Information Theory Solutions to Homework #1

(Cover and Thomas, Chaps 2 and 4) (H.-M. Hang; 2009/10)

(1)

- 2. Entropy of functions. Let X be a random variable taking on a finite number of values. What is the (general) inequality relationship of H(X) and H(Y) if
 - (a) $Y = 2^X$?
 - (b) $Y = \cos X$?

Solution: Let y = g(x). Then

$$p(y) = \sum_{x: y=g(x)} p(x).$$

Consider any set of x's that map onto a single y. For this set

$$\sum_{x: y=g(x)} p(x) \log p(x) \le \sum_{x: y=g(x)} p(x) \log p(y) = p(y) \log p(y),$$

since log is a monotone increasing function and $p(x) \leq \sum_{x:y=g(x)} p(x) = p(y)$. Extending this argument to the entire range of X (and Y), we obtain

$$H(X) = -\sum_{x} p(x) \log p(x)$$

= $-\sum_{y} \sum_{x: y=g(x)} p(x) \log p(x)$
 $\geq -\sum_{y} p(y) \log p(y)$
= $H(Y),$

with equality iff g is one-to-one with probability one.

- (a) $Y = 2^X$ is one-to-one and hence the entropy, which is just a function of the probabilities (and not the values of a random variable) does not change, i.e., H(X) = H(Y).
- (b) $Y = \cos(X)$ is not necessarily one-to-one. Hence all that we can say is that $H(X) \ge H(Y)$, with equality if cosine is one-to-one on the range of X.

- (2)
- 12. Example of joint entropy. Let p(x, y) be given by

Y	0	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	0	$\frac{1}{3}$

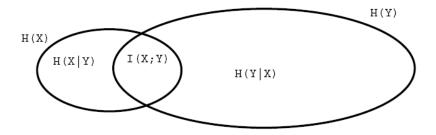
Find

- (a) H(X), H(Y).
- (b) H(X | Y), H(Y | X).
- (c) H(X,Y).
- (d) $H(Y) H(Y \mid X)$.
- (e) I(X;Y).
- (f) Draw a Venn diagram for the quantities in (a) through (e).

Solution: Example of joint entropy

- (a) $H(X) = \frac{2}{3}\log \frac{3}{2} + \frac{1}{3}\log 3 = 0.918$ bits = H(Y).
- (b) $H(X|Y) = \frac{1}{3}H(X|Y=0) + \frac{2}{3}H(X|Y=1) = 0.667$ bits = H(Y|X).
- (c) $H(X,Y) = 3 \times \frac{1}{3} \log 3 = 1.585$ bits.
- (d) H(Y) H(Y|X) = 0.251 bits.
- (e) I(X;Y) = H(Y) H(Y|X) = 0.251 bits.
- (f) See Figure 1.

Figure 2.1: Venn diagram to illustrate the relationships of entropy and relative entropy



- (3)
- 14. Entropy of a sum. Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let Z = X + Y.
 - (a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then $H(Y) \le H(Z)$ and $H(X) \le H(Z)$. Thus the addition of *independent* random variables adds uncertainty.
 - (b) Give an example of (necessarily dependent) random variables in which H(X) > H(Z) and H(Y) > H(Z).
 - (c) Under what conditions does H(Z) = H(X) + H(Y)?

Solution: Entropy of a sum.

(a) Z = X + Y. Hence p(Z = z | X = x) = p(Y = z - x | X = x).

$$\begin{aligned} H(Z|X) &= \sum_{x} p(x) H(Z|X=x) \\ &= -\sum_{x} p(x) \sum_{z} p(Z=z|X=x) \log p(Z=z|X=x) \\ &= \sum_{x} p(x) \sum_{y} p(Y=z-x|X=x) \log p(Y=z-x|X=x) \\ &= \sum_{x} p(x) H(Y|X=x) \\ &= H(Y|X). \end{aligned}$$

If X and Y are independent, then H(Y|X) = H(Y). Since $I(X;Z) \ge 0$, we have $H(Z) \ge H(Z|X) = H(Y|X) = H(Y)$. Similarly we can show that $H(Z) \ge H(X)$.

(b) Consider the following joint distribution for X and Y Let

$$X = -Y = \begin{cases} 1 & \text{with probability } 1/2 \\ 0 & \text{with probability } 1/2 \end{cases}$$

Then H(X) = H(Y) = 1, but Z = 0 with prob. 1 and hence H(Z) = 0.

