
1

7.2 Convolutional Codes

7.2.1 Introduction
• Convolutional codes were first discovered by P. Elias in 1955.

• The structure of convolutional codes is quite different from
that of block codes.

During each unit of time, the input to a convolutional code
encoder is also a k-bit message block and the corresponding
output is also an n-bit coded block with k < n.

• Each coded n-bit output block depends not only the
corresponding k-bit input message block at the same time
unit but also on the M previous message blocks.

• Thus the encoder has k input lines, n output lines and a
memory of order M as shown in Figure 7.1 .

2

Fig.7.1

3

 Each message (or information) sequence is encoded into a

code sequence.

• The set of all possible code sequences produced by the

encoder is called an (n,k,M) convolutional code.

The parameters, k and n , are normally small,

say 1 k  8 and 2  n  9.

The ratio R = k/n is called the code rate.

The parameter M is called the memory order of the code.

• Note that the number of redundant (or parity) bits in each

coded block is small.

However, more redundant bits are added by increasing the

memory order M of the code while holding k and n fixed.

4

7.2.2 (n,k,M) Convolutional Codes
• For (n,k,M) code , the encoder has k inputs and n outputs as

shown in Fig. 8.1

• At the i-th input terminal, the input message sequence is

m(i) = (m1
(i) , m2

(i) , … , mr
(i) , …) for 1  i k. (1)

• At the j-th output terminal, the output code sequence is

c(j) = (c1
(j) , c2

(j) , … , cr
(j) , …) for 1 j n (2)

5

• An (n,k,M) convolutional code is specified by k × n generator

sequence:

)()2()1(

)(

2

)2(

2

)1(

2

)(

1

)2(

1

)1(

1
...,,

n

kkk

n

n

ggg

ggg

ggg







6

The n output code sequences are then given by

(4)

Encoder

• The encoder of an (n,k,M) code consists of k shift-registers,
each has at most M stages. The feedforward connections are
based on the k× n generator sequences.

• The message bits stored in the k shift-registers together
represent the state of the encoder.

)()()(

2

)2()(

1

)1()(

)2()()2(

2

)2()2(

1

)1()2(

)1()()1(

2

)2()1(

1

)1()1(

n

k

knnn

k

k

k

k

gmgmgmc

gmgmgmc

gmgmgmc















7

• Example 7.1

Let n=3, k=2, and M =1. Consider the (3,2,1) convolutional

code generated by the following 6 generator sequences:

• The output sequence are:

(5)

• The 3 code digits of the l-th code block are given by:

(6)

).01(g),01(,)10(

),11(g),10(,)11(

(3)

2

)2(

2

)1(

2

(3)

1

)2(

1

)1(

1





gg

gg

)3(

2

)2()3(

1

)1()3(

)2(

2

)2()2(

1

)1()2(

)1(

2

)2()1(

1

)1()1(

gmgmc

gmgmc

gmgmc







)2()1(

1

)1()3(

)2()1(

1

)2(

)2(

1

)1(

1

)1()1(

llll

lll

llll

mmmc

mmc

mmmc













8

• The encoder is shown in Figure 7.2

Fig.7.2

+

+

+

)2(

1lm

)1(

1lm

m

)1(

m

)2(

m

)1(

lm

)2(

lm)3(

lc

)2(

lc

)1(

lc
)1(

lC

)2(

lC

)3(

lC

C

9

• Transform –Domain Operation :

Generator Polynomial G(D)

g1
(1)(D) g1

(2)(D) … g1
(n)(D)

g2
(1)(D) g2

(2)(D) … g2
(n)(D)

. .

G(D) = . .

