2  , …, xn ) d x1 d x2  … dxn 

(2.21)

δn

and   p (x1 , x2  , …, xn ) = ----------------- F (x1 , x2 , …, xn ) 

δ x1 δ x2, …δ xn 

(2.22)

δ
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 The correlation between two random variables is defined as

RXY = E[XY] = ∫- ∞
∞ ∫- ∞

∞ xy pxy(x,y) dx dy 

=  mXY                                                                                              (2.23)

Two random variables , X and Y , are said to be

uncorrelated  if      mXY  =  mX  mY

 The covariance between two random variables , X and Y , is 

defined as

σxy =  Cov (X,Y) = E[ (X- mx) (Y- my) ]

= ∫- ∞
∞ ∫- ∞

∞ (x- mx) (y - my) pXY (x,y) dxdy    (2.24)

The correlation coefficient is defined as

ρXY = σxy / σx σy , -1 < ρXY < 1        (2.25)
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 If  X and Y are statistically  independent , then  ρXY =   0

Note that random variables , X and Y , are independent if

P ( X = xi , Y = yi ) =  P(X = xi ) P(Y = yi )

• Gaussian Bivariate Distribution

The bivariate Gaussian PDF  of two random variables, X and 
Y , is expressed as 

pXY(x,y) = { 1 /[ (2π σxσy  ) √(1-ρ2)  ]  }

exp { - (1/2) / (1-ρ2) [  (x-mx)
2/σx

2   + (y-my)
2/σy

2

- 2ρ(x-mx) (y-my) / σxσy  ]                     (2.26)

If they are independent , then

pXY(x,y) = { 1 / (2π σxσy  ) }

exp { - (1/2) [  (x-mx)
2/σx

2   + (y-my)
2/σy

2 ]     (2.27)
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2.1.7   Sum of  iid Random Variables and 

the Central Limit Theorem

 Suppose that  Xi , i = 1, 2,… n , are statistically independent 

and identically distributed (iid) random variables , each 

having a finite mean mx  and a finite variance σ2 . 

 Let Yn be defined as  the normalized sum, called the sample 

mean :                Yn =  (1/n ) Σi=1
n Xi (2.30)

The mean of Yn is    E[Yn ] = my =  (1/n) Σi=1
n E[ Xi ] 

= mx (2.31)
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The variance of  Yn is 

σy
2 =  E (Yn

2 ) - my
2   

=  ( 1/ n2 ) Σi=1
n Σi=1

n E( Xi Xj )

=  (1/n )σx
2 (2.32)  
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 Central Limit Theorem

Define the normalized random variable 

Zn = ( Yn - mn ) / σy = Σi=1
n ( Xi – m )/ (σx √n )

(2.33)

Then the random variable Zn has a distribution that is 

asymptotically unit normal. 

That is, as  n becomes large ,  the distribution of  Zn  

approaches that of  a  zero-mean   Gaussian random 

variable with unit variance.
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2.1.8 Transformation of Random Variables

 Let  X1 and X2 be continuous random variables with a joint 

PDF  fX1 , X2 (x1 , x2) , and consider the transformation defined 

by          

y1 =  h1(x1 , x2)    and     y2 =  h2(x1 , x2)

Which are assumed to be one-to-one and continuously 

differentiable.

The Jacobian of this transformation is defined by the matrix 

determinant

δx1 / δy1            δx1 / δy2

J( x1 , y1 ; x2 y2 ) = det (                                                       )

δx2 / δy1            δx2 / δy2

≠  0                                                (2.34)
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The joint pdf of Y1 and Y2  is given by 

fY1 Y2 ( y1 , y2 )  =    fX1  X2 (x1 , x2 ) ｜J (       )｜ (2.35)                             

 Example 1.1:    Rayleigh distribution

Let    Y =√(X1
2+ X2

2) 

where X1 and  X2 are independent zero- mean Gaussian 

random variables.

fX, X (x1 , x2 )= (1/2πσ2)  exp [- (x1
2+ x2

2) / 2 σ2 ]

we will transform the two Gaussian random  

variables  from Cartesian to polar coordinates. 

