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2.3 Linear Estimation

2.3.1   Signal  Estimation  Problem

 The problem of estimating one signal from another is one 

of the most important in signal processing.

 In many applications , the desired signal is not available or 

observable directly. Instead, the desired signal is a degraded or 

distorted version of the original signal.

 The signal estimation problem is to recover , in the best way 

possible , the desired signal from its degraded replica.
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 Examples : 

(1)  The desired signal may be corrupted by strong 

additive noise , such as weak measured evoked brain 

potentials  against the strong background of ongoing 

EEGs 

(2) A signal transmitted over a communications channel 

can suffer phase and amplitude distortions and can 

be subject  to additive  channel noise ; the problem is 

to  recover the transmitted signal from the distorted 

received signal.
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2.3.2   Optimum Estimation of Signals
 The signal estimation problem can be stated as follows:

We are to estimate a random signal x(n) on the basis of 

available observations of related signal  y(n) . 

 The available signal y(n) is to be processed by an optimal

processor that produces the best estimate of x(n) .

The resulting estimate  x(n) will be a functional of the 

observations y(n) .

 If the optimal processor  is linear , such as a linear filter ,

then the estimate x(n) will be  a linear function of the

observations.
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 Several major criteria for designing such optimal processors will 

be discussed :

(1) Maximum a  posteriori (MAP) criterion 

(2) Maximum likelihood  (ML) criterion

(3) Minimum mean-squared error (MMSE) criterion 

(4) Linear minimum mean squared error (LMMSE) criterion 

(5) Least square (LS) criterion
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 Let us assume that the desired signal  x(n) is to be estimated 

over a  finite time interval  na≦ n ≦ nb

Also we  may assume that the observed signal yn is also 

available over the same interval. 

Define the vector

x =  ( x(na )  x(na+1 ) … x(nb ) )T  (2.30)

y =  (y(na )   y(na+1 ) …  y(nb ) )T (2.31)

For each value of  n , we seek the functional dependence 

x(n) = x(n｜y )

of  x(n) on the given observation  vector  y to provide best 

estimate of the nth sample x(n) . 
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2.3.2.1   MAP Estimation

 The criterion  for the MAP  estimate is to maximize the a 

posteriori  conditional  density of x(n) given that  y already 

occurred ; namely

p( x(n) ︱ y ) = maximum                         (2.32)

In other words, the optimal estimate  x(n) is that x(n) which 

maximizes this quantity for the given vector  y .

2.1.2.2    ML Estimation

 The ML criterion , on the other hand, selects x(n) to maximize 

the conditional density of   y given x(n) ; that is

p (y ︱ x(n) )  = maximum                           (2.33)

This criterion selects  x(n) as though the already collected 

observations  y were the most likely ones to occur .
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2.3.2.3 MMSE Estimation

The MMSE criterion minimizes the mean-squared estimation error    

E[e2(n) ]  = minimum ,                                          (2.34)

where     e(n) = x(n) – x(n｜ y )                             (2.35)

and   x(n︱ y ) = E[ x(n) ︱ y ]

= mean-square estimate                (2.36)
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2.3.2.4   LMMSE Estimate
 The LMMSE criterion requires the estimate to be a linear 

function of the observations

x(n) = Σ h(n; i ) y(i) (2.37)

For  each n , the weights h(n ;i ) are selected so as to 

minimize the mean-squared estimation error

E[e2 (n) ] = E [ (x(n) – x(n) )2] = minimum            (2.38)

Note :

With the exception of the LMMSE estimate , all the other

estimates  x(n︱ y) are , in general , nonlinear in  y
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2.3.3   Linear MMSE Estimation
 Two common problems of determining the optimal weights 

h( n,i ) according to the mean-squared minimization criterion

are

(1) Optimal filtering problem

(2) Optimal prediction problem

 In these cases , the optimal estimate of  x(n) at a given time 
instant n is given  by an expression of the form

x(n) = Σ h( n;i ) y(i)                                           ( 2.39)

as a linear combination of the available observations y(n) in the  
interval  na≦ n ≦ nb.     
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2.3.3.1 Optimal Filtering
 The optimal filtering problem requires the linear operation

x(n) =     Σ h( n; i ) y(i)              (2.40)

to be causal ; that is, only those observations that are in the

present and past of the current samples x(n) must be used 

in making up the estimate x(n) .