. .

gk
(1)(D) gk

(2)(D) … gk
(n)(D)

The encoder output can be expressed by

V(D) = U(D) G(D)

where U(D) = [u(1)(D), u(2)(D) , …, u(k)(D)] …..Input

V(D) = [v(1)(D), v(2)(D) , …, v(n)(D)] ….Output

10

Example : The (3,2,1) encoder shown in Fig.7.2

1+D D 1+D V(D) = (U1 U2) 1+D D 1+D

G(D) =

D 1 1 D 1 1

11

7.2.3 Systematic Form
• An (n, k, M) convolutional code is said to be systematic if the first

output sequence is identical to the input message sequence , i.e.,

C(1) = m (7)
Suppose the input message sequence is of finite length with L
bits,

m(i) = (m1
(i) , m2

(i) , … , mL
(i)) (8)

Since it take the last bit, mL-1 , M units of time to move out of the
memory, each output sequence consists of L+M bits,

c(j) = (v1
(j) , v2

(j) , … , vj
(j) , … , vL+M

(j))

for i = 1, 2, …, n. (9)

• After M zeros are added to the message sequence to compute the
last M output blocks (clear the shift register).

• The parameter K = M +1 is called the constraint length of the code.

12

7.2.4 State Diagram

• Since the encoder is a linear sequential circuit, its behavior
can be described by a state diagram.

Define the encoder state at the time l as the M-tuple,

(ml -1 , ml -2 , …, ml -M)

which consists of the M message bits stored in the shift
registers.

• There are 2M possible states. At any time instant, the
encoder must be in one of these states.

• The encoder undergoes a state transition when a message
bit is shifted into the encoder register as shown below.

Input State

ml (ml -1 , ml -2 ,…, ml -M)



ml+1 (ml , ml -1,…, ml -M+1)

13

• At each time unit, the output block depends on the input

and the state,

(10)

State Diagram (Pictorial Representation)

• Each state is represented by a vertex (or point) on a plane.

• The transition from one state to another state is

represented by a directed line (arc).

• Each directed line is labeled with I/O (input/output) pair.

),(
lll SmfV 

14

• Suppose ml is the current input. The current state of the
encoder is Sl =(ml-1 , ml-1 , …, ml-M) (11)

When cl is shifted into the encoder, the encoder moves into
the state Sl+1 = (ml , ml-1 , …, ml-M +1) (12)

which is called the next state.

• The encoder is completely characterized by a state diagram,

as shown in Fig.8.3

Sl

Sl+1
l

l

V

C

15

• Example 7.2:
Let n=2, k=1 and M=2. Consider a rate 1/2 (2,1,2)
convolutional code which is specified by the following two
generator sequences:

g(1)(D) = 1+ D2

g(2)(D) = 1+ D+ D2

Let m(i) = (m1
(i) , m2

(i) , … , mj
(i) , …) be the input message

sequence. Then the two output sequence are:

– The l-th output code block, , is given by

The encoder shown in Fig.8.4 consists of 2 memory units.

)111(

),101(

)2(

)1(





g

g

.*

,*

)2()2(

)1()1(

gmC

gmC





21

)2(

2

)1(









llll

lll

mmmc

mmc

16

• V(D) = U(D) G(D)

G(D) = (1+D2)

(1+D+ D2)

U = ml

V(D) = ml + ml-2

ml + ml-1 + ml-2

17

Fig.7.4

m
l-2

+

+

m
lm

)1(

lc

)2(

lc

)1(

C

)2(

C

Cm
l-1

18

• Each state is one of the forms:

(0.0), (0,1), (1,1), and (1,0).

The state diagram is shown in Figure 7.5.

01

00

10

11

1/00

0/01

1/110/11

1/100/10

1/01

0/00

19

7.2.5 Trellis Diagram

• The state diagram can be expanded in time to display the
state transition of a convolutional encoder in time. This
expansion in time results in a trellis diagram.

• Normally the encoder starts from the all-zero state,

(0, 0, …, 0).

• When the first message bit m1 is shifted into the encoder
register, the encoder is in one of the two following states:

(m1 = 0, 0, 0, …, 0) ; (m1 = 1, 0, 0, …, 0);

• When the second message bit m2 is shifted into the encoder
register, the encoder is in one of the following states:

(m2 = 0, m1= 0, 0, 0, …, 0); (m2 = 1, m1 = 0, 0, 0, …, 0);

(m2 = 0, m1 = 1, 0, 0, …, 0); (m2 = 1, m1 = 1, 0, 0, …, 0);

• Every time, when a message bit is shifted into the encoder
register, the number of state is doubled until the number of
states reaches 2M.

20

• At the time M, the encoder reaches the steady state.