Denote that    R = √(X1
2+ X2

2) 

and    Θ = tan -1 (X2 / X1 )

The inverse transformation  is 

X1 =  R cosΘ  , X2=  R sinΘ , 
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The Jacobian is then calculate as 

J = det                         = det

= r  

The  joint pdf of  R and  Θ is then

fR Θ (r, θ) = fX1, X 2 (x1 , x2 )   J

= ( r/2πσ2) exp [-(x1
2+ x2

2) /2σ2]

= ( r/2πσ2) exp [- r2 /2σ2]

r≧ 0 ,  0≦ θ ≦ 2π            (2.36)



2525

The marginal distribution of R and Θ are then given

by 

fR ( r )  = ( r/ σ2 ) exp (- r2 /2σ2)          r ≧ 0             (2.37)

and    fΘ(θ) = 1/ (2π)  ,    0≦ θ ≦ 2π                            (2.38)

Note that fR ( r ) is the PDF   of a Rayleigh random variable .

It is also denoted as  Rayleigh  distribution.
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 Example 1.2 : Rician distribution

If X1 and  X2 are two independent Gaussian  random variables 

with means m1 and m2 , respectively,   and a common variance 

σ2 ,    then the new random variable 

R =√(X1
2+ X2

2) 

has  a Rician  distribution.

The pdf of  R is given by    

fR ( r )  = ( r/ σ2 ) exp {- ( r2+ s 2 ) /2σ2) I0(r s / σ2 ) }

r ≧ 0

(2.39)

where  I0(. ) is the modified Bessel function of zero order , and

s = √(m1
2+ m2

2)  ,  K = s 2 /2σ2  is denoted as Rician factor

.
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Appendix: Complex Random Variables

 RXX = E[ XXH]

where  H denotes the Hermitian transpose operation.

 RXY = E[ XYH]

 CXY = E[( X-mX ) (Y- mY )
H ]
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2.2   Random Signal and Random Process

2.2.1 Random Vector

 For a vector of  random variables X = [ X1 X2 …  XN ]T ,

we can construct a corresponding mean vector that is a column 

vector of the same dimension and whose components are the 

means of the elements of  X .

That is,  mx = E[X] = { E[ X1 ]  E[ X2 ] …  E[XN ] }
T       (2.44)

The correlation matrix is defined as

RXX =  E [ X XT ]                                                 (2.45)

Similarly , the covariance  matrix is defined as

CXX =  E [( x- mx ) (x- mx )T ]                          (2.46)

 Theorem :  

Correlation matrices and covariance matrices are  symmetric 

and positive definite.

 Correlation between two random vectors X and Y is given by       

RXY=  E[ XYT ]                                                          (2.47)
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 Joint Expectations for Two Random vectors

(a) For two  random vectors, X and Y,

the cross-correlation matrix is defined as  

RXY=  E[ XYT]                                          (2.48)

and the  cross-covariance matrix is define as

CXY =  E[ (X- mx )(Y- my )T ]                 (2.49)

where mx and my are  mean vectors  of X and Y, 

respectively.  

It can be shown that  RXY =  CXY + mX mY
T (2.50)

(b) The  random vectors X and Y are said to be 

uncorrelated if  RXY =  mX  mY
T ; or , equivalently, the

cross-covariance CXY = 0

( c ) Two vectors are said to be orthogonal if

RXY = 0 , or the cross-correlation is zero
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2.2.2  Random Process and Statistical Average

2.2.2.1 Random Process

 A random process  ( or stochastic process )  X (A,t) can be 
viewed as a function of two variables : an event A and time
t .

 Fig.1  illustrates a random process. In the figure, there are

N sample functions of time, { Xj (t) }. 

Each of the sample functions can be regarded as the output 
of a different noise generator.  For a specific event Aj , there 
is a a single time function X(Aj ,t) = Xj (t) , i.e. a sample 
function. 

The totality of all sample functions is called an ensemble.

For a specific time  tk ,  X(Aj ,t) = Xj (tk)  is simply a number.

 For notational simplicity , we shall designate the random 
process by X(t).
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2.2.2.2  Statistical Averages

 A random process whose distribution functions are continuous 

can be described statistically with a probability density function 

(PDF). In general , the form of the PDF of a random process will 

be different for different times.

 The mean  of a random process

E{X(tk) } =  ∫- ∞
∞  x pX (x)dx ≡ mX                                       (2.78)

where X(tk) is the random variable obtained by observing the 

random process at time tk . The pdf  of  X(tk) is designated  as

pX (x) .

 The autocorrelation function of a random process is defined as

RX ( t1 , t2 ) = E[ X(t1) X(t2) ]                                     (2.79)

The autocorrelation function is a measure of the degree to which 

two time samples of  the same random process are related.
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 In general, the nth moment is defined as

E{Xn} = ∫- ∞
∞  xn pX (x) dx                                  (1.80)

 E{ (X- mX )n } is called the nth central moment , and

when n=2 , the central moment is called  the variance

of the random process , denoted by σX
2 .