This requires h (n; i ) =  0  ,  for  n < i               (2.41)

and then      x(n) =    Σ h( n ;i ) y(i)                     (2.42)

 The estimate x(n) depends on the present and all the past

observations, from the fixed starting point na to the current

time instant n .    As n increases , more and more

observations are taking into account in making up the

estimate x(n) . 
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 To make the optimum filter computationally efficient and 

manageable, only the current and the past M observations 

y(i) ; i = 1, 2 ,…, n-M   are taking into account. That is,

x(n) =    Σ h(n;i) yi

=   Σ h(n ;i ) y(i)                                            (2.43)

This is referred to as the finite impulse response (FIR)

Wiener filter.
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2.3.3.2 Linear Prediction

 The linear prediction problem is a special case of the optimal 

filtering problem with the additional stipulation that observations 

only up to time  instant  n-D  must be used in obtaining the 

current estimate x(n) ;  this equivalent to the problem of 

predicting D units of time  into the future.

 If we demand that the prediction be based only on the past M 

samples ( from the current sample) , we obtain the FIR version of 

the prediction problem, which can be depicted below :

x(n) =     Σ h(n;i) y(i)                                       (2.44)
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Summary :

 In  LMMSE problem , the estimate is expressed by

x(n) = Σ h( n;i ) y(i) (2.45)

for given observations y(n).

 The problem is a filtering problem when  n = nb ,

it is  a prediction problem when    n > nb  ,

 We are to set up the general  orthogonality and normal equations 

for the optimal weights of optimal filtering.
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2.4  FIR Wiener Filter
 Assuming that the signals are stationary , FIR Wiener filters are 

relatively simple to implement, inherently stable and more 
practical .

 The FIR filter is represented  by the tap-weights wk,  

k =  0,1,2, …,M

 Denote that  W = (w0 , w1 , …,wM )
T

The estimate can be expressed as

x(n ) =   Σ y( n-k ) wk (2.46)

Then, the estimation  error in FIR Wiener filter is given by

e(n) = x(n) - x(n) =  x(n) – Σ y( n-k ) wk                  ( 2.47)  
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Differentiating the mean-squared estimation error  with       

respect to each weight and  setting the derivative to   zero ,

we obtain  the  orthogonality equations that are enough to

determine the weights :

δE[e2(n) ] /δ wi = 2 E [e(n) (δe(n) / δ wi ) ] 

=  - 2 E [e(n) y(n-i) ]  =  0

or   Rey ( n ) = E [e(n) y(n- i ) ]  =  0               for  0≦ i ≦ M

.                      

( 2.49 )
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Thus , the estimation error is orthogonal ( uncorrelated ) 

to each observation yi used in making up the estimate xn .

The orthogonality equations provided exactly as many 

equations as there are unknown weights. 

 Inserting (2.46) for  en  , the orthogonality equations may be

written  in an equivalent form , known as normal equations

E [ { x(n) - Σ wky(n-k) } y(n-i) ]  =  0             (2.49)

or        E[x(n) y(n-i) ]   =  Σ wk E [y(n-k) y(n-i) ]   

for  0≦i ≦ M (2.50)

These  normal equations determine the optimal weights at the 
current time instant n .
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We can write Eq.(2.50) in vector notation as

p = E[ x(n)y ] 

and     x (n)   = WT y 

where  W  = (w0 , w1 , …,wM )
T  is the optimum weight- vector ,

y =  ( y(n)   y(n-1) …  y(n-M ) )T

is the vector of   observations up  to the current time n ,

 The optimal weights Wo and  the estimate  are then given by

Wo = E [x(n)y ] E[yyT ] -1 

=  RY
-1 p (2.51) 

This is identical to the correlation canceller discussed before.

