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2.6  Introduction to Adaptive Filtering

 Adaptive signal processing technique has been widely applied 

in the area of communications, control, and array processing. 

 The application of adaptive  technique in communications 

include : adaptive equalizer, adaptive echo cancellation, 

adaptive predictive coding of speech, etc.

 The adaptive systems  for signal processing usually has  all of 

the following characteristics :

(1) they can automatically adapt  in the face of changing 

environments and changing system requirements

(2) they can be trained to perform specific filtering or

decision-making tasks

(3) there should be some  “adaptive algorithm” for adjusting 

the system’s parameters.
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2.7 Adaptive Wiener Filter

 Figure 2.x1 shows a simplified  block diagram of a Wiener 

filter. 

x^ (n )  =  Σk=1
M W( n,k ) y(k) (2.166)

The optimal weights of  an FIR Wiener filter is obtained by

solving the normal equation

E[x(n) y(i) ]  = Σk=1
M W( n,k ) E[y(k) y(i) ]  

for  (n-M) ≦ i ≦ n

(2.167)



4

We can write Eq.(2.167) in vector notation as

p = E[ x(n)y ]                                          (2.168)

and     x^ (n)   = WT y (2.169)

where  W = (w0 , w1 , …,wM )
T  is the optimum weight- vector ,

y =  ( y(n)   y(n-1) …  y(n-M ) )T

is the vector of   observations up  to the current time n ,
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 The optimal weights Wo and  the estimate  are then given by

Wo = E [x(n)y ] E[yyT ] -1 

= RYY
-1  p (2.170) 

The estimated mean-squared  error at time instant n is 

expressed as

Jn (w) = E[︱ en︱
2]  = E[ (︱ x(n )- x(n) ︱2 ] 

= E[en {x(n) - Σk=1
M w( n,k ) y(k) } x(n)

= E[x2 (n)] – E[x(n)yT ] E[yyT ] -1 E[yx(n)]                                                                                        

(2.171)
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Fig.2.x1
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 One difficulty in practice with the Wiener solution is that 

the statistical quantities R and p  must be known, or at least 

estimated, in advance. 

This is what is done in most speech processing:

the input speech is divided into fairly short segments known 

as frames , each frame is assumed to be a stationary process. 

The statistical correlations are estimated  by sample 

correlations , and, finally, the optimal weights 

corresponding to each frame are computed.

This procedure is block-by-block adaptive. 
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 The Widrow-Hoff  least –mean-square (LMS) adaptive 

algorithm is an alternate approach that adapts the filter’s 

weights ( or called coefficients ) on a sample-by- sample

basis. 

It does not require a priori knowledge  of the correlation 

matrices. The only requirement for this algorithm is that 

the statistical properties of the input signal not to be 

changing fast , so that the filter has time to converge to the 

optimal weights.
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 A typical adaptive implementation  of a Wiener filter is 

depicted in Fig. 2.x2. The adaptive algorithm continuously 

monitors  the output  error signal  en and attempts to 

minimize the output power en 
2  . At each time instant n , the 

current values of the weights are used to perform the 

filtering operation.

 The computed output  en  is then used by the adaptation 

part of the algorithm to change the weights in the direction 

of their optimum values.

 As processing  of the input signals   x(n) and y(n ) take 

place and the filter gradually learns the statistics  of these 

inputs,

Its weights  gradually converge to their optimum values 

given by the Wiener solution.
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Fig.2.x2
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 The transversal filter ( also called FIR filter) shown in Fig.2.2 

is fundamental to adaptive signal processing. Because of its 

nonrecursive structure , it is relatively easy to implement and 

analyze.

 The output of the transversal filter is given by

x^ (n) = Σk=0
M wk y (n-k) = WT . Y (n ) (2.172)

where  W = (w0 , w1 ,w2 ,…, wM )T

Y (n ) = ( y(n) , y(n-1) ,…, y(n-M) )T

and      en = x(n) – x^ (n) (2.173)

The mean-squared estimation error  Jn is expressed as

Jn = E[e2 (n)] = E[ {x (n) - WT . Y (n ) }2 ]    

(2.174)
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 The adaptation of the tap weights toward their optimal values 
iteratively by using  the method of steepest descent .