• At the time l > M, the encoder is in the state,

(ml -1, ml -2, …, ml -M).

• At the time l+1, the encoder can move into one of the
following states:

(ml = 0, ml -1, ml -2, …, ml -M+1).

(ml = 1, ml -1, ml -2, …, ml -M+1).

• Therefore, in trellis diagram, there are two branches (or
transitions) leaving a state.

• Now, suppose the state of the encoder is

(ml , ml -1, ml -2, …, ml -M+1). for l > M.

• This state can be reached from two states,

(ml -1, ml -2, …, ml -M+1 = 0)

(ml , ml -1, ml -2, …, ml -M+1, ml –M = 1)

• Thus, for l >M, there are two branches merging into a state
in the trellis diagram.

21

Example 6.3:

• Consider the (2,1,2) convolutional code given Example 8.2.

Its trellis diagram is shown in Figure 8.6

• We see that there are two branches leaving each state,

depending on the input symbol, ml = 0 or ml = 1.

• The upper branch corresponds to an input symbol ml = 1,

while the lower branch corresponds to an input symbol

ml = 0.

• For l > M = 2, we see that there are two branches merging

into a state.

• The encoding of a message sequence is equivalent to tracing

a path through the trellis.

22

23

Termination of a Trellis
• Suppose the message sequence is of L bits long,

m = (m1 , m2 , … , mL)

• When the entire sequence has been encoded, the encoder must
return to the starting state. This can be done by appending M
zeros to the message sequence m .

• When the first appended “0” is shifted into the encoder register,
the encoder is in the state,

(0, mL-1 , mL-2 , … , mL- M+1)

• There are 2M-1 such states.

24

• When the second “0” is shifted into the encoder register,

the encoder is in the state,

(0, 0, mL-1 , mL-2 , … , mL- M+2)

There are 2M-2 such states.

• When the M-th “0” is shifted into the register, the encoder

is back to the all-zero state, (0, 0, …, 0).

• At this instant, the trellis converges into a single vertex.

• During the termination process, the number of states is

reduced by half as each “0” is shifted into the encoder

register.

25

Example 7.4

Again, we consider the (2,1,2) convolutional code given in

Example 7.2. The trellis diagram corresponds to a message

sequence of 5 bits long.

The trellis has a depth of 7 as shown in Figure 7.7

26

27

7.2.6 Minimum Free Distance

• The most important distance measure for convolutional

codes is the minimum free distance, denoted dfree.

• The minimum free distance of a convolutional code is

simply the minimum Hamming distance between any two

code sequences in the code.

• It is also the minimum weight of all the code sequences,

which are produced by the nonzero message sequences.

• The minimum free distance of the (2,1,2) convolutional code

given in Example 8. 2 is 5 , i.e., dfree=5.

28

Summary :

• A (n.k,M) convolutional code can be represented by :

1. Encoder block diagram using

digital circuits (shift registers , adders , etc.)

2. Generator polynomials, g (i) (D) .

3. State diagram

4. Trellis diagram

Note : constraint length K = M+1

number of states = 2M

29

The Most Widely Used Convolutional Codes

• The most widely used convolutional code is (2,1,6)
Odenwalter code generate by the following generator
sequence,

g(1) (D) = (1 111 001)

g(2) (D) = (1 011 011)

This code has dfree=10.

 With hard-decision decoding, it provides a 3.98dB coding
gain over the uncoded BPSK modulation system.

With soft-decision decoding, the coding gain is 6.98dB.

30

7.3 Maximum Likelihood Decoding of

Convolutional Codes

7.3.1 Maximum Likelihood Decoding
• For a convolutional code, each code sequence is a path in the trellis

diagram of the code.

• Suppose each message sequence consists of L message blocks of k
bits each, m = (m1 , m2 , … , mL)

.

• Then each code sequence c is a path of L+M branches long in the
trellis diagram, c= (c1 , c2 , … , c L)

where the l-th branch (or code block)

cl = (v1
(1) , v2

(2) , … , v L
(n)

• Suppose a code sequence is transmitted.

Let c = (c1 , c2 , … , c L)

be the received sequence where the l-th received block. .