(c) We have

$$H(Z) \le H(X,Y) \le H(X) + H(Y)$$

because Z is a function of (X, Y) and $H(X, Y) = H(X) + H(Y|X) \le H(X) + H(Y)$. We have equality iff (X, Y) is a function of Z and H(Y) = H(Y|X), i.e., X and Y are independent.

(4)

38. The value of a question Let $X \sim p(x)$, x = 1, 2, ..., m. We are given a set $S \subseteq \{1, 2, ..., m\}$. We ask whether $X \in S$ and receive the answer

$$Y = \begin{cases} 1, & \text{if } X \in S \\ 0, & \text{if } X \notin S. \end{cases}$$

Suppose $\Pr{X \in S} = \alpha$. Find the decrease in uncertainty H(X) - H(X|Y). Apparently any set S with a given α is as good as any other. Solution: The value of a question.

$$H(X) - H(X|Y) = I(X;Y)$$

= $H(Y) - H(Y|X)$
= $H(\alpha) - H(Y|X)$
= $H(\alpha)$

since H(Y|X) = 0.

(5)

- 42. Inequalities. Which of the following inequalities are generally $\geq =, \leq ?$ Label each with $\geq =, =, \text{ or } \leq .$
 - (a) H(5X) vs. H(X)
 - (b) I(g(X);Y) vs. I(X;Y)
 - (c) $H(X_0|X_{-1})$ vs. $H(X_0|X_{-1}, X_1)$
 - (d) $H(X_1, X_2, \ldots, X_n)$ vs. $H(c(X_1, X_2, \ldots, X_n))$, where $c(x_1, x_2, \ldots, x_n)$ is the Huffman codeword assigned to (x_1, x_2, \ldots, x_n) .
 - (e) H(X,Y)/(H(X) + H(Y)) vs. 1

Solution:

(a) H(X) = H(5X) since $X \to 5X$ is a one-to-one mapping.

(b) By data processing inequality, $I(g(X);Y) \leq I(X;Y)$.

(c) Because conditioning reduces entropy, $H(X_0|X_{-1}) \ge H(X_0|X_{-1},X_1)$.

(d)
$$H(X_1, X_2, ..., X_n) \ge H(c(X_1, X_2, ..., X_n)).$$

(e)
$$\frac{H(X,Y)}{H(X)+H(Y)} \le 1.$$

(6)

43. Mutual information of heads and tails.

- (a) Consider a fair coin flip. What is the mutual information between the top side and the bottom side of the coin?
- (b) A 6-sided fair die is rolled. What is the mutual information between the top side and the front face (the side most facing you)?

Solution:

Mutual information of heads and tails.

To prove (a) observe that

$$I(T;B) = H(B) - H(B|T)$$
$$= \log 2 = 1$$

since $B \sim Ber(1/2)$, and B = f(T). Here B, T stand for Bottom and Top respectively. To prove (b) note that having observed a side of the cube facing us F, there are four possibilities for the top T, which are equally probable. Thus,

$$I(T;F) = H(T) - H(T|F)$$

= log 6 - log 4
= log 3 - 1

since T has uniform distribution on $\{1, 2, \ldots, 6\}$.

(7)

7. Entropy rates of Markov chains.

(a) Find the entropy rate of the two-state Markov chain with transition matrix

$$P = \begin{bmatrix} 1 - p_{01} & p_{01} \\ p_{10} & 1 - p_{10} \end{bmatrix}.$$

- (b) What values of p_{01}, p_{10} maximize the rate of part (a)?
- (c) Find the entropy rate of the two-state Markov chain with transition matrix

$$P = \left[\begin{array}{cc} 1 - p & p \\ 1 & 0 \end{array} \right] \,.$$

Solution: Entropy rates of Markov chains.

(a) The stationary distribution is easily calculated. (See EIT pp. 62–63.)

$$\mu_0 = \frac{p_{10}}{p_{01} + p_{10}}, \quad \mu_0 = \frac{p_{01}}{p_{01} + p_{10}}.$$

Therefore the entropy rate is

$$H(X_2|X_1) = \mu_0 H(p_{01}) + \mu_1 H(p_{10}) = \frac{p_{10} H(p_{01}) + p_{01} H(p_{10})}{p_{01} + p_{10}}$$

- (b) The entropy rate is at most 1 bit because the process has only two states. This rate can be achieved if (and only if) $p_{01} = p_{10} = 1/2$, in which case the process is actually i.i.d. with $\Pr(X_i = 0) = \Pr(X_i = 1) = 1/2$.
- (c) As a special case of the general two-state Markov chain, the entropy rate is

$$H(X_2|X_1) = \mu_0 H(p) + \mu_1 H(1) = \frac{H(p)}{p+1}$$

TT ()

--- The End ---