## Homework 2

Due on 10/20/2009, 3:40 pm, in class before midterm exam

## Part I: Reading Assignment

1. Read textbook Sec. $3.2 \sim$ Sec. 3.5, Sec. 4.1, and Sec. 4.2, which you should have learned before in college level Probability course.
2. Read Chapter 2 of Gallager's note.

## Part II: Problem Assignment

1. $(6 \times 5=30$ points $)$

Let $\mathbf{w}=[X, Y, Z]^{T} \sim \mathcal{N}\left(\mathbf{m}_{\mathrm{w}}, \mathbf{K}_{\mathrm{w}}\right)$, where $\mathbf{m}_{\mathrm{w}}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{T}$ and the covariance matrix $\mathbf{K}_{\mathrm{w}}$ is

$$
\mathbf{K}_{\mathrm{w}}=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find the joint moment generating function of $\mathbf{w}$.
(b) Show that $X-\alpha Y$ and $Y$ are jointly Gaussian for any real $\alpha$. Then, find $\alpha$ such that $X-\alpha Y$ and $Y$ are independent.
(c) What is the conditional expectation $E\left[Y^{3} \mid Z\right]$ ?
(d) Find the probability density function (pdf) for $S=X+2 Y$.
(e) Let $\mathbf{s}=[X, Y]^{T}$. Find a transformation matrix $\mathbf{T}$ such that $\mathbf{T s}$ is a Gaussian random vector with uncorrelated components of unit variance.
2. $(6+7+7=20$ points $)$

In a common communication model, the transmitted signal $\mathbf{x}$ and the received signal $\mathbf{y}$ are related by:

$$
\mathbf{y}=\mathbf{H x}+\mathbf{z}
$$

where $\mathbf{H}$ is an $n$ by $m$ matrix that is not random, $\mathbf{x}$ is jointly Gaussian with $\mathcal{N}\left(0 ; \mathbf{K}_{x}\right)$ and $\mathbf{z}$ is additive Gaussian noise $\mathcal{N}\left(0 ; \mathbf{K}_{z}\right)$. The noise is independent of the signal $\mathbf{x}$.
(a) Let $\mathbf{u}=\left[\mathbf{x}^{T} ; \mathbf{y}^{T}\right]^{T}$. Show that $\mathbf{u}$ is jointly Gaussian.
(b) Find a simple condition on $\mathbf{H}, \mathbf{K}_{x}$ and $\mathbf{K}_{z}$ for which the covariance matrix $\mathbf{K}_{u}$ of $\mathbf{u}$ is invertible.
(c) Find the conditional distribution of the input $\mathbf{x}$ given the output $\mathbf{y}=\boldsymbol{y}$.
3. (10 points)

Show that a circularly symmetric complex Gaussian random variable must have i.i.d. real and imaginary components.
4. $(10+10+10=30$ points $)$

Problem 2.13 in Gallager's note.
5. (10 points)

Problem 4.19 in textbook.

## Extra Problems

You do NOT need to turn in your solutions for the following problems. However, I strongly encourage you to work through them.

1. Let $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ be collectively jointly Gaussian random vectors. That is the components of the random vector $\left[\mathbf{x}^{T}, \mathbf{y}^{T}, \mathbf{z}^{T}\right]^{T}$ are jointly Gaussian.
(a) If $\mathbf{y}$ and $\mathbf{z}$ are statistically independent, show that

$$
E[\mathbf{x} \mid \mathbf{y}, \mathbf{z}]=E[\mathbf{x} \mid \mathbf{y}]+E[\mathbf{x} \mid \mathbf{z}]-\mathbf{m}_{\mathbf{x}}
$$

where $\mathbf{m}_{\mathbf{x}}=E[\mathbf{x}]$.
Hint:
Let $\mathbf{s} \triangleq\left[\mathbf{y}^{T} \mathbf{z}^{T}\right]^{T}$ be the $(m+r) \times 1$ vector collecting $\mathbf{y}$ and $\mathbf{z}$. And, $E[\mathbf{x} \mid \mathbf{y}, \mathbf{z}]=E[\mathbf{x} \mid \mathbf{s}]$.
(b) If $\mathbf{y}$ and $\mathbf{z}$ are not necessarily statistically independent, show that

$$
E[\mathbf{x} \mid \mathbf{y}, \mathbf{z}]=E[\mathbf{x} \mid \mathbf{y}, \hat{\mathbf{z}}],
$$

where $\hat{\mathbf{z}}=\mathbf{z}-E[\mathbf{z} \mid \mathbf{y}]$.

