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2.3 Linear Estimation

2.3.1   Signal  Estimation  Problem

 The problem of estimating one signal from another is one 

of the most important in signal processing.

 In many applications , the desired signal is not available or 

observable directly. Instead, the desired signal is a degraded 

or distorted version of the original signal.

 The signal estimation problem is to recover , in the best way 

possible , the desired signal from its degraded replica.
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 Examples : 

(1)  The desired signal may be corrupted by strong 

additive noise , such as weak measured evoked brain 

potentials  against the strong background of ongoing 

EEGs 

(2) A signal transmitted over a communications channel 

can suffer phase and amplitude distortions and can 

be subject  to additive  channel noise ; the problem is 

to  recover the transmitted signal from the distorted 

received signal.
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2.3.2   Optimum Estimation of Signals

 The signal estimation problem can be stated as follows:

We are to estimate a random signal x(n) on the basis of 

available observations of related signal  y(n) . 

 The available signal y(n) is to be processed by an optimal

processor that produces the best estimate of x(n) .

The resulting estimate  x(n) will be a functional of the 

observations y(n) .

 If the optimal processor  is linear , such as a linear filter ,

then the estimate x(n) will be  a linear function of the

observations.
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 Several major criteria for designing such optimal processors 

will be discussed :

(1) Maximum a  posteriori (MAP) criterion 

(2) Maximum likelihood  (ML) criterion

(3) Minimum mean-squared error (MMSE) criterion 

(4) Linear minimum mean squared error (LMMSE) criterion 

(5) Least square (LS) criterion
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 Let us assume that the desired signal  x(n) is to be estimated 

over a  finite time interval  na≦ n ≦ nb

Also we  may assume that the observed signal yn is also 

available over the same interval. 

Define the vector

x =  ( x(na )  x(na+1 ) … x(nb ) )T  (2.111)

y =  (y(na )   y(na+1 ) …  y(nb ) )T (2.112)

For each value of  n , we seek the functional dependence 

x ^(n) = x^ (n｜y )

of  x(n) on the given observation  vector  y to provide best 

estimate of the nth sample x(n) . 
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2.3.2.1   MAP Estimation

 The criterion  for the MAP  estimate is to maximize the a 
posterior conditional  density of x(n) given that  y  already 
occurred ; namely

p( x(n) ︱ y ) = maximum                         (2.113)

In other words, the optimal estimate x^(n) is that x(n) which 
maximizes this quantity for the given vector y .

2.1.2.2    ML Estimation

 The ML criterion , on the other hand, selects x(n) to 
maximize the conditional density of   y given x(n) ; that is

p (y ︱ x(n) )  = maximum                           (2.114)

This criterion selects x^(n) as though the already collected 
observations  y were the most likely ones to occur .
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2.3.2.3  MMSE Estimation

The MMSE criterion minimizes the mean-squared estimation 

error    

E[e2(n) ]  = minimum ,                                             (2.114)

where     e(n) = x(n) – x^ (n｜ y )                             (2.115)

and x^ (n︱ y ) = E[ x(n) ︱ y ]

= mean-square estimate                    (2.116)
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2.3.2.4   LMMSE Estimate

 The LMMSE criterion requires the estimate to be a linear 
function of the observations

x(n) = Σi=na
nb h(n; i ) y(i) (2.117)

For  each n , the weights h(n ;i ) are selected so as to 

minimize the mean-squared estimation error

E[e2 (n) ] = E [ (x(n) – x^ (n) )2] = minimum            (2.118)

Note :