Note that  p = ( p(0)  p(1) … p(M) )T  

where       p(j) = E[x(n) y(n-j) ]
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The M+1 optimal filter  weights  w0 ,w1 ,.., wM

are obtained by the (M+1) X ( M+1)  matrix inversion of the 

Wiener-Hopf  equations  ( also known as normal equation ):
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Ryy(0)   Ryy(1)    Ryy(2)       …           Ryy(M)            w0

Ryy(1)   Ryy(0)    Ryy(1)      …           Ryy(M-1)          w1

Ryy(2)   Ryy(1)    Ryy(0)      …           Ryy(M-2)          w2

Ryy(M)  Ryy(M-1)   Ryy(M-2)  …          Ryy(0)            wM

p(0)

p(1)

=     p(2)

p(M)

(2.52)
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 The minimized estimation error at time instant n is computed by  

J(n) = E[ e2 (n)] = E[ e (n) e (n) ] =  E[e (n) x(n) ]

= E [ {x(n) - Σ y( n-k ) wk } x(n) ]

= E [x2 (n)] - E[Σ y( n-k ) wk x(n)]

= E [x2 (n)] - E[x(n) y T] E[ yyT ]- 1 E[ y x(n) ]          (2.53)
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Exploiting the Toeplitz  property of the matrix Ryy  , the 

above  matrix equation (2.53) can be solved efficiently 

using Levinson’s algorithm.
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Example :  
(1) For M=2 

Equ.(2.55) becomes

Ryy(0)  Ryy(1)   Ryy(2)      w(0)          rxy(0)

Ryy(1)  Ryy(0)   Ryy(1)      w(1)     =    rxy(1)  

Ryy(2)   Ryy(1)  Ryy(0)      w(2)          rxy(2)

If   observation   y(n) =  x(n) +ν(n)  

where   Rxx (k ) = 2 (0.8) ｜k ｜

Rνν (k ) = 2 δ(k)

Thus    p(k) = rxy(k)  = E [ x(n) {x(n-k) + ν(n-k) } ] = Rxx (k ) 

= 2 (0.8)k 

Ryy(k) = E[ {x(n) +ν(n)  } {x(n-l) +ν(n-l) }
=  Rxx(k) + Rνν (k ) =  2 (0.8)k  + 2 δ(k)
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• The normal equation becomes

4.00   1.60    1.28         w(0)           2.00

1.60    4.00   1.60          w(1)          1.60

1.28   1.60    4.00         w(2)           1.28

Solving the above equations, we obtain

w(0) = 0.3824 

w(1) = 0.2000 

w(2) = 0.1176



Appendix :

Wiener filter  for complex –valued  signals

 W = (w0 
* , w1 * , …,wM *)

T = (w0 , w1 , …,wM )
H

where H denotes the complex-conjugate  or  Hermitian .

p = E[ x* (n) y ] 

RY =  E[ yyH  ]

The optimal weights Wo and  the estimate  are then given by 

Wo = E[ yyH  ] -1  E [x*(n) y ] 

=  RY
-1  p
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2.5  Linear Prediction

 The linear prediction problem is a special case of the optimal 

filtering problem with the additional stipulation that observations 

only up to time  instant  n-M must be used in obtaining the 

current estimate x(n) to predict one units of time  into the future. 

This is a one-step forward prediction.

 By using similar concept of prediction, we may define a 

backward predictor, that predicts a sample y(n-M) from future 

samples , y(n-M+1), …, y(n) .
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2.5.1  Forward Prediction
 Assuming that the signals are stationary , the prediction  process 

can be implemented by FIR filters  which are relatively simple to 
realized, inherently stable and more practical .

 The prediction filter is represented  by the tap-weights ak,  

k =  1,2, …,M

 Denote that  a = (a1 , …,aM )

The prediction can be expressed as

y(n ) =   Σ ak y( n-k )                                           (A-1)

Then, the estimation  error in FIR prediction is given by

e(n) = y(n) - y(n) =  y(n) – Σ ak y( n-k )                 ( A-2)  
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Let Yn-1 denote the  M-dimensional linear space spanned by

y(n-1) , y(n-2) ,…, y(n-M), and use  y (n｜ Yn-1 )  to denote 

the predicted value of y (n) given this set of samples.