Note that the direction of  the negative gradient is known as

the direction of  steepest descent.

The weights are updated in time according to the algorithm

W(n+1) = W(n) - μ ▽wJn (2.175)

where μ is the  step- size parameter and ▽w  is the 

gradient operator defined as column vector

▽w = [δ / δw0   δ / δw1  … δ / δwM ]
T (2,176)

Note that the ith element of the gradient vector  ▽wJn   is 

δ Jn / δwi = - 2 E[en y(n-i) ]                              (2.177)

and     ▽wJn =  -2 E[en Y(n) ]                                         (2.178)

Then   W(n+1) = W(n) + 2 μ E[en Y(n) ]                      (2.179) 

This is the well-known steepest descent algorithm.
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Fig. 2.x3



14



15

2.8  The LMS Algorithm

 The main limitation of the steepest descent algorithm is 

that it requires exact measurement of the gradient vector in 

each iteration.

 A method of finding approximate solution of the optimal 

weights is the so-called  least mean square (LMS) algorithm 

proposed by Widrow and Hoff  in 1960 . 

 The LMS algorithm is the most widely used adaptive 

filtering algorithm , in practice. This can be attributed to 

its simplicity and robustness to signal statistics.

 The conventional LMS algorithm is a stochastic 

implementation of the steepest descent algorithm .

It simply replaces the cost function Jn = E[︱en ︱2]  by 

its instantaneous coarse estimate Jn =︱ en︱
2
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 The LMS is obtained from equation (2.x13) by taking the 

instantaneous estimate of the gradient ,instead of statistical 

average. Then we have

▽wJn  = - 2 en Y(n)                                             (2.180)

W(n+1) = W (n) + 2 μ en Y(n) (2.181)

 In summary , three steps are required to complete each 

iteration of the LMS algorithm in adaptive filtering :

(1) x^ (n) = Σk=0
M w (k) y (n-k ) = WT . Y(n)      (2.182)

(2)   en  =  x(n) – x^ (n) (2.183)

(3)  W(n+1) = W (n) +  2 μ en Y(n)                        (2.184)
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2.9 Convergence Property of LMS  Algorithm

 From the tap-weight adaptation equation (2.x19),we have the 
relation

W(n+1) = W (n) + 2 μ en Y(n)

= W (n) + 2 μ Y(n) {x (n) - WT . Yn }

= W (n) + 2 μ Y(n) {x (n) - Y(n)T .W }

= { 1- 2 μ Y(n)Y(n)T }W (n) + 2 μ Y(n)x(n)

(2.185)

Denote that  c(n) = W(n) – Wo(n)

where Wo(n) is the optimal weights of the Wiener solution.  

Then , 

c(n+1) = ( 1- 2 μ Y(n)Y(n)T ) c(n)  

+ 2 μ {x (n) Y(n) - Y(n)Y(n)T Wo(n) }  

(2.186)
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Taking the expectation values of both sides of Equation 
(2.x20), we obtain

E[c(n+1)] =  ( 1- 2 μ Ryy ) E[ c(n)]  

+ 2 μ (Ryx - Ryy Wo(n) ) 

=  ( 1- 2 μ Ryy ) E[ c(n)]                 (2.187)

Here we have assumed that each sample vector Y(n) is 

uncorrelated with all previous sample vector Y(i) , 

i = 1,2,…,n-1 , and each Y(n) is  also uncorrelated with all 
previous samples of x (i ) . Therefore , the weight vector 

W (n) is independent of the input vector Y(n) .