31

• MLD: Find the path through the trellis diagram such that the conditional
probability, P(r ｜c) is the largest.

• For a binary input, Q-ary output discrete memoryless channel (DMC), is a
binary sequence and is a Q-ary sequence.

• The conditional probability can be computed as follows:

(13)

where is the branch conditional probability.

• The branch conditional probability is given by

(14)

where is the channel transition probability.

• Define the log-likelihood function of a path c as follows:

(15)

which is called the metric of path .

c

r

)|(crP








1

0

)|()|(

mL

l

ll
crPcrP

)|(
ll

crP






n

i

i

l

i

lll
crPcrP

0

)()(
)|()|(

)|(
)()(i

l

i

l
crP

)|(log)|(crPcrM 

32

• From (13) and (15), we have

(16)

where (17)

is called the branch metric.

• From (14) and (17), we have the branch metric

(18)

where

(19)

is called the bit metric.

• MLD: Find the path in the trellis diagram such that
is maximized. Then is the estimate of the transmitted
code sequence.

• For the first j branches of a path through the trellis, the
partial path metric is

(20)












1

0

1

0

)|()|(log)|(

mL

l

ll

mL

l

ll
crMcrPcrM

)|(log)|(
llll

crPcrM 






n

i

i

l

i

lll
crPcrM

1

)()(
)|(log)|(

)|(log)|(
)()()()(i

l

i

l

i

l

i

l
crPcrM 

c)|(crM

c









1

0

)|()]|([

j

l

llj
crMcrM

33

7.3.2 Maximum Likelihood Decoding for a BSC

• For a BSC (Q=2) with transition probability p < ½ , the log-
likelihood function becomes

(21)

where is the Hamming distance between and

Since and is a constant for

all code sequences , is maximized if and only if

is minimized.

• MLD: The received sequence is decoded into the code
sequence if is minimized.

)1log()(
1

log),()|(log pnmL
p

p
crdcrP 




),(crd r c

0)]1/(log[ pp)1log()(pnmL 

)|(log crP

),(crd

r

c),(crd

34

7.3.3 The Viterbi Decoding Algorithm

• The Viterbi algorithm performs maximum likelihood

decoding but reduces the computational complexity by

taking advantage of the special structure of the code trellis.

• It was first introduced by A. Viterbi in 1967 and was first

recognized by D. Forney in 1973 that it is a MLD algorithm

for convolutional code.

35

The Viterbi Algorithm

• Step 1. Starting at the level l = m in the trellis, compute the

partial metric for the single path entering each m-th order

node. Store the path (the survivor) and its metric for each

node.

• Step 2.

Increasing l by 1.

Compute the partial metric for all the paths entering a

(l+1)-th order node by adding the branch metric entering

that node to the metric of the connecting survivor at a

previous l-th order node.

For each (l+1)-th node, store the path with the largest metric

(the survivor) , together with its metric, and eliminate all the

other paths.

• Step 3. If l < L+M, repeat Step2. Otherwise, stop.

36

Example 7.5

• Consider the (2,1,2) convolutional code given in Example

7.2 whose trellis diagram is shown in Fig. 7.1. Suppose the

code is used for a BSC. In this case, we may use the

Hamming distance as the path metric. The survivor at each

node is the path with the smallest Hamming distance from

the received sequence.

• The message length L = 5.

• There are 7 levels in the trellis.

• The received words are 01 11 10 10 00 11 10

• The decoding process is shown in Figures 8.9 to 8.15.

37

38

Figure 7.9 Decoding process at level 2,

00 00 00

01

1010

11

00 00

11 11

01

101

1

2

2

1

3

)11,01(r

2),(),10,11(

2),(),01,11(

1),(),11,00(

3),(),00,00(

44

33

22

11









rcdc

rcdc

rcdc

rcdc

39

Figure 7.10

Decoding process at level 3 (comparison and elimination)

00 00 00 00

01

1010

11

01

10

11

00 00 00

01

11 11 11

11

00

01 01

10 10
10

2

1

2

3

1

2

3

3

)10,11,01(r

40

Figure 7.11

Decoding process at level 4 (comparison and elimination)