Then,  ef (n) = y(n) – y(n｜ Yn-1 ) 

 Differentiating the mean-squared estimation error  with       

respect to each weight and  setting the derivative to   zero ,

we obtain  the  orthogonality equations that are enough to

determine the weights :

δE[e2(n) ] /δ ai = 2 E [e(n) (δe(n) / δ ai ) ] 

=  - 2 E [e(n) y(n-i) ]  =  0

for  0≦i , n ≦ M ( A-3 )

.                       
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 Inserting (a-3) for  en  , the orthogonality equations may be

written  in an equivalent form , known as normal equations

E [ { y(n) - Σ aky(n-k) } y(n-i) ]  =  0 

or        E[y(n) y(n-i) ]   =   Σ ak E [y(n-k) y(n-i) ]   

for  0≦ n ≦ M (A-4)

These  normal equations determine the optimal weights at the 
current time instant n .
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We can write Eq.(A-4) in vector notation as

p = E[ y(n) Y n-1 ] 

and     y (n)   = aT Y n-1 

where  a = (a1 , …,aM )
T  is the optimum weight- vector ,

Y n-1 =  (y(n-1) …  y(n-M ) )T

is the vector of   observations up  to time n-1 ,

 The optimal weights ao and  the prediction  are then given by

ao = E [x(n)y ] E[yyT ] -1 

=  R Y n-1 
-1  p                                             (A-5) .

Note that  p = (p(1) … p(M) )T  

where       p(j) = E[y(n) y(n-j) ]



34

Ryy(0)    Ryy(1)      Ryy(2)       …           Ryy(M-1)         a1

Ryy(1)    Ryy(0)      Ryy(1)      …           Ryy(M-2)          a2

Ryy(2)    Ryy(1)      Ryy(0)      …           Ryy(M-3)          a3

Ryy(M-1)  Ryy(M-2)   Ryy(M-3)  …          Ryy(0)            aM

p(1)

p(2)

=     p(3)

p(M)

(A-6  )





2.5.2  Backward Prediction

 A backward prediction filter predicts a signal sample y(n-M) 

from  M future samples.

The predicted value can be expressed as 

y(n –M ) =   Σ bk y( n-k +1)

The backward prediction error

eb (n) = y(n-M) - Σ bk y( n-k +1)

= y(n-M) – y(n-P)｜ Yn-1 ) 



 The optimal coefficients can be obtained by he 

normal equation

b  =  R Y n-1 
-1  pB

where  pB = ( p(M) p(M-1) … p(2)  p(1) )T  

b = ( b1  b2             bM-1  bM   )
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Ryy(0)    Ryy(1)      Ryy(2)       …           Ryy(M-1)         b1

Ryy(1)    Ryy(0)      Ryy(1)      …           Ryy(M-2)          b2

Ryy(2)    Ryy(1)      Ryy(0)      …           Ryy(M-3)          b3

Ryy(M-1)  Ryy(M-2)   Ryy(M-3)  …          Ryy(0)            bM

p(M)

p(M-1)

=     p(M-2)

p(1)

(A-6  )
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2.6  Least Squares Optimal Filtering
(C.W. Therrien, pp.519-524)

 In the minimum mean-squared estimation , the sequences ( or  

vectors)   y  and x  were regarded as random processes with known 

( or previously estimated) second-order (moment ) statistics. 

 Here , we are to consider the optimal filtering problem from a 

slightly different approach , the least  square  (LS) method.
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2.6.1   LS Method

Historical Notes :

The principle of least squares was introduced by the German 

mathematician Carl F. Gauss , who used it to determine the orbit 

of the asteroid Ceres in 1821 by formulating the estimation 

problem as an optimization problem.

Carl Gauss (1777 – 1855) was born in Braunschweig , Germany.     

 There is no presumed knowledge of the statistical properties of  

random vectors x and y  beforehand . It is assumed that a typical 

data sequence of  both x and y  has been measured and 

recorded and that these sequences can be used to design the 

filter .

 We are to estimate         x = [ x(0) , x(1), …, x(M-1) ]T

given the observation    y = [ y(0) , y(1), …, y(M-1) ]T
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 If a causal FIR filter of length M is used , then the estimate for the 
given data sequence is 

x(n)  = Σ h(i) y(n- i )                                 (2.67)

and the estimation error can be defined as  

ε(n)  =  x(n) - x(n)                                     (2. 68)

The approach here is to design the filter to minimize the 

sum of squared errors 

S =  Σ ｜ε(n) ｜2                                      (2.69)

where n1 and nf are some initial and final values of   n  that 

define the interval over which to perform the minimization.

