Homework 2

Due on 10/20/2009, 3:40 pm, in class before midterm exam

Part I: Reading Assignment

- 1. Read textbook Sec. $3.2 \sim$ Sec. 3.5, Sec. 4.1, and Sec. 4.2, which you should have learned before in college level Probability course.
- 2. Read Chapter 2 of Gallager's note.

Part II: Problem Assignment

1. $(6 \times 5 = 30 \text{ points})$ Let $\mathbf{w} = [X, Y, Z]^T \sim \mathcal{N}(\mathbf{m}_w, \mathbf{K}_w)$, where $\mathbf{m}_w = [1 \ 2 \ 0]^T$ and the covariance matrix \mathbf{K}_w is

$$\mathbf{K}_{\mathsf{w}} = \left[\begin{array}{rrrr} 3 & -1 & 1 \\ -1 & 3 & 0 \\ 1 & 0 & 1 \end{array} \right].$$

- (a) Find the joint moment generating function of \mathbf{w} .
- (b) Show that $X \alpha Y$ and Y are jointly Gaussian for any real α . Then, find α such that $X \alpha Y$ and Y are independent.
- (c) What is the conditional expectation $E[Y^3|Z]$?
- (d) Find the probability density function (pdf) for S = X + 2Y.
- (e) Let $\mathbf{s} = [X, Y]^T$. Find a transformation matrix **T** such that **Ts** is a Gaussian random vector with uncorrelated components of unit variance.

2.
$$(6+7+7=20 \text{ points})$$

In a common communication model, the transmitted signal \mathbf{x} and the received signal \mathbf{y} are related by:

$$y = Hx + z$$

where **H** is an *n* by *m* matrix that is not random, **x** is jointly Gaussian with $\mathcal{N}(0; \mathbf{K}_x)$ and **z** is additive Gaussian noise $\mathcal{N}(0; \mathbf{K}_z)$. The noise is independent of the signal **x**.

- (a) Let $\mathbf{u} = [\mathbf{x}^T; \mathbf{y}^T]^T$. Show that \mathbf{u} is jointly Gaussian.
- (b) Find a simple condition on \mathbf{H} , \mathbf{K}_x and \mathbf{K}_z for which the covariance matrix \mathbf{K}_u of \mathbf{u} is invertible.
- (c) Find the conditional distribution of the input \mathbf{x} given the output $\mathbf{y} = \mathbf{y}$.
- 3. (10 points)

Show that a circularly symmetric complex Gaussian random variable must have i.i.d. real and imaginary components.

- 4. (10 + 10 + 10 = 30 points)Problem 2.13 in Gallager's note.
- 5. (10 points)

Problem 4.19 in textbook.

Extra Problems

You do \underline{NOT} need to turn in your solutions for the following problems. However, I strongly encourage you to work through them.

- 1. Let \mathbf{x} , \mathbf{y} , and \mathbf{z} be collectively jointly Gaussian random vectors. That is the components of the random vector $[\mathbf{x}^T, \mathbf{y}^T, \mathbf{z}^T]^T$ are jointly Gaussian.
 - (a) If \mathbf{y} and \mathbf{z} are statistically independent, show that

$$E[\mathbf{x}|\mathbf{y},\mathbf{z}] = E[\mathbf{x}|\mathbf{y}] + E[\mathbf{x}|\mathbf{z}] - \mathbf{m}_{\mathbf{x}},$$

where $\mathbf{m}_{\mathbf{x}} = E[\mathbf{x}]$.

Hint:

Let $\mathbf{s} \triangleq [\mathbf{y}^T \mathbf{z}^T]^T$ be the $(m+r) \times 1$ vector collecting \mathbf{y} and \mathbf{z} . And, $E[\mathbf{x}|\mathbf{y},\mathbf{z}] = E[\mathbf{x}|\mathbf{s}]$.

(b) If \mathbf{y} and \mathbf{z} are not necessarily statistically independent, show that

$$E[\mathbf{x}|\mathbf{y},\mathbf{z}] = E[\mathbf{x}|\mathbf{y},\hat{\mathbf{z}}],$$

where $\hat{\mathbf{z}} = \mathbf{z} - E[\mathbf{z}|\mathbf{y}].$