 Consider  the equation 

c(n+1) = ( 1- 2 μ Ryy ) c(n)                              (2.188)

If we diagonalize  the matrix Ryy using a unitary matrix Q 

by     QT RyyQ =Λ , the diagonal matrix Λ consists of  the 

eigenvalues of Ryy
.
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Define the transformed vector

V (n+1) =  QT c(n+1)

Then we obtain 

V (n+1)  = (1- 2 μ Λ ) V (n)                               (2.189)

The solution to equation (2.102)  is 

vj (n +1) = (1- 2 μλj ) vj (n )                              (2.190)

for j = 1,2,…,M   , whereλj  is the j-th eigenvalue of Ryy
. 

Therefore we obtain 

vj (n) = (1- 2 μλj )
n vj (0)                                      (2.191)

The convergence of  weights requires that

︱1- 2 μλj ︱ < 1  

or , equivalently,    0 < μ < 1 /λj    for all  j .

The condition is guaranteed if  

0 < μ < 1 /λmax                                                                         (2.192)

where λmax  is the maximum eigenvalue of Ryy .
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 From equations  (3.13) and (3.16) ,we conclude that the LMS 
algorithm converge in the mean provided that 

0 < μ <  1 /λmax

 Excessive mean-squared- error  (MSE) :

When  W(n) = W0 , the true gradient is zero. But the gradient

estimated in the LMS algorithm is equal to the gradient noise, 

- 2 e(n ) Yn , from equation ( 2.180) .

The weight vector is on the average  “ misadjusted” from its  
optimal setting.

The excessive mean- squared-error (MSE) is given by

Excessive MSE = E[VTΛV] = Σj =0
M λj E[vj

2]    (2.193)
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 The convergence property of the LMS algorithm is 

illustrated by its learning curve , as shown in Fig. 3.4. It can 

be seen that the learning curve consists of noisy decaying 

exponentials.

In general , the convergence speed is inversely proportional 

to the step-size μ .
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Fig.2.4
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2.11 Applications of Adaptive Filtering 

i.   System Identification

ii .  Adaptive Noise Cancellation

iii.  Adaptive Echo Cancellation

iv.   Adaptive Equalization
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2.11.1   System Identification
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 An adaptive filter can be used in modeling a system. That is, 

it can imitate the behavior of physical dynamic system. In 

the figure, both the unknown system and the adaptive filter 

are driven by the same input. The adaptive adjusts itself 

with the goal of causing its output to match that of the 

unknown system.
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2.11.2 Adaptive Noise cancellation
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 In an adaptive noise canceller, two input signals dk and xk 

are available. The primary input dk is composed of a 

desired signal plus undesired noise interference , and the 

other input xk is composed of  noise interference which is 

correlated with the noise part of the primary input.

 The adaptive noise canceller operates as a correlation 

canceller. It produces the best possible replica of the noise 

component of dk and proceeding to cancel it.

 When the secondary signal xk  is purely sinusoidal at some 

frequency  f0 , the adaptive filter behaves as a notch filier at 

the sinusoidal frequency.
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2.11.3 Adaptive Echo Canceller
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 Consider  two speakers connected  to each other by the 

telephone network . Due to various impedance mismatch  

( such as the hybrid connecting a four-to-two wire 

transmission )an echo is generated.

 The task of the echo canceller is to replicate the echo signal 

and subtract this from the incoming signal ( echo plus far-

end signal) . Since the echo path is unknown and can change , 

the echo canceller must adaptively try to produce an echo 

estimate.
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2.11.5  Adaptive Equalizer
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 In the baseband part of the receiver in a transmission system, 

the equalizer has only the corrupted signal available , as 

shown in the above figure. The control signal ( for 

adaptation ) must be derived from the received signal itself , 

for example by taking the output signal of a detector in a 

decision-oriented data equalizer. The operation of the 

equalizer involves a training mode followed by a tracking 

mode. During the training , a known test signal is 

transmitted to probe the channel. By generating a 

synchronized version of the test signal in the receiver , the 

adaptive equalizer is supplied with a desired response dk .