With the exception of the LMMSE estimate , all the other

estimates  x(n︱y) are , in general , nonlinear in  y
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2.3.3   Linear MMSE Estimation
 Two common problems of determining the optimal weights 

h( n,i ) according to the mean-squared minimization 
criterion

are

(1) Optimal filtering problem

(2) Optimal prediction problem

 In these cases , the optimal estimate of  x(n) at a given time 
instant n is given  by an expression of the form

x(n) = Σi=na
nb h( n;i ) y(i)                          ( 2.119)

as a linear combination of the available observations y(n) in 
the  interval  na≦ n ≦ nb.     
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2.3.3.1 Optimal Filtering
 The optimal filtering problem requires the linear operation

x^(n) =   Σ i=na
nb h( n; i ) y(i)                   (2.120)

to be causal ; that is, only those observations that are in the

present and past of the current samples x(n) must be used 

in making up the estimate x^(n) ..
This requires h (n; i ) =  0  ,  for  n < i                    (2.121)

and then   x^(n) =    Σ i=na
n  h( n ;i ) y(i)                (2.122)

 The estimate x^(n) depends on the present and all the past

observations, from the fixed starting point na to the current

time instant n .    As n increases , more and more

observations are taking into account in making up the

estimate x^(n) . 
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 To make the optimum filter computationally efficient and 

manageable, only the current and the past M observations 

y(i) ; i = n-M , n-M+1,…,n-1,n , are taking into account. 

That is,

x^(n) =    Σi=n-M
n h(n;i) yi

=   Σi=n-M
n h(n ;i ) y(i)                          (2.123)

This is referred to as the finite impulse response (FIR)

Wiener filter.
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2.3.3.2 Linear Prediction

 The linear prediction problem is a special case of the 

optimal filtering problem with the additional stipulation 

that observations only up to time  instant  n-D  must be 

used in obtaining the current estimate x(n) ;  this equivalent 

to the problem of predicting D units of time  into the future.

 If we demand that the prediction be based only on the past 

M samples ( from the current sample) , we obtain the FIR 

version of the prediction problem, which can be depicted 

below :

x^(n) =     Σi=n-M
n-1 h(n;i) y(i)                         (2.124)
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Summary :

 In  LMMSE problem , the estimate is expressed by

x^(n) = Σ i=na
nb h( n;i ) y(i) (2.125)

for given observations y(n).

 The problem is a filtering problem when  n = nb ,

it is  a prediction problem when    n > nb  ,

 We are to set up the general  orthogonality and normal 

equations for the optimal weights of optimal filtering.
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2.4  FIR Wiener Filter
 Assuming that the signals are stationary , FIR Wiener filters 

are relatively simple to implement, inherently stable and more 
practical .

 The FIR filter is represented  by the tap-weights wk,  

k =  0,1,2, …,M

 Denote that  W = (w0 , w1 , …,wM )
T

The estimate can be expressed as

x^(n) =   Σk=0
M y( n-k ) wk (2.126)

Then, the estimation  error in FIR Wiener filter is given by

e(n) = x(n) - x^(n) =  x(n) – Σk=0
M y( n-k ) wk      

( 2.127)  
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Differentiating the mean-squared estimation error  with       

respect to each weight and  setting the derivative to   zero ,

we obtain  the  orthogonality equations that are enough to

determine the weights :

δE[e2(n) ] /δ wi = 2 E [e(n) (δe(n) / δ wi ) ] 

=  - 2 E [e(n) y(n-i) ]  =  0        (2.128)

or   Rey ( n ) = E [e(n) y(n- i ) ]  =  0               for  0≦ i ≦ M

.                      

( 2.129)
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Thus , the estimation error is orthogonal ( uncorrelated ) 

to each observation yi used in making up the estimate xn .

The orthogonality equations provided exactly as many 

equations as there are unknown weights. 

 Inserting (2.127) for  en  , the orthogonality equations may be

written  in an equivalent form , known as normal equations

or Wiener-Hopf equations.

E [ { x(n) - Σk=0
M wky(n-k) } y(n-i) ]  =  0        (2.130)

or        E[x(n) y(n-i) ]   = Σ k=0
M wk E[y(n-k) y(n-i) ]   

for  0≦i ≦ M (2.131)

These  Wiener-Hopf equations determine the optimal 

weights at the current time instant n .
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We can write Eq.(2.131) in vector notation as

p = E[ x(n)y ] 

and    x^(n) = WT y

where  W = (w0 , w1 , …,wM )
T  is the optimum weight- vector ,

y =  ( y(n)   y(n-1) …  y(n-M ) )T

is the vector of   observations up  to the current time n ,

 The optimal weights Wo and  the estimate  are then given by

Wo = E [x(n)y ] E[yyT ] -1 

=  RY
-1 p (2.132) 

This is identical to the correlation canceller discussed before.