σX
2   = ∫- ∞

∞  ( x – mX)2 pX (x) dx                          (2.81)

 Stationary Random Process (in the strict sense ) :

The statistics of a  stationary random process are

invariant to any translation of the time axis. That is,

p( x(t1) ,x(t2),…, x(tn) ) =  p( x(t1+τ) ,x(t2+τ),…, x(tn+τ) ) 

(2.82)
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 Wide-Sense Stationary (WSS) Random Process

A random process is said to be wide-sense stationary 

(WSS) if two of  its statistics , mean and autocorrelation, 
are invariant to a time shift. That is,

E{ X(t) } = mX =   a  constant

and      RX ( t1 , t2 ) = RX ( t1 – t2 )  = RX (τ)               (2.83)

where τ = ( t1 – t2 )                                                     (2.84)

 Properties of Autocorrelation of a  Real-Valued 
WSS Random Process 

1.  RX (τ) = RX (-τ)

2. ｜RX(τ) ｜≦ RX(0)  for all τ

3. RX (τ) ← → SX(f )  =  power spectral density

4.   RX (0) =  E[ X2(t) ]     =  average power of the signal
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 Stationary and Ergodicity 

A stationary random process is said to be ergodic if time 

averages of a sample function are equal the corresponding 

ensemble average ( or expectation) at a particular point in time.

That is, 

mX = Lim ( 1/T ) ∫-T/2
T/2 X(t) dt                       (2.85)

T ∞

and      RX =  Lim (1/T ) ∫-T/2
T/2 X(t ) X( t+τ) dt         (2.86)

T ∞
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Example : Gaussian Random Process 

 A random process x(t) is said to be Gaussian if the random variables 

x1 =x(t1) , x2 =x(t2) , ... , xn= x(tN)

have an N-dimensional Gaussian PDF for any N and x1 ,  x2 ,..., xN

 The N-dimensional Gaussian  PDF is 

fX( x ) =  {1/ (2π)N/2 ｜Det C ｜1/2 } 

exp { -(1/2) [(x-m)T C-1(x-m)]}

where m is the mean vector , C is the covariance matrix of  x .

 For a wide-sense stationary process , mi = E[x(ti)] = mj = E[x(tj)] , and 

the element of the covariance matrix become 

cij = E[(xi – mi ) (xj – mj )] = E[(xi – mi )]  E[ (xi – mj )] 

 If , in addition, the xi happen  to be uncorrelated  (e.g., white noise ) , 

E[(xi – mi )] =  E[ (xi – mj )]    for   i  ≠ j 

then cii = σ2     ,      cij  = 0     for   i  ≠ j 
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2.2.2.3 Power Spectral Density

 Definition of power spectral density (PSD)  :

For a random process X(t), define a truncated version of the 

random process as 

X(t)         ｜ t ｜≦ a

Xa (t) =                                                

0            ｜ t ｜>  a (2.87)

The energy of this random process is

EXa       = ∫- a
a X2(t) dt  = ∫- ∞

∞ Xa
2(t) dt              (2.88)

Hence, the time-average power  is 

PXa  = (1/2a) ∫- ∞
∞ Xa

2(t) dt  =  (1/2a) ∫- ∞
∞ Xa

2( f ) df 

(2.89)
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 The last quantity is obtained using Parseval’s theorem. The 

quantity Xa(f) is the Fourier transform of Xa(t) .

 Note that PXa  is a random variable and so to get the 

ensemble average power , we must take an expectation ,

PXa  =   E[PXa ] = (1/2a) ∫- ∞
∞ E[｜Xa(f) ｜

2] df         (2.90)

The power in the ( untruncated) random process X(t) is then 

found by passing to  the limit   a  → ∞ ,

PXa =  Lim ( 1/2a ) ∫- ∞
∞ E[｜Xa(f) ｜

2 ] df

a ∞

= ∫- ∞
∞ Lim ( 1/2a) E[｜Xa(f) ｜

2 ] df             (2.91)

a ∞
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Define       SX (f) =  Lim ( 1/2a) E[｜Xa(f) ｜
2 ]             (2.92)

Then, the average power in the process can be expressed

as             PX = ∫- ∞
∞ SX (f) df                                       (2.93)

SX (f) is denoted as power spectral density of the 

random process  X ( t ) .