Note that no probabilistic statements have been made in 

defining this problem.
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 The criterion (2.69) is called a least squares criterion.

 In matrix form, we can express  ( 2.67) as

x = Y h                                                        (2.70)

where       x =  [ x(nI ) x(nI +1) … x(nf ) ]T 

y(nI ) y(nI - 1) …  y(nI –M+1)

y(nI +1)   y(nI  )    …  y(nI –M+2)

Y =

y(nf ) y(nf  -1) … y(nf  -M+1)

and          h =  [ h(0)  h(1)   …  h(M-1) ]T
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 The matrix Y is called the data matrix and has dimension 

K X M where  K = nf  - nI + 1 .

It will be assumed that  K >> M .

 Define the error vector as

ε=  x – x (2.71)

x and  ε are  K-dimensional vectors.

Then the problem is to minimize 

S = ∥ ε ∥2  = ε*T ε                         (2.72)
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2.6.2  LS Optimal Filtering

 A direct approach to this problem would be as follows .

Substitute (2.70) and (2.71) into (2.72) and expand the result to 
obtain

S = (x-Yh ) *T (x-Yh )

=  x *T x - h *T Y *T x - x *T Yh + h *T Y *TY h

(2.73)

 Then by formal methods of differentiation , a necessary 
condition for the minimum can be found to be 

( Y *TY) h = Y *T x (2.74)

This is the least squares Wiener –Hopf equation.

 If  Y has independent columns ( i.e. , if it is of full rank) , then Y 
*TY is also of full  rank and  (2.74) has  the solution

h =  ( Y *TY) - 1 Y *T x                                    (2.75)
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 The sum of the squared errors for the optimal filter can be found 
by returning to (2.32) and writing   

S = (x-Yh ) *T (x-Yh )

=  x *T ( x-Yh) – (Yh) *T (x-Yh)

=  x *Tx - x *T Yh - h *T (Y *Tx -Y *TYh)

=   x *Tx - x *T Yh (2.76)

 Denote that   Y+ = ( Y *TY) - 1 Y *T (2.77) 

Then we can write the optimal solution (2.75) of h as

h = Y+ x (2.78)

The matrix Y+  is known as Moore-Penrose  pseudoinverse .
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2.6.3   Least Squares Orthogonality

 Theorem ( Least Squares Orthogonality):

Let  x = Yh   and   ε =   x – x  

Then h minimizes the sum of squared errors

S = ∥ ε ∥2                                                                         (2.79)

if  h is chosen such that     Y *T ε = 0

Further , the sum of squared errors is given by

S = x *T ε (2.80)

Proof :

Let h be any vector of filter coefficients  and  h⊥

be the vector that results in orthogonality.
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Further , let εbe the error vector corresponding  to h 

and ε⊥ be  the error vector corresponding to h⊥ .

Then it follows that 

ε= x-Yh =  ( x-Y h⊥ ) + Y(h⊥ - h )

= ε⊥ + Y(h⊥ - h )

so that

ε *T ε = [ε⊥ + Y(h⊥ - h ) ] *T [ε⊥ + Y (h⊥ - h ) ]

= ε⊥ *T ε⊥ +  (h⊥ - h ) *TY *T ε⊥
+ ε⊥ *T Y (h⊥ - h ) + (h⊥ - h ) *T Y *T Y (h⊥ - h )

Since ε⊥ *T Y and  Y *T ε⊥ are  both zero by assumption , 

this  leads to

S =ε *T ε = ε⊥ *T ε⊥ + (h⊥ - h ) *T Y *T Y (h⊥ - h )

which is clearly minimized when  h = h⊥ .

The minimum sum of squared errors is then

S =ε *T ε = ( x-Y h ) *T ε  =  x *T ε 

The last step follows because  Y *T ε =  0 .  

This proves the theorem.
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The results of the above Theorem can now be applied to 

solve the optimal LS filtering problem. The Theorem 

requires that 

Y *T ε = Y *T ( x-Yh ) = 0

which leads to the Wiener-Hopf equation (2.74)

Y *T x  = Y *T Yh   

 Further , from the theorem , the minimum sum of squared errors
is given by

S = x *T ε = x *T (x-Yh) =  x *T x - x *T Yh 

as  before ( 2.76) .
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Example

The sequence {x(n); 0≦n ≦4 } = { 1,-1,1, -1,1 } is to be estimated from 

the observation sequence { y(n)} = { 1,-2,3, -4 ,5} using an FIR filter of 

length   P=2 .  Choosing  nI  = 1, nF = 4 .  

