Homework – DC2016 (due April 7)

#1 (Wiener filter)

• Given the observations $y(0), y(1),...,y(k), k \ge 0$,

with
$$Rxx(0) = \frac{3}{4}$$
, $Rxx(1) = \frac{1}{2}$, $Rxx(2) = \frac{1}{4}$, and $Rxx(k) = 0$, $k > 2$. $y = x + n$

where x is unknown signal to be estimated, and n is additive noise. x and n are assumed to be uncorrelated.

$$Rnn(0) = \frac{1}{4}$$
, and $Rnn(k) = 0$ for $k \neq 0$

Find an FIR Wiener filter to estimate x.

- **#2** Computer simulation (making use of MATLAB)
- a. Generate a PN sequence of length 10 using MATLAB routine.
- b. Generate white noise and computes its autocorrelation and power spectral density.
- c. Generate White Gaussian noise (sequence) and Rayleigh distributed random sequence.