Note that     p = ( p(0)  p(1) … p(M) )T  

where   p(j) = E[x(n) y(n-j) ]                                     (2.133)
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Ryy(0)   Ryy(1)    Ryy(2)       …           Ryy(M)            w0

Ryy(1)   Ryy(0)    Ryy(1)      …           Ryy(M-1)          w1

Ryy(2)   Ryy(1)    Ryy(0)      …           Ryy(M-2)          w2

Ryy(M)  Ryy(M-1)   Ryy(M-2)  …          Ryy(0)            wM

p(0)

p(1)

=    p(2)

.                                                  

p(M)

(2.134)
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 The minimized estimation error at time instant n is computed 

by  

J(n) = E[ e2 (n)] = E[ e (n) e (n) ] =  E[e (n) x(n) ]

= E [ {x(n) - Σ k=0
M y( n-k ) wk } x(n) ]

= E [x2 (n)] - E[Σ k=0
M y( n-k ) wk x(n)]

= E [x2 (n)] - E[x(n) y T] E[ yyT ]- 1 E[ y x(n) ]          (2.135)
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Exploiting the Toeplitz  property of the matrix Ryy , the 

above  matrix equation (2.134) can be solved efficiently 

using Levinson’s algorithm.
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Example :  
(1) For M=2 

Equ.(2.55) becomes

Ryy(0)  Ryy(1)   Ryy(2)      w(0)          rxy(0)

Ryy(1)  Ryy(0)   Ryy(1)      w(1)     =    rxy(1)  

Ryy(2)   Ryy(1)  Ryy(0)      w(2)          rxy(2)

If   observation   y(n) =  x(n) +ν(n)  

where   Rxx (k ) = 2 (0.8) ｜k ｜

Rνν (k ) = 2 δ(k)

Thus    p(k) = rxy(k)  = E [ x(n) {x(n-k) + ν(n-k) } ] = Rxx (k ) 

= 2 (0.8)k 

Ryy(k) = E[ {x(n) +ν(n)  } {x(n-l) +ν(n-l) }
=  Rxx(k) + Rνν (k ) =  2 (0.8)k  + 2 δ(k)
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• The normal equation becomes

4.00   1.60    1.28         w(0)           2.00

1.60    4.00   1.60          w(1)          1.60

1.28   1.60    4.00         w(2)           1.28

Solving the above equations, we obtain

w(0) = 0.3824 

w(1) = 0.2000 

w(2) = 0.1176



27

Appendix :    Wiener filter  for complex –valued  signals

 W = (w0 
* , w1 * , …,wM *)T = (w0 , w1 , …,wM )

H

where H denotes the complex-conjugate  or  Hermitian .

p = E[ x* (n) y ] 

RYY =  E[ yyH  ]

The optimal weights Wo and  the estimate  are then given 

by 

Wo = E[ yyH ] -1  E [x*(n) y ] 

=  RY
-1  p
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2.5  Linear Prediction

 The linear prediction problem is a special case of the 

optimal filtering problem with the additional stipulation 

that observations only up to time  instant  n-M must be 

used in obtaining the current estimate x(n) to predict one

units of time  into the future. This is a one-step forward 

prediction.

 By using similar concept of prediction, we may define a 

backward predictor, that predicts a sample y(n-M) from 

future samples , y(n-M+1), …, y(n) .
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2.5.1  Forward Prediction

 Assuming that the signals are stationary , the prediction  
process can be implemented by FIR filters  which are 
relatively simple to realized, inherently stable and more 
practical .

