Introduction

• About This Course

Introduction to probabilistic analysis

▶ Introduction to statistical inference (統計推論)

- Why Probabilistic Analysis?
- Some commonly used mathematical expressions

Feb 2011

hmhang/EE, NCTU

Time/Date/Instructor

- Monday 9:00 9:50am,
 Wednesday 10:10 –12:00am,
 (Feb. 21 June 24, 2011); 工程四館ED301
- Instructor: Hsueh-Ming Hang, 杭學鳴 (ED609) hmhang@mail.nctu.edu.tw
- Office hours: (need appointment) Monday 10:am -- 12:noon, Wednesday 1:30pm -- 3:30pm (ED609)
- Classnotes: <u>http://cwww.ee.nctu.edu.tw/</u> (password:)

(modified from Profs. Feng-Tsun Chien (簡鳳村教授) and Tzuhsien Sang (桑梓賢教授))

Teaching Assistants

• TAs:

Jau-Shiuan Lee 李兆軒 <u>pig19870210@hotmail.com</u> Jen-Yuan Luo 羅偵源 <u>jrwinds@hotmail.com</u> Office hours: (appointment) – to be announced

 Pi-Li PhD (霹靂博) TA: Chen-Yang Lin 林振揚 <u>talent31022@gmail.com</u> Recitation hours: once every week -- to be announced Appointments

Fe	b 2	01 [.]	1

hmhang/EE, NCTU

Grading

- Homework: 20 %
- Quiz 1 and Quiz 2: 10% each → 20%
- Midterm: 30% (2 hours, closed book)
- Final Examine: 30% (2 hours, closed book)
- The same set of homework problems and exams are given to both Chinese and English classes.
- Scores will be adjusted to meet the 78 average value suggested by the School. ← Additional adjustment may be considered if needed.

3

Textbook and Recommended Readings

• Textbook:

D. P. Bertsekas and J. N. Tsitskilis, *Introduction to Probability*, Athena Scientific, 2nd edition, 2008

Recommended Readings:

- R.V. Hogg and E.A. Tanis, Probability and Statistical Inference, 8th ed., Pearson, 2010.
- H. Stark and J.W. Woods, Probability, Random Processes with Applications to Signal Processing, 3rd ed., Prentice-Hall, 2002.

Feb 2011

hmhang/EE, NCTU

5

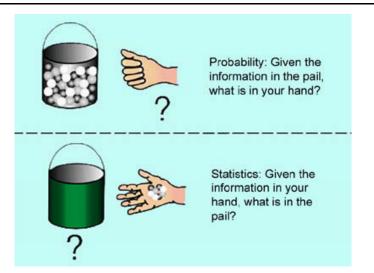
About This Course

Main Theme

- Introduction to probabilistic analysis
 - > Modeling and analysis of experiments with uncertain outcomes
 - Example: what is the probability of winning the grand prize of lottery?
- Brief introduction to statistics and some statistical signal processing

Why you need Probability in EE/CS professionals?

- In junior, senior year:
 - ➢ Principle of Communication Systems I,II, (通訊原理 I,II), Modern Physics (近代物理)
- In senior year or graduate school:
 - ➤ Communications Theory, Networking, Signal Proc., Control, Quantum Mechanics, etc. → Topics deal with uncertainties


- Probability Theory (Measure Theory, Real Analysis)
- Statistics
- Stochastic Processes (隨機程序) Incorporate the concept of <u>time</u> to model real world phenomena and perform probabilistic analyses
- Statistical Signal Processing (統計訊號處理)
 Applications of probability and statistics to specific <u>random signals</u> such as speech, audio, images, video, EKGs, etc. in order to predict, smooth, extract, compress, infer, find, classify, estimate, interpolate, modify, . . .

Feb 2011

hmhang/EE, NCTU

0-7

Probability and Statistics

Example:

> (Probability)

Flipping a fair coin, the probability of "head" is 1/2

(Statistics)

Flipping a coin (with unknown bias), how to estimate the probability of appearing a "head"?

- Probability model is often used as a substitute for reality
 - Deterministic vs. probabilistic (stochastic)
 - > Reality is sometimes too complex to describe in every little detail
 - > In practice, "probabilistic signals" are more important.
- Main concepts and tools:
 - > Sample space
 - A description of all possible outcomes of an experiment
 - Outcomes, Events, algebra of events (or sets) and Probability law
 - > Calculus

To manipulate probability measures and compute expectations

➤ Heuristics (直覺)

How to construct a model? How to solve a problem? Learn by practicing. Do exercises!

Feb 2011

hmhang/EE, NCTU

0-9

Why Probabilistic Analysis?

Major Aim:

- Making decisions out of uncertainties
- Trying to do a better job, such as taking certain actions to lower risks or to increase profits

Examples:

- > How to play black jack poker game in order to make profit in the long run?
- > How to decide whether or not to approve a new medicine?

Applications

- Engineering
 - Statistical signal processing
 - Communications
 - > Systems and control (e.g., aircraft control)
 - Decision and resource allocation under uncertainty (e.g., communication networks)
 - Reliability (dealing with noise, error control, failures)
- Economics and finance
- Physics, statistical mechanics, thermodynamics
- Medicine, FDA (Food and Drug Administration), drugs and procedures

English Descriptions of Math Expressions

Commonly used mathematical expressions and their English as well as Chinese descriptions

- Polynomial (多項式): a_nXⁿ + a_{n-1}Xⁿ⁻¹ +... + a₁X + a₀
- Set (集合):
 x∈*F*: *x* is in *F*, or *x* is an element of *F*; *F* ⊂ Ω: *F* is a subset of Ω
- a^b: "a" to the order of "b" (a 的 b 次方) or "a" to the "b"*th* power, a^{2:} "a" square, a^{3:} "a" cube
- A+B: A plus B; A-B: A minus B; AxB: A times B, A is multiplied by B; A/B: A over B, or A is divided by B
- (.): parenthesis; [.]: square bracket; {.}: bracket
- $\binom{N}{x}$: N choose x
- e: exponential (自然對數底數)

Feb 2011

hmhang/EE, NCTU

0-11