)10,10,11,01(r

00 00 00 00 00

01

1010

11

01

10

11

01

10

11

00 00 00

01

11 11 11

11 11

00 00

01 01 01

10 10 10
10 10

1

3

2

3

1

3

3

3

41

Figure 7.12

Decoding process at level 5 (comparison and elimination)

00 00 00 00 00 00

01

1010

11

01

10

11

01

10

11

01

10

11

00 00 00

01 01

11 11 11

11 11 11

00 00 00

01 01

10 10 10
10 10 10

3

3

1

3 3

1

4

4

)00,10,10,11,01(r

42

Figure 7.13

Decoding process at level 6 (comparison and elimination)

00 00 00 00 00 00 00

01

1010

11

01

10

11

01

10

11

01

10

11

01

00 00 00 00

01 01

11 11

11 11 11

00 00 00

01 01 01

10 10
10 10 10

4

1

4

3 4

2

)11,00,10,10,11,01(r

43

Figure 7.14

Decoding process at level 7 (comparison and elimination)

00 00 00 00 00 00 00 00

01

1010

11

01

10

11

01

10

11

01

10

11

01

00 00 00 00

01 01

11 11

11 11 11 11

00 00 00

01 01 01

10 10
10 10

4

1

4

3

2

4

)10,11,00,10,10,11,01(r

44

Figure 7.15 Decoding termination

00 00 00 00 00 00 00 00

01

1010

11

01

10

11

01

10

11

01

10

11

01

00 00 00

01 01

11 11

11 11 11 11

00 00 00

01 01 01

10 10
10 10

4

1

4

3

2

4

45

7.3.4 Coding Gain

• Coding gain is defined as the reduction in the require

Eb/N0 (usually expressed in decibels) to achieve a specified

error probability of a coded system over an uncodeed

system with the same modulation and channel

characteristic , as illustrated in Fig.8.16.

• For an uncoded coherent BPSK system with an AWGN

channel, the bit-error rate simply the transition probability,

• For large Eb/N0, this error rate (without coding) is

approximated by

(22)

)
2

()(

0
N

E
QEP

b


0
/

282.0)(
NE

b

beEP




Fig.7.16 Illustration of coding gain

47

Modifications of Viterbi Algorithm : Truncation

• For very large L, this is practically impossible, and some
trade-offs must be made.

• One approach to this problem is to truncate the path
memory of the decoder by storing only the most recent r
blocks of message bits for each survivor, where r << L.

• After the first r blocks of the received sequence have been
processed by the decoder, the decoder memory is full.

• As soon as the next received block is processed, a decoding
decision must be made on the first block of k message bits,
since they can no longer be stored in the decoder memory.

48

• The optimum strategy to make this decision is to select the

survivor with the best metric, and the first block of k

message bits of this survivor is chosen as the decoded

message block and released to the user.

• After the first decoding decision is made, subsequent

decoding decisions are made in the same manner for each

new received block processed.

• Note that decoding decisions made in this way are

no longer maximum likelihood, but can be almost

as good if r is large enough.

49

• Experience and analysis have shown that if r is in the

order of 5 times of the encoder memory K or more, with

probability approaching “1”, all the 2K survivors stem from

the same branch r levels back as shown in Figure 8.17.

• Hence there is no ambiguity in making decoding decision.

The parameter r is called the decoding span (or depth).

Figure 7.17

Decoding decision with a finite path memory r

51

7.4 Punctured Convolutional Codes

 In many bandwidth-limited application s , high-rate or low-
redundancy convolutional codes are desirable . However, the
Viterbi decoder forthese codes is often quite complicated . For
the (n,k.M) binary convolutional code , the complexity of the
Viterbi decoding is proportional to 2kM .

• Puncturing is a technique used to make a k/n rate code from a
"basic" rate 1/2 code. It is reached by deletion of some bits in
the encoder output. Bits are deleted according to puncturing
matrix.

• This has the same effect as encoding with an error-correction
code with a higher rate, or less redundancy. However, with
puncturing the same decoder can be used regardless of how
many bits have been punctured, thus puncturing considerably
increases the flexibility of the system without significantly
increasing its complexity

52

• A pre-defined pattern of puncturing is used in an encoder.
Then, the inverse operation, known as depuncturing, is
implemented by the decoder. Puncturing is often used with
the Viterbi Algorithm in coding systems.

