Information Theory (H.-M. Hang; 2009/10/12) (Cover and Thomas, Chap 7)
 Homework \#3

 Due Date: November 3, 2009

 Due Date: November 3, 2009}
(Reminder: Midterm examine on Nov 9 (Monday), 2009)

(1)

4. Channel capacity. Consider the discrete memoryless channel $Y=X+Z(\bmod 11)$, where

$$
Z=\left(\begin{array}{ccc}
1, & 2, & 3 \\
1 / 3, & 1 / 3, & 1 / 3
\end{array}\right)
$$

and $X \in\{0,1, \ldots, 10\}$. Assume that Z is independent of X.
(a) Find the capacity.
(b) What is the maximizing $p^{*}(x)$?

(2)

8. The Z channel. The Z-channel has binary input and output alphabets and transition probabilities $p(y \mid x)$ given by the following matrix:

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right] \quad x, y \in\{0,1\}
$$

Find the capacity of the Z-channel and the maximizing input probability distribution. (Note: Try to derive C by yourself. Do not use the formula on p. 8 of our class notes.)

(3)

9. Suboptimal codes. For the Z channel of the previous problem, assume that we choose a $\left(2^{n R}, n\right)$ code at random, where each codeword is a sequence of fair coin tosses. This will not achieve capacity. Find the maximum rate R such that the probability of error $P_{e}^{(n)}$, averaged over the randomly generated codes, tends to zero as the block length n tends to infinity.
(4)
10. Unused symbols. Show that the capacity of the channel with probability transition matrix

$$
P_{y \mid x}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 0 \tag{7.42}\\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

is achieved by a distribution that places zero probability on one of input symbols. What is the capacity of this channel? Give an intuitive reason why that letter is not used.

(5)

18. Channel capacity: Calculate the capacity of the following channels with probability transition matrices:
(a) $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$

$$
p(y \mid x)=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \tag{7.87}\\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

(b) $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$

$$
p(y \mid x)=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \tag{7.88}\\
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

(6)
28. Choice of channels.

Find the capacity C of the union of 2 channels $\left(\mathcal{X}_{1}, p_{1}\left(y_{1} \mid x_{1}\right), \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p_{2}\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{2}\right)$ where, at each time, one can send a symbol over channel 1 or over channel 2 but not both. Assume the output alphabets are distinct and do not intersect.
(a) Show $2^{C}=2^{C_{1}}+2^{C_{2}}$. Thus 2^{C} is the effective alphabet size of a channel with capacity C.
(c) Use the above result to calculate the capacity of the following channel

(7)

Consider the two discrete memoryless channels $\left(\mathcal{X}, p_{1}(y \mid x), \mathcal{Y}\right)$ and $\left(\mathcal{Y}, p_{2}(z \mid y), \mathcal{Z}\right)$.
Let $p_{1}(y \mid x)$ and $p_{2}(z \mid y)$ be binary symmetric channels with crossover probabilities λ_{1} and λ_{2} respectively.

(a) What is the capacity C_{1} of $p_{1}(y \mid x)$?
(b) What is the capacity C_{2} of $p_{2}(z \mid y)$?
(c) We now cascade these channels. Thus $p_{3}(z \mid x)=\sum_{y} p_{1}(y \mid x) p_{2}(z \mid y)$. What is the capacity C_{3} of $p_{3}(z \mid x)$? Show $C_{3} \leq \min \left\{C_{1}, C_{2}\right\}$.
(d) Now let us actively intervene between channels 1 and 2 , rather than passively transmitting y^{n}. What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output y^{n} of channel 1 and then reencode it as \tilde{y}^{n} for transmission over channel 2? (Think $W \longrightarrow x^{n}(W) \longrightarrow y^{n} \longrightarrow$ $\left.\tilde{y}^{n}\left(y^{n}\right) \longrightarrow z^{n} \longrightarrow \hat{W}.\right)$
(e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z ?
(Note: A generalization of this problem is problem 7.7 on C\&T, p.225)
(Remarks: Problem 7.15 on C\&T is an illustrated example of the joint typical sequences. Reading it may help understanding this topic better.)

$$
==\text { END }==
$$