 Note : Parseval’s  energy theorem

The energy of a non-periodic signal  g(t) is equal to the total area 
under the curve of the energy density spectrum

Sg (f) , where 

Eg = ∫- ∞
∞ ｜g(t) ｜2 dt 

= ∫- ∞
∞ ｜G(f) ｜2 df  (2.94)

and     g(t)      G (f)                                            (2.95)                                              
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 Wiener-Khinchine Relation :

For a wide- sense stationary random process  X(t) whose 

autocorrelation function is given by RX (τ), the power 

spectral (PSD) of the process is 

SX (f) = F {RX (τ)} = ∫- ∞
∞ RX(τ) e-j2πfτ dτ

(2.96)

In other words, the autocorrelation function and power 

spectral density  for a Fourier transform pair.

2.4.4  Cross Correlation

 Definition :   The cross correlation between two random 

processes X(t) and Y(t) is defined as 

RXY (t1 , t2 ) =  E [ X(t1) Y(t2) ]              (2.97)
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 Two random processes X(t) and Y(t) are jointly stationary if 

both X(t) and Y(t) are individually stationary , and the cross 

correlation RXY ( t1 , t2 ) depends only on  τ = ( t1 – t2 )  .

It follows that

RXY ( t1 , t2 ) = RXY ( t1 – t2 )  = RXY(τ)

 Example : 

If two random processes X(t) and Y(t) are jointly stationary  and 

Z(t) = X(t) + Y(t)  then the autocorrelation of Z(t)  is 

RZ (t+τ , t) =  RX (τ) + RY (τ) + RXY (τ) + RXY (-τ) 
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2.2.3  Response  of a Linear Time-Invariant System 

to Random Signals

 Consider a linear time-invariant  (LTI ) system 
characterized by its impulse response h(t), or, equivalently,

by its frequency response  H (f) , where h(t) and H(f) are a

Fourier transform pair.  That is,

H (f )  = ∫- ∞
∞ h (t) e – j2πf t dt                      (2.101 )

h (t)  = ∫- ∞
∞ H (f) e j2πf t df                     (2.102)

 Let x(t) be the input signal to the system and let  y(t) denote 
the output signal. Then  y (t) can be expressed in terms the 
convolution integral 

y(t) = ∫- ∞
∞ h (τ ) x ( t -τ)  d τ                 (2.103)



4343

 Now , suppose that x (t) is a sample  function of a stationary 
stochastic process X (t). Then, the output  y (t) is a sample 
function of a stochastic process Y (t)  .  The statistical averages 
are given as follows.

The mean value of Y (t)  is  

mY (t)  = E[Y(t)] = ∫- ∞
∞ h(τ) E[X(t-τ) ] dτ 

=  mx ∫- ∞
∞ h(τ) dτ  

= mx H (0)                                               (2.104)

where H (0) is the frequency response of the linear system 

at   f = 0 .

The autocorrelation function of the output is

ψyy ( t1, t2  ) = (1/2)  E[ Yt1 , Yt2
* ]

=  (1/2) ∫- ∞
∞ ∫- ∞

∞ h(β ) h*(α ) E[X(t-β )X* (t -α ) ]

dα dβ

(2.105)                        
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After some mathematical manipulations, we finally 

obtain 

ψyy (τ) = ∫- ∞
∞ ∫- ∞

∞ h(β ) h*(α ) ψxx (τ+α-β) 

dα dβ                                           (2.106)

 By evaluating the Fourier transform of both sides of the

above equation , we obtain the power spectral  density of 

the output process in the form 

Φyy (f ) = Φxx (f ) ｜H (f ) ｜2                                  (2.107)

When the autocorrelation function ψyy (τ)  is desired, 

it can be evaluated by

ψyy (τ) = ∫- ∞
∞ Φyy (f ) e j 2π fτ df            (2.108)

and ψyy (0) = ∫- ∞
∞ Φxx(f ) ｜H (f ) ｜2  df
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Example : Random Binary signal

The figure shows the sample function x(t) of a  random process 

X(t) consisting of a random binary sequence of  binary symbols ,

1 and 0 . The following assumptions are made :

1. The symbols 1 and 0 are represented by rectangular pulses of

amplitudes +A and –A , respectively.

2.  The pulses are not synchronized , so the staring time of the 

first complete pulse for positive time  is equaly to lie between 

0 and T.  Thus τd  is a random variable uniformly

distributed between 0 and T .