 The prediction filter is represented  by the tap-weights ak,  

k =  1,2, …,M

 Denote that  a = (a1 , …,aM )

The prediction can be expressed as

y^(n) =   Σ k=1
M ak y( n-k )                             (2.136)

Then, the estimation  error in FIR prediction is given by

e(n) = y(n) - y^(n) =  y(n) – Σ k=1
M ak y( n-k )   

(2.137)  



3232

Let Yn-1 denote the  M-dimensional linear space spanned 

by

y(n-1) , y(n-2) ,…, y(n-M),  and use  y^ (n｜Yn-1 )  to denote 

the predicted value of y (n) given this set of samples.

Then,  ef (n) = y(n) – y^ (n｜Yn-1 ) 

 Differentiating the mean-squared estimation error  with       

respect to each weight and  setting the derivative to  zero ,

we obtain  the  orthogonality equations that are enough to

determine the weights :

δE[e2(n) ] /δ ai = 2 E [e(n) (δe(n) / δ ai )

=  - 2 E [e(n) y(n-i) ]  

=   0    for  0≦i , n ≦ M

( 2.138 )

.                       
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 Inserting (2.137) for  en  , the orthogonality equations may be

written  in an equivalent form , known as normal equations

E [ { y(n) - Σ k=0
M aky(n-k) } y(n-i) ]  =  0 

or        E[y(n) y(n-i) ]   =   Σ k=0
M ak E [y(n-k) y(n-i) ]   

for  0≦ n ≦ M

(2.139)

These  Wiener-Hopf equations determine the optimal 

weights at the current time instant n .



3434

We can write Eq.(2.138) in vector notation as

p = E[ y(n) Y n-1 ] 

and     y (n)   = aT Y n-1 

where  a = (a1 , …,aM )
T  is the optimum weight- vector ,

Y n-1 =  (y(n-1) …  y(n-M ) )T

is the vector of   observations up  to time n-1 ,

 The optimal weights ao and  the prediction  are then given by

ao = E [x(n)y ] E[yyT ] -1 

=  R Y n-1 
-1  p                                             (2.140) .

Note that  p = (p(1) … p(M) )T  

where       p(j) = E[y(n) y(n-j) ]                                    (2.141)                    
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Ryy(0)    Ryy(1)      Ryy(2)       …           Ryy(M-1)         a1

Ryy(1)    Ryy(0)      Ryy(1)      …           Ryy(M-2)          a2

Ryy(2)    Ryy(1)      Ryy(0)      …           Ryy(M-3)          a3

Ryy(M-1)  Ryy(M-2)   Ryy(M-3)  …          Ryy(0)            aM

p(1)

p(2)

=     p(3)

p(M)

(2.142  )
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2.5.2  Backward Prediction

 A backward prediction filter predicts a signal sample y(n-

M) from  M future samples  { y(n-1) , y(n-2) ,…, y(n-M+1 ) 

= Yn-1 .

The predicted value can be expressed as 

y^ (n –M ) =   Σk=1
M bk y( n-k +1)                      (2.143)

The backward prediction error

eb (n) = y(n-M) - Σk=1
M bk y( n-k +1)

= y(n-M) – y^ (n-M)｜ Yn-1 )                          (2.144)
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 The optimal coefficients can be obtained by he normal 

equation

b  =  R Y n-1 
-1  pB (2.145)

where  pB = ( p(M)  p(M-1) … p(2)   p(1) )T  

b = ( b1   b2  … bM-1  bM   )                          (2.146)
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Ryy(0)    Ryy(1)      Ryy(2)       …           Ryy(M-1)         b1

Ryy(1)    Ryy(0)      Ryy(1)      …           Ryy(M-2)          b2

Ryy(2)    Ryy(1)      Ryy(0)      …           Ryy(M-3)          b3

Ryy(M-1)  Ryy(M-2)   Ryy(M-3)  …          Ryy(0)            bM

p(M)

p(M-1)

=     p(M-2)

p(1)

(2.147  )
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2.6  Least Squares Optimal Filtering
(C.W. Therrien, pp.519-524)

 In the minimum mean-squared estimation , the sequences ( or  

vectors)   y  and x  were regarded as random processes with 

known ( or previously estimated) second-order (moment ) 

statistics. 