7.4.1 Rate R=2/3 Punctured Convolutional Code
 We are to make a code with rate 2/3 using the 4-state ,

rate R =1/2 mother code generated by the (2,1,2) non-systematic
feedforward convolutional encoder with the generator matrix

G(D) = [1+D2 , 1+ D+ D2]

This code has free distance dfree = 5 .

we should take a basic encoder output and transmit every second bit
from the first branch and every bit from the second one, that is,
deleting the first bit on every other branch of the trellis, as shown in
Fig, 8.18

53

Fig.7.18 A rate 2/3 punctured code

• A rate 3//4 punctured code
puncture vector parameter : 1 1 0 1 1 0

Puncturing Pattern of 2/3 and ¾ codes

 In each of the above case, the puncturing pattern is

indicated using a 2 x T binary matrix P , where T is the

puncturing period. The first row of P indicates the bits to be

deleted from the first encode sequence , and the second row

of P indicates the bits to be deleted from the second

encoded sequence. In the matrix P , a 0 indicates a bit to be

deleted , and a 1 indicated a bit to be transmitted.

 The puncturing patterns in Figure 12.23 are given by

1 0 1 0 1

P = P =

1 1 1 1 0

Fig. (a) Fig. (b)

7.4.2 Rate-Compatible Punctured Convolutional (RCPC)

Codes

 In applications where it is necessary to support two or more
different code rates, it is sometimes convenient to make use of
rate-compatible punctured convolutional (RCPC) codes.

 An RCPC code is a set of two or more convolutional codes
punctured from the same mother code in such a way that the
codewords of a higher-rate code can be obtained from the
codewords of a lower-rate code simply by deleting additional
bits.

 In other words, the set of puncturing patterns must be such
that the P matrix of a higher-rate code is obtained from the P
matrix of a lower-rate code by simply changing some of the 1’s
to 0’s .

 An RCPC code then has the property that all the codes in the
set have the same encoder and decoder.

Example of RCPC Codes

• R = ½ , memory M = 2 ,convolutional code , punctured

periodically with P=4

7.5 Interleaving Technique and Concatination

7.5.1 Interleaving

Let C be an (n, k) linear code.

• Suppose we take λ code words from C and arrange then

intoλrows of anλ╳ n array as shown in the following

figure. This structure is called block interleaver.

•
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Transmission



kn  k

• Then we transmit this code array column by column in serial

manner. By doing this, we obtain a vector of λn digits.

• Note that two consecutive bits in the same codeword are now

separated by λ-1 positions.

• Actually, the above process simply interleavesλcodewords in

C. The parameterλis called interleaving degree (or depth).

• There are (2k)λ= 2kλ such interleaved sequences and they

form a (λn, λk) linear code, called an interleaved code,

denoted C(λ).

• If the base code C is a cyclic code with generator polynomial ,

then the interleaved code C(λ) is also cyclic.

Error Correction Capability of an Interleaved

Code

• A pattern of errors can be corrected for the whole array if and

only if the pattern of errors in each row is a correctable pattern

for the base code C.

• Suppose C is s single-error-correcting code.

Then a burst of length λ or less, no matter where it starts, will

affect no more than one digital in each roe. This single bit error

in each row will be corrected by the base code C.

• Hence the interleaved code C(λ) is capable of correcting any

error burst of lengthλ or less.

7.5.2 Decoding of Interleaved Code

• At the receiving end, the received interleaved

sequence is de-interleaved and rearranged back to a

rectangular array of λ rows.

• Then each row is decoded based on the base code C.

• Suppose the base code C is capable of correcting

any burst of length l or less.

• Consider any burst of lengthλl or less. No matter

where this burst starts in the interleaved code

sequence, t will result a burst of length l or less in

each row of the corresponding code array as shown

in the following Figure 4.7.2

1l

l



• As a result, the burst in each row will be corrected by the base
code C.

Hence the interleaved code C(λ) is capable of correcting any
single error burst of length λl or less.