3.   The amplitude level –A and +A occur with equal probability. 

Thus  E[X(t)] = 0   for all t .

Consider the first case when  ｜tk – tj｜> T , the random variables 

X(tk) and X(ti)  occur in different pulse intervals and are ,therefore , 

independent . Thus we have    E[X(tk) X(ti) ] = E[X(tk) ] E[X(ti) ] =0



4646



4747

Consider next the case when ｜tk – ti｜< T , with tk = 0  ,   ti < tk , or   ti > tk     . 

In such a situation, we can see that ,from the figure , that  the random variables 

X(tk) and X(ti)  occur in the same pulse interval If and ony if the delay τd    

satisfies the condition        

τd   <  T - ｜tk – ti｜
Thus we obtain the conditional expectation

A 2       τd   <  T - ｜tk – ti｜
E[X(tk) X(ti) ｜τd ] =    

0            elsewhere

Averaging this result over all possible values of τd   , we get

E[X(tk) X(ti) ] =   ∫0
T - ｜t k – t i｜ ( A 2 / T ) dτd     

= A 2   ( 1- ｜tk – ti｜/ T ) ,       ｜tk – ti｜< T

By same reasoning for any other values of tk  , we conclude that the 

autocorrelation function of a random binary wave can be expressed as

RX (τ ) =   A 2 ( 1 - ｜τ ｜/ T ) ｜ τ ｜<  T 

0                                         ｜ τ ｜≧ T           
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• Random Polar Binary Signal
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2.2.4   Bandpass Random Process

 We define a bandpass  ( or narrowband ) process as a real , 

zero-mean , and WSS random process by

X(t ) = Re [ g(t) exp ( j2πf0 t  + θc ) ]

= Xi (t) cos ( 2πf0 t  + θc ) - Xq(t) sin ( 2πf0 t + θc )

(2.109)

where Xi(t) and Xq(t) are denoted as the equivalent lowpass 

in-phase component and quadrature component , 
respectively, and θc is an independent random variable

uniformly distributed over ( 0 , 2π ) . 

The lowpass equivalent process is given by

g(t) = Xi (t) + j Xq(t) (2.110)

The constant θc is often called the random start-up phase.
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 We can show that  [ Couch, pp.   446-452]

1. g(t) is a complex WSS baseband process . 

2. Xi(t)  and Xq(t) are jointly WSS zero-mean random processes .

3. Xi(t)  and Xq(t) have the same power spectral density.

SXi ( f ) = SXq ( f )

= [SX ( f - fc )  + SX (  f + fc ) ]       ｜f ｜<  B

0                                                  otherwise

where B is the bandwidth of g(t).

4.  Autocorrelation function

RX (τ) =  ½  Re {Rg (τ) exp ( j 2πf0 τ) }

5.  Power spectral density

SX ( f ) =  ¼   [Sg ( f - fc )  + Sg ( - f - fc ) ]
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 Example :  Filtered White Gaussian Noise

White Gaussian noise with power spectral density of N0 

/ 2   passes through an ideal bandpass filter with transfer 

function

1             ｜f- f0 ｜<  B

H(f) =  

0              otherwise 

where  B <  f0 . .

The output , called  filtered Gaussian white noise , is 

denoted   

by w(t)  .

The power spectral density of the filtered noise will be 

Sw( f )  =  (N0  / 2 ) ｜H( f ) ｜2 
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The filtered white Gaussian noise  can also expressed as

w(t) = wi (t)  cos(  2πf0 t ) - wq (t)  sin ( 2πf0 t )

where wi (t) and wq(t)  are the in-phase and quadrature  

components of  w(t) , respectively , and are lowpass 

processes  .

The power spectral density of the lowpass- equivalent

processes are   given by                                     

Sw i ( f )  = Swq ( f )   = N0         ｜f｜<  B 

0         otherwise

and     Sg ( f )  =     2N0         ｜f｜<  B

0         otherwise 

Power of the bandpass Gaussian noise  =    2 N0 B 
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Example : Power Spectral Density of BPSK signal

The BPSK signal can be expressed by 

v (t) = x(t) cos (2πf0 t  + θc ) 

where x(t) represents the polarity  binary data and θc  is the random 

start-up phase.