 Here , we are to consider the optimal filtering problem from a 

slightly different approach , the least  square  (LS) method.
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2.6.1   LS Method

Historical Notes :

The principle of least squares was introduced by the 
German mathematician Carl F. Gauss , who used it to 
determine the orbit of the asteroid Ceres in 1821 by 
formulating the estimation problem as an optimization 
problem.

Carl Gauss (1777 – 1855) was born in Braunschweig , 
Germany.     

 There is no presumed knowledge of the statistical properties 
of  random vectors x and y  beforehand . It is assumed that 
a typical data sequence of  both x and y  has been 
measured and recorded and that these sequences can be 
used to design the filter .

 We are to estimate         x = [ x(0) , x(1), …, x(M) ]T

given the observation    y = [ y(0) , y(1), …, y(M) ]T
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 If a causal FIR filter of length M is used , then the estimate 
for the given data sequence is 

x^(n)  = Σi =0
M h(i) y(n- i )                    (2.148)

and the estimation error can be defined as  

ε(n)  =  x(n) - x^(n)                                (2.149)

The approach here is to design the filter to minimize the 

sum of squared errors 

S = Σn = nI
nF ｜ε(n) ｜2                             (2.150)

where n1 and nF are some initial and final values of   n  that 

define the interval over which to perform the minimization.

Note that no probabilistic statements have been made in 

defining this problem.
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 The criterion (2.150) is called a least squares criterion.

 In matrix form, we can express  ( 2.148) as

x^ = Y h                                                        (2.151)

where      x^ =  [ x^(nI )  x^( nI +1) … x^( nF) ]T 

y(nI) y(nI - 1) …  y(nI –M)

y(nI +1)   y(nI  )    …  y(nI –M+1)

Y =

y(nF ) y(nF  -1) … y(nF  -M)        (2.152)

and          h =  [ h(0)  h(1)   …  h(M) ]T                           (2.153)
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 The matrix Y is called the data matrix and has dimension 

K X M where  K = nf  - nI + 1 .

It will be assumed that  K >> M .

 Define the error vector as

ε=  x – x^ (2.154)

x and  ε are  K-dimensional vectors.

Then the problem is to minimize 

S = ∥ ε ∥2  = ε*T ε                           (2.155)
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2.6.2  LS Optimal Filtering

 A direct approach to this problem would be as follows .

Substitute (2.148) and (2.149) into (2.150) and expand the 
result to obtain

S = (x-Yh ) *T (x-Yh )

=  x *T x - h *T Y *T x - x *T Yh + h *T Y *TY h

(2.156)

 Then by formal methods of differentiation , a necessary 
condition for the minimum can be found to be 

( Y *TY) h = Y *T x (2.157)

This is the least squares Wiener –Hopf equation.

 If  Y has independent columns ( i.e. , if it is of full rank) , 
then Y *TY is also of full  rank and  (2.157) has  the 
solution

h =  ( Y *TY) - 1 Y *T x  (2.158)
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 The sum of the squared errors for the optimal filter can be 
found by returning to (2.156) and writing   

S = (x-Yh ) *T (x-Yh )

= x *T ( x-Yh) – (Yh) *T (x-Yh)

= x *Tx - x *T Yh - h *T (Y *Tx -Y *TYh)

=   x *Tx - x *T Yh (2.159)

 Denote that   Y+ = ( Y *TY) - 1 Y *T (2.160) 

Then we can write the optimal solution (2.158) of  h  as

h = Y+ x (2.161)

The matrix Y+  is known as Moore-Penrose pseudoinverse .
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2.6.3   Least Squares Orthogonality

 Theorem ( Least Squares Orthogonality):

Let x^ = Yh and  ε=  x – x^

Then h minimizes the sum of squared errors

S = ∥ ε ∥2                                                                            (2.162)

if  h is chosen such that     Y *T ε = 0

Further , the sum of squared errors is given by

S = x *T ε (2.163)

Proof  :

Let h be any vector of filter coefficients  and  h⊥

be the vector that results in orthogonality.
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Further , let εbe the error vector corresponding  to h 

and ε⊥ be  the error vector corresponding to h⊥ .