• Interleaving is a very effective technique for constructing long
powerful burst-error correcting codes from good short codes.

• If the base code is an optimal burst-error-correcting code, the
interleaved code is also optimal. Convolutional Interleaver：

• A convolutional interleaver can be used in place of a block
interleaver in much the same way.

• Convolutional interleavers are better matched for use with the
class of convolutional codes.

7.5.3 Concatenated Coding Scheme

• Concatenation is a very effective method of constructing long

powerful codes from shorter codes.

• It was devised by Forney in 1965.

and is often used to achieve high reliability with reduced

decoding complexity.

• A simple concatenated code is formed from two codes：an (n1

,k1) binary code C1 and an (n2,k2) nonbinary code C2 with

symbols from GF(), say a RS code.

• Concatenated codes are effective against a mixture of random

errors and burst errors. Scattered random errors are corrected

by C1. Bursts may affect relatively few bytes, but probably so

badly that C1 cannot correct them. These few bytes can then be

corrected by C2.

Outer Code
Encoder
(n

2
,k

2
)

Inner Code
Encoder
(n

1
,k

1
)

Channel

Inner Code
Decoder

Outer Code
Decoder

Encoding
• Encoding consists of two stages, the outer code encoding and the

inner code encoding, as shown in below.

• First a message of k1k2 bits are divided into k2 bytes of k1 bits each.
Each k1-bit byte is regarded as a symbol in GF().

This k2-byte message is encoded into an n2-byte codeword in C2.

• Each k1-bit byte of is then encoded into an n1-bit codeword in C2.

• This results in a string of n2 codewords in C2 , a total of n1n2 bits.

• There are a total of such strings which form an (n1n2,k1k2) binary
linear code, called a concatenated code.

• C1 is called the inner code and C2 is called the outer code.

• If the minimum distances of the inner and outer codes are d1 and d2
respectively, the minimum distance of their concatenation is at
least d1 d2.

Decoding

• Decoding of a concatenated code also consists of two stages,

the inner code decoding and the outer code decoding, as shown

in the above figure.

• First, decoding is done for each inner codeword as it arrives,

and the parity bits are removed. After n2 inner codewords have

been decoded, we obtain a sequence of n2 k1-bit bytes.

• This sequence of n2 bytes is then decoded based on the outer

code C2 to give k1k2 decoded message bits.

• Decoding implementation is the straightforward combination of

the implementations for the inner and outer codes.

Error Correction Capability

• Concatenated codes are effective against a mixture of random
errors and bursts.

• In general, the inner code is a random-error-correcting code and
the outer code is a RS code.

• Scattered random errors are corrected by the inner code, and
bursts are then corrected by the outer code.

• Various forms of concatenated coding scheme are being used or
proposed for error control in data communications, especially in
space and satellite communications.

• In many applications, concatenated coding offers a way of
obtaining the best of two worlds, performance and complexity.

References

1.J.B. Cain, G.C. Clark, Jr. , and J.M. Geist , “ Punctured Convolutional Codes of Rate n-1 /

n and Simplified Maximum Likelihood Decoding , “ IEEE Trans. Inform. Theory, Vol.25 ,

No.1 , pp. 97-100 , Jan.1979.

2. J. Hagenauer “ Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and

their Applications , IEEE Trans. Commun., Vol.36 , No. 4 , pp.387-400 , Apr. 1988.

71

Homework : Chapter 7
1. Consider a (3,1,3) convolutional code with generator

plolynomials :

g(1) = 1+ D + D2 + D3 , g(2) = 1+ D + D3 ,

g(3) = 1+ D2 + D3

a. Draw the encoder block diagram

b. Draw the state diagram

c . Draw the trellis diagram of this code with a message sequence of

length L= 5

2. Consider a (2,1,3) convolutional code with

g(1) = 1+ D2, g(2) = 1+ D + D2 + D3

a. Draw the block diagram of the encoder

b. Draw the state diagram

c. Draw the trellis diagram for information length L=4

d. For a BSC , p < 0.5 , using Viterbi algorithm to decode

the received sequence r = 10,01, 00,00,11, 11, 00

Fin the codeword transmitted and the corresponding message bits.