The equalizer output is subtracted from this desired  

response to produce an error signal , which is in turn used to 

adaptively adjust the filter’s coefficients to their optimum 

values
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 When the initial training period is completed , the 

coefficients of the adaptive equalizer may be continually 

adjusted in a decision-oriented mode. In this mode , the 

error signal is obtained from the final receiver estimate of 

the transmitted (signal) sequence . The receiver estimate is 

ontained by applying the adaptive equalizer output to a 

decision device. In normal operation , the receiver decisions

are correct with a high probability , so that the estimate of 

the error signal is correct often enough to allow the 

adaptive equalizer to maintain proper adjustment of its 

coefficients.
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2.12 RLS Adaptive Filter

 The LMS adaptation algorithm , based on the steepest

descent method provides a gradual, iterative  minimization

of the performance  index. The adaptive  tap-weights are not 

optimal at each time instant , but only after convergence.

 Adaptive recursive  least- squares (RLS) algorithms , based 

on the exact minimization of least squares criteria, are the 

time-recursive  analogs of the  adaptive FIR Wiener filtering .

 Because of their fast convergence RLS algorithms have been  

proposed  for use in fast start-up channel equalization. They 

are also routinely used in real-time  system identification 

applications.

 The main disadvantage is that they require a fair amount of 

computation ( O(M2), for M-tap filters ) per time update.
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2.13 Adaptive Transversal Filters using Least Squares 

Method 

 Consider the stationary adaptive FIR filter shown in Fig.2.x2.

If the  optimal estimation criterion is to minimize the 
weighted sum of squares of the difference between     

xi and  Σk=0
M wk y(i-k) for i = 1,2,…,n . 

Then the  estimation is called the least square (LS) method.

 Denote that  

S = Σi =1
n λn-i ︱ei ︱

2                                     (2.1194)

and    ei = (x(i) - Σk=0
M   wk y(i-k) )

=   x(i) - WT Y(i)                              ( 2.195)

where          W(n) = ( w0(n) , w1(n) ,…, wM(n) )T (2.196) 

Y(i) = ( y(i) , y(i-1) ,…, y(i-M) )T (2.197)                          
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Fig.3.2
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 Define the deterministic correlation function as follows.

Ryy(n) = Σi =1
nλn-i Y(i) Y(i)T       ,  

Rxy(n) = Σi =1
nλn-i X(i) Y(i)T 

By minimizing  S , we obtain the normal equations

Ryy(n) Wop = Rxy(n) 

or           Wop = Ryy(n) - 1 Rxy(n) 

= P(k) Rxy(n) (2.198)     

where    P(k) = Ryy(n) - 1 (2.199) 

These equations  are the least square analog of the Wiener 
solution.

 The recursive least square (RLS) algorithm is obtained 

by writing the time-dependent correlations as

Ryy(n) = λ Ryy(n-1) + Y(n) Y(n)T                                   (2.200)

Rxy(n) = λ Rxy(n-1) + X(n) Y(n)T (2.201)
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The (M+1) x  (M+1)  correlation matrix  is given by

Φ(n) = Σi=1
nλn-i Y(i) YT (i) (2.202)

where the forgetting factor λ is a positive constant close to, 

but smaller than, one .  When λ< 1 , the weighting factors in 

(3.26),    (3.27) and (3.28) give more weigh to the recent 

samples of the error estimate .

 With some elaborate mathematical treatment, the recursive 

relation for filter coefficients (tap-weights) is given by

W(n) = W(n-1)  + k(n) P(n) Y(n) ξ(n) (2.203)

where  ξ(n) = xn – WT (n-1) Y(n ) (2.204)

and      P( n ) = λ-1 P(n-1) – λ-1 k(n ) YT (n) P(n-1) (2.205)

k(n)  = λ-1 P(n-1) Y(n) / [1+ λ-1 YT (n) P(n-1) Y(n)]
(2.206)
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 Initialization of the RLS algorithm:

The applicability of the RLS algorithm requires that we 

initiate the recursion of Equation (3.26) by choosing a 

starting  value 

P(0) that assures the nonsingularity of the correlation 

matrix Φ(n) :   

P(0) = δ-1 I  ,   δ = a small positive constant 

W (0) = 0
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