Then it follows that 

ε= x-Yh =  ( x-Y h⊥ ) + Y(h⊥ - h )

= ε⊥ + Y(h⊥ - h )

so that

ε *T ε = [ε⊥ + Y(h⊥ - h ) ] *T [ε⊥ + Y (h⊥ - h ) ]

= ε⊥ *T ε⊥ +  (h⊥ - h ) *TY *T ε⊥
+ ε⊥ *T Y (h⊥ - h ) + (h⊥ - h ) *T Y *T Y (h⊥ - h )

Since ε⊥ *T Y and  Y *T ε⊥ are  both zero by assumption , 

this  leads to

S =ε *T ε = ε⊥ *T ε⊥ + (h⊥ - h ) *T Y *T Y (h⊥ - h )

which is clearly minimized when  h = h⊥ .

The minimum sum of squared errors is then

S =ε *T ε = ( x-Y h ) *T ε  =  x *T ε 

The last step follows because  Y *T ε =  0 .  

This proves the theorem.
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The results of the above Theorem can now be applied to 

solve the optimal LS filtering problem. The Theorem 

requires that 

Y *T ε = Y *T ( x-Yh ) = 0

which leads to the Wiener-Hopf equation (2.131)

Y *T x  = Y *T Yh (2.164)

 Further , from the theorem , the minimum sum of squared 
errors is given by

S = x *T ε = x *T (x-Yh) =  x *T x - x *T Yh (2.165)

as  before ( 2.135) .
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Example

The sequence {x(n); 0≦n ≦4 } = { 1,-1,1, -1,1 } is to be estimated from 

the observation sequence { y(n)} = { 1,-2,3, -4 ,5} 

using an FIR filter of length   P=2 .  Choosing  nI  = 1, nF = 4 .  

We obtain the following  least-squares problem :

The pseudo inverse of the data matrix is    

The filter is the  given by                   
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Example #2 (   Estimating Expected Values from Data )

 Assuming that  x(1)   x(2) … x(K)  are samples of a random vector x. 

The expectation  of a  function φ(x) can be approximated as

[φ(x) ] = ( 1/K ) Σ φ(xK ) 

 When estimating for expectation of a quantity involving two random 

vectors from samples  x(1)   x(2) … x(K) and  y(1)   y(2) … y(K)   . 

The estimate for the expectation takes the form 

[φ(x,y) ] = ( 1/K ) Σ φ(xK, yK ) 
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• For complex-valued random vectors , define  the data 

matrix  X by

X =  (  x(1)*   x(2)* … x(K) *  ) T  

Then since   X*T X  = Σk=1
K x(k)*   x(k)*T

The correlation matrix can be written as

Rxx  =  ( 1/K ) X*T X 

Then a typical element  rkl    =  ( 1/K ) xk*
T xl
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Toeplitz  Matrix
 A Toeplitz matrix or diagonal-constant matrix, named after Otto

Toeplitz, is a matrix  in which each descending diagonal from left to

right is constant. For instance, the following matrix is a Toeplitz 
matrix:

a b c d e

f a b c d

e f a b c

d e f a b

c d e f a  

Toeplitz systems of form  Ax = b can be solved by the 

Levinson- Durbin  recursion  in Θ(n2) time.

Note that Levinson-Durbin recursion  is a procedure in linear 

algebra to  recursively calculate the solution to an equation 

involving a Toeplitz matrix. 
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Appendix 
Norbert Wiener (1894-1964 ) 

 Norbert Wiener was born in Columbia, Missouri.

He entered Tufts College at age 11.

Harvard awarded Wiener a Ph.D. in 1912, when he was a mere 18, for a 
dissertation on mathematical logic.

In 1914, Wiener traveled to Europe, to study under Bertrand Russell 

and G.H.Hardy at Cambridge University, and under David Hilbert and 

Edmund Landau at the University of Gottingen  . 