The PSD of  v (t) is found by 

Sv ( f ) =  ¼   [Sx( f - fc )  + Sx ( - f - fc ) ]

The PSD of the polar baseband signal with equally likely binary data is 

given by

Sx( f ) = Tb ( sin πf Tb / πf Tb )2    

We   then obtain the PSD for the BPSK signal

Sv ( f ) =( 1/4 ) Tb { [ sin π(f- fc )Tb / π(f - fc )Tb ]2    +

[ sin π(f+ fc )Tb / π(f+fc )Tb ]2  }
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Exercise #2

The PDF of a Rayleigh –distributed random variable X is given by 

p(x) = ( x /σ2 ) exp ( -x2 / 2σ2 )        x ≧ 0  

Find the mean  and variance of  X.

Answer :    mean = σ/ √(π/2)

variance =  √(2-π/2) σ
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2.2.5  Markov Processes

 Markov  Process :

A random process, X(t), is said to be a Markov process if  for 
any time instants, t1 < t 2<  …  < t n < tn+1 ,, the  random 
process satisfies

FX (  X (tn+1) ≦, xn+1 ｜X ( t n) = xn  , X ( tn-1) = xn-1 , …,

X ( t1) = x1 )

=     FX (  X(tn+1) ≦, xn+1 ｜X ( t n) = xn   ) 

The Markovian property states that given the present, the 
future is independent of the past . 

In other words, the future of the random process depends 
only on where it is now and not on how it got there.
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Example #1  Sinusoidal wave with random phase

X(t) = A cos ( 2π fc t   + Θ )

where A is a constant and Θ is a random variable with uniform pdf

over the interval  [ - π , π ] , i.e.,

f Θ (θ)  =    1 / 2π    ,  - π ≦ θ ≦ π     

0           ,  elsewhere

1. Find the autocorrelation function of X(t)

Ans.  RX (τ ) = (A2/2 ) cos ( 2πfc  )

2. Find the power spectral density of X(t)

Ans.  SX(f) = (A2/2 ) [δ( f- fc ) + δ(f- fc ) ]



60

Example # 2 

If  Y(t) = X(t) cos ( 2π fc t   + Θ )

where X(t) is a stationary random process and Θ is a 
randomvariable with uniform pdf  over the interval  [ - π , π ]

Find the autocorrelation function  and power spectral density of

X (t) .

Ans.     RY (τ ) = (1/2 ) RX (τ ) cos ( 2πfc τ )

SY(f) = (1/2 ) [SX(f- fc ) + SX(f+ fc ) ]

Example #3 

A stationary Gaussian process X(t) with zero-mean and PSD SX(f ) 

is applied to a linear filter whose impulse response is a rectangular 

function of time , duration = T , height = 1/ T .

Y(t) is the output at time t .

1. find the mean and variance of  Y(t)

2. what is the probability density function of Y.?

3. Find the output power spectral density.

Ans.  H(f)= exp ( -j πfT ) sin (πfT )/(πfT )   

SYY(f) = [ sin2 (πfT ) /(πfT )2   ] SXX(f) 
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Appendix 

2.A. Gram-Schmidt Orthogonalization Process
 Suppose that the subspace Y is defined by means of a 

non-orthogonal basis , such as a collection of random variables

Y = { y1 , y2 , …, yM }                                          (1.68)

Which may be mutually correlated. The subspace Y is defined 
again as the linear span of this basis. The Gram-Schmidt 
orthogonalization process is a recursive procedure of 
generating an orthogonal basis ε1 , ε2 , …, εM  from

y1, y2, …, yM  .

The basic idea of the method is this :

a. Initiate the procedure by selecting ε1 = y1

b. Consider y2 and decompose it relative to ε1 . Then the

component of y2 which is perpendicular to ε1  is 

selected  as ε2  ;   so that (ε1 , ε2 ) = 0 . 
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c. Take y3  and decompose it relative to the subspace 

spanned by {ε1 , ε2 } and take the corresponding 

perpendicular component to be ε3 , and so on.

For example, the first three steps of the procedure are

ε1 =  y1

ε2   =  y2  - E[y2 ε1 ] E[ε1ε1]
- 1 ε1

ε3  =  y3  - E[y3ε1 ] E[ε1ε1]
- 1 ε1

- E[y3ε2 ] E[ε2ε2]
- 1 ε2 

d. At the nth iteration step

εn=  yn - Σi =1
n-1 E[ynεi] E[εiεi]

- 1 εi   ,    2≦ n ≦ M

(1.69)

The basis {ε1 , ε2 , …, εM } generated in this way is 

orthogonal by construction.