We obtain the following least-squares problem :

The pseudo inverse of the data matrix is    

The filter is the  given by                   
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Example #2 (   Estimating Expected Values from Data )

 Assuming that  x(1)   x(2) … x(K)  are samples of a random vector x. 

The expectation  of a  function φ(x) can be approximated as

[φ(x) ] = ( 1/K ) Σ φ(xK ) 

 When estimating for expectation of a quantity involving two random 

vectors from samples  x(1)   x(2) … x(K) and  y(1)   y(2) … y(K)   . 

The estimate for the expectation takes the form 

[φ(x,y) ] = ( 1/K ) Σ φ(xK, yK ) 
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• For complex-valued random vectors , define  the data matrix  X by

X =  (  x(1)*   x(2)* … x(K) *  ) T  

Then since   X*T X  = Σ x(k)*   x(k)*T   

The correlation matrix can be written as

Rx  =  ( 1/K ) X*T X 

Then a typical element  rkl    =  ( 1/K ) xk*
T xl



Toeplitz  Matrix
 A Toeplitz matrix or diagonal-constant matrix, named after Otto

Toeplitz, is a matrix  in which each descending diagonal from left to

right is constant. For instance, the following matrix is a Toeplitz 
matrix:

a b c d e

f a b c d

e f a b c

d e f a b

c d e f a  

Toeplitz systems of form Ax = b can be solved by the 

Levinson- Durbin in Θ(n2) time.

Note that Levinson recursion or Levinson-Durbin recursion

is a procedure in linear algebra to  recursively calculate the

solution to an equation involving a Toeplitz matrix. 

The algorithm runs in θ(n2) time,
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Appendix 
Norbert Wiener (1894-1964 ) 

 Norbert Wiener was born in Columbia, Missouri.

He entered Tufts College at age 11.

Harvard awarded Wiener a Ph.D. in 1912, when he was a mere 18, for a 
dissertation on mathematical logic.

In 1914, Wiener traveled to Europe, to study under Bertrand Russell 

and G.H.Hardy at Cambridge University, and under David Hilbert and 

Edmund Landau at the Univesity of Gottingen  . 

 Wiener ‘s position in the mathematics Department at MIT began in 1919. He was 
promoted to Professorship in 1932.

He was a pioneer in the study of stochastic and noise processes, contributing 
work relevant to electronic engineering, communications and control systems.

 Wiener is perhaps best known as the founder of cybernetics, a field that 
formalizes the notion of feedback and has implications for  engineering , 
systems control , computer science , biology , philosophy, and the 
organization of  society.
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• In 1942 ,Wiener developed theory of signal transmission in the presence of a 
perturbative noise, in a classified monograph ,nicknamed "the yellow 
peril“ and then in Extrapolation, Interpolation and Smoothing of Stationary 
Time Series with Engineering Applications (1949). 

In this book Wiener applies generalized harmonic analysis to stationary 
random signals and solves the problem of optimal elimination of the 
perturbative noise and of optimal prediction of the signal itself, with the help 
of a filtering operator. 

Quite independently, A.N. Kolmogoroff had announced results in the same 
domain at a time (1941) when scientific communications were interrupted. 

Norman Levinson (, 1912 –1975) 

was an American mathematician. He worked closely with Norbert
Wiener in his early career. He joined the faculty  of the MIT in 1937. 

He received both his BS degree and his  master degree in electrical 
engineering from MITin 1934, where he had studied under Wiener and took 
almost all of the graduate-level courses in mathematics. He received the MIT 
Redfield Protor Traveling Fellowship to study at the University of Cambridge , 
with the assurance that MIT would reward him with a Ph. D. upon his return 
regardless of whatever he produced at Cambridge. Within the first four 
months in Cambridge, he had already produced two papers. In 1935, MIT 
awarded him with the Ph. D. in mathematics.

http://en.wikipedia.org/wiki/Norbert_Wiener