 Wiener ‘s position in the Mathematics Department at MIT began in 1919. 
He was promoted to Professorship in 1932.

He was a pioneer in the study of stochastic and noise processes, 
contributing work relevant to electronic engineering, communications 
and control systems.

 Wiener is perhaps best known as the founder of cybernetics, a field that 
formalizes the notion of feedback and has implications for  engineering , 
systems control , computer science , biology , philosophy, and the 
organization of  society.
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• In 1942 ,Wiener developed theory of signal transmission in the presence 
of a perturbative noise, in a classified monograph ,nicknamed "the 
yellow peril“ and then in Extrapolation, Interpolation and Smoothing 
of Stationary Time Series with Engineering Applications (1949). 

In this book Wiener applies generalized harmonic analysis to stationary 
random signals and solves the problem of optimal elimination of the 
perturbative noise and of optimal prediction of the signal itself, with the 
help of a filtering operator. 

Quite independently, A.N. Kolmogoroff had announced results in the 
same domain at a time (1941) when scientific communications were 
interrupted. 

Norman Levinson (, 1912 –1975) 

was an American mathematician. He worked closely with Norbert
Wiener in his early career. He joined the faculty  of the MIT in 1937. 

He received both his BS degree and his  master degree in electrical 
engineering from MIT in 1934, where he had studied under Wiener 
and took almost all of the graduate-level courses in mathematics. He 
received the MIT Redfield Protor Traveling Fellowship to study at 
Cambridge University , with the assurance that MIT would reward him 
with a Ph. D. upon his return regardless of whatever he produced at 
Cambridge. Within the first four months in Cambridge, he had already 
produced two papers. In 1935, MIT awarded him with the Ph. D. in 
mathematics.

http://en.wikipedia.org/wiki/Norbert_Wiener
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• Norbert Wiener and Eberhard Hopf

In retrospect, it seems an unlikely collaboration: American born 

Norbert Wiener (1894–1964) and Austrian born Eberhard 

Hopf (1902–1983).

• The former was of European Jewish descent1 whilst the latter 

was educated in Berlin

To the general public Norbert Wiener is widely recognised as 

the founder of modern cybernetics. 

To mathematicians, however, he is primarily known for his 

highly innovative and fundamental work in what is now termed 

stochastic processes. His interest in randomness began in the

early 1920s with studies of Brownian motion. This led him to 

harmonic analysis, Tauberian theorems and eventually to 

Paley–Wiener theory which was subsequently used to study

problems involving more general stochastic processes. 
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• Eberhard Hopf, on the other hand, is known primarily for his 

work in ergodic theory and partial differential equations—his 

bifurcation theory is a particular tour de force that is still used 

repeatedly today as a central element of stability analysis and 

dynamical systems theory.

• The two men differed greatly in personality. Wiener is widely 

acknowledged as having been absent-minded and his papers 

were hard to read: sometimes difficult results appeared with 

scarcely a proof and at other times he would present a lengthy 

proof of a triviality! It is also said that Wiener’s lectures were

difficult and often without structure.

• In contrast, Hopf was an excellent communicator: he had the

ability to illuminate the most complex subjects and

render them palatable to his colleagues and even to non-

specialists.
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• The Wiener–Hopf technique

In 1930, having completed his Habilitation in Mathematical   

Astronomy at the University of Berlin, Hopf received

a fellowship from the Rockefeller Foundation to study classical 

mechanics with Birkhoff (1884–1944) at Harvard College

Observatory. A year later, and with the help of Norbert Wiener 

(who was already established at MIT), he joined the Department

of Mathematics at the Massachusetts Institute of Technology

on a temporary contract.

The collaboration between Wiener and Hopf was initiated by 

their mutual interest in the differential equations governing 

the radiation equilibrium of stars.
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• It was at the end of his contract with MIT that Hopf took up a 

full professorship at the University of Leipzig. 

On the  matter of Hopf’s return to Germany, Wiener was

uncritical. He knew that, particularly when set against the

United  State’s economic depression, the post offered to Hopf 

was both lucrative and offered social prestige beyond that

then available at MIT. 

He acknowledged that Hopf’s views were not strongly pro-Nazi 

and felt that the position was  better filled by a man of moderate 

views. Wiener feared, however, that Hopf’s acceptance would

severely damage his standing in the academic community. 

Indeed that seems to have been the case: in the years following 

the end of the second World War, Hopf suffered a substantial 

decrease in popularity which led to the neglect of his work and

even to it being attributed to other mathematicians. 

It is, for example, suggested that Hopf’s name was dropped

from the discrete version of the Wiener–Hopf equation, which is 

now referred to as the ‘Wiener filter’.
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• his standing in the academic community. Indeed that seems to 
have been the case: in the years following the end of

• the second World War, Hopf suffered a substantial decrease in 
popularity which led to the neglect of his work and

• even to it being attributed to other mathematicians. 

• It is, for example, suggested [8] that Hopf’s name was dropped

• from the discrete version of the Wiener–Hopf equation, which is 
now referred to as the ‘Wiener filter’.
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• Eberhard Hopf was born in Salzburg, Austria, but his scientific career was divided between Germany and the 
United States. He received his Ph.D. in Mathematics in 1926 and his Habilitation in Mathematical Astronomy from 
the University of Berlin in 1929.

• In 1930 he received a fellowship from the Rockefeller Foundation to study classical mechanics with George 
Birkhoff at Harvard, but his appointment was at the Harvard College Observatory. In late 1931, with the help of 
Norbert Wiener, Hopf joined the Department of Mathematics of the Massachusetts Institute of Technology, 
accepting the position of Assistant Professor. While at MIT, Hopf did much of his work on ergodic theory.

• In Cambridge Hopf worked on many mathematical and astronomical subjects. His paper On time average theorem 
in dynamics, which appeared in the Proceedings of the National Academy of Sciences, is considered by many to 
be the first readable paper in modern ergodic theory. His book Mathematical problems of radiative equilibrium first 
appeared in 1934 and was reprinted in 1964. Another important contribution from this period is the theory of 
Wiener-Hopf equations, which he developed in collaboration with Norbert Wiener. By 1960, a discrete version of 
these equations was being extensively used in electrical engineering and geophysics, their use continuing until the 
present day. During this time, Hopf gained a reputation for his ability of illuminating the most complex subjects for 
his colleagues and even for non-specialists. Because of this talent, many discoveries and proofs of other 
mathematicians became easier to understand after they had been described by Hopf.

• In 1936 Hopf received and accepted an offer of a full professorship from the University of Leipzig. Hopf, with his 
wife Ilse and their infant daughter Barbara, returned to Germany, which by this time was under the control of the 
Nazi Party.

• The book Ergodentheorie, most of which was written when Hopf was still at the Massachusetts Institute of 
Technology, was published in 1937. In that book, containing only 81 pages, Hopf presented a precise and elegant 
summary of ergodic theory. In 1939 Hopf established ergodicity of the geodesic flow on compact manifolds of 
constant negative curvature. In 1940 Hopf was on the list of the invited lecturers to the International Congress of 
Mathematicians to be held in Cambridge, Massachusetts. Because of the start of World War II, however, the 
Congress was cancelled.

• In 1942 Hopf was drafted to work in the German Aeronautical Institute. In 1944, one year before the end of World 
War II, Hopf was appointed to a professorship at the University of Munich. In 1947, at the behest of Richard 
Courant he returned to the United States, where he presented the definitive solution of Hurewicz's
problem.[citation needed]

• On 22 February 1949 Hopf became a US citizen and joined Indiana University at Bloomington as a Professor of 
Mathematics. In 1962 he was made Research Professor of Mathematics, staying in that position until his death.

• Hopf was never forgiven by many people for his moving to Germany in 1936, where the Nazi party was in power. 
As a result, most of his work in ergodic theory and topology was neglected or even attributed to others in the years 
following the end of World War II. An example of this was the expulsion of Hopf's name from the discrete version 
of the Wiener–Hopf equations, which were frequently referred to as "Wiener filter".
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