
Stochastic Processes, 09

Homework 1
Solutions

1. (6 + 7 + 7 = 20 points)

(a) Let fA(a) represent the PDF of the time Alice spends to complete her problem set. Let
fB(b) represent the PDF of the time Bob spends to complete his problem set. Since Alice
and Bob work independently on their problem sets, we know the joint PDF is

fA,B(a, b) = fA(a)fB(b)

=
(

1
4
e−

a
4

) (
1
5
e−

b
6

)

=
1
24

e−
6a+4b

24

Thus, the probability that Alice finishes her homework before Bob, i.e., the probability
of the event {A < B}, is given by

P (A < B) =
∫ ∞

0

∫ b

0

fA,B(a, b)dadb

=
1
24

∫ ∞

0

∫ b

0

e−
6a+4b

24 dadb

=
3
5
.

(b) The probability that Alice finishes the problem set before Bob given that Alice requires
more than 4 hours is given by

P (A < B|A > 4) =
P (4 < A < B)

P (A > 4)

=

∫∞
4

∫ b

4
fA,B(a, b)dadb∫∞

4
fA(a)da

=
3
5
e−

2
3 .

(c) The desired probability is P (|A−B| > 1), which can be calculated via

P (|A−B| > 1) = P (A−B > 1 ∪A−B < −1) = P (A > B + 1) + P (A < B − 1).

And, we find

P (A > B + 1) =
∫ ∞

0

∫ ∞

b+1

fA,B(a, b)dadb

=
2
5
e−

1
4 ,

P (A < B − 1) =
∫ ∞

1

∫ b−1

0

fA,B(a, b)dadb

=
3
5
e−

1
6 .

Thus,

P (|A−B| > 1) =
2
5
e−

1
4 +

3
5
e−

1
6 .

2. (10 + 10 = 20 points)



(a) It is clear that Y is also geometric, therefore having a PMF

PY (y) = (1− p)y−1p.

And, for the random variable X +Y , X +Y = k means the kth flip comes up a head and
there has exactly one head in the first k − 1 flips. Thus, we have the PMF of X + Y

PX+Y (k) = P (X + Y = k) =
(

k − 1
1

)
(1− p)k−2p2 = (k − 1)(1− p)k−2p2.

(b)

P (X = k|X + Y = n) =
P (X = k, X + Y = n)

P (X + Y = n)
=

P (X = k)P (Y = n− k)
P (X + Y = n)

,

where the last equality uses the fact that X and Y are independent. It follows, from the
result of part (a), that

P (X = k|X + Y = n) =
1

n− 1
.

With this, we can find E[X|X + Y = n] by the definition of the conditional expectation
as

E[X|X + Y = n] =
n−1∑
x=1

xP (X = k|X + Y = n) =
n

2
.

Alternatively, we can solve the problem from another perspective. We know that E[X|X+
Y = n] = E[Y |X +Y = n] since X and Y are identically distributed. Also, E[X +Y |X +
Y = n] = n. It follows that E[X|X + Y = n] = n/2, regardless of the true distributions
of X and Y . This is also an intuitively correct result.
You can see the other two similar examples in our textbook Example 4.2-4 and Example
4.2-5.

3. (5 + 10 + 10 = 25 points) Prove the followings.

(a) Assume discrete random variable case.

E[X] =
∑

x

xpX(x)

=
∑

x

x

(∑
y

pX,Y (x, y)

)

︸ ︷︷ ︸
=pX(x)

=
∑

x

x

(∑
y

pX|Y (x|y)pY (y)

)

=
∑

y

pY (y) ·
(∑

x

xpX|Y (x|y)

)

︸ ︷︷ ︸
=E[X|Y ]

.

The proof for continuous random variable case follows a similar way.
(b) The result of this problem is intuitively obvious. The intuition is, given that Y = y, there

is nothing random about h(Y )|Y =y. Thus, it serves as a deterministic (non-random) value
and can be pulled out of the expectation.
But we still need to justify it mathematically. We consider the discrete random variables
case here. Continuous random variables case can also be shown in a similar fashion, and
is left for you to work out by yourself.
Let X and Y be two discrete random variables. From the rule of expected value, the
conditional expectation is

E
[
g(X) · h(Y )

∣∣∣Y = y
]

=
∑

x,y′
g(x)h(y′)pX,Y |Y (x, y′|y)

=
∑

x,y′
g(x)h(y′)

P [X = x, Y = y′, Y = y]
P [Y = y]

,

2



where

P [X = x, Y = y′, Y = y] =
{

P [X = x, Y = y] if y′ = y,
0 otherwise.

Thus, the conditional expectation is evaluated only when y′ = y, which gives

E
[
g(X) · h(Y )

∣∣∣Y = y
]

=
∑

x,y′
g(x)h(y′)

P [X = x, Y = y′, Y = y]
P [Y = y]

=
∑

x

g(x)h(y)
P [X = x, Y = y]

P [Y = y]

(We see only the event {y′ = y} yields nonzero P [X = x, Y = y′, Y = y])

= h(y)
∑

x

g(x)
P [X = x, Y = y]

P [Y = y]

= h(y)

(∑
x

g(x)pX|Y (x|y)

)

= h(y)E[g(X)|Y = y].

(c) For any function k(·), we have

E
[(

X − E[X|Y ]
) · k(Y )

]
= E

[
Xk(Y )− k(Y )E[X|Y ]

]

= E
[
k(Y )X − E

[
k(Y )X|Y ]]

(from the result of part (b))

= E
[
k(Y )X

]− E
[
k(Y )X|Y ]]

= E
[
k(Y )X

]− E
[
E

[
k(Y )X|Y ]]

= E
[
k(Y )X

]− E
[
k(Y )X

]
(from the result of part (a))

= 0.

4. (5 + 10 + 10 = 25 points)

(a) Consider an eigenvalue λ of AHA associated with the eigenvector v. From the definition
of eigenvector/eigenvalue, we have

AHA · v = λ · v.

Multiplying the above equation by A on the left yields

AAHA · v = λA · v,

which shows that λ is also an eigenvalue of AAH associated with the eigenvector A · v.

(b) The rank of a matrix can be regarded as the dimension of its range space. For A ∈ Rm×n,
the the dimension theorem tells us that

rank(A) + dim(N(A)) = dim(Rn),

where N(A) is the null space of the matrix A. Similarly, for AHA ∈ Rn×n, we know

rank(AHA) + dim(N(AHA)) = dim(Rn).

It is not difficult to show that N(A) = N(AHA). Thus, we have

rank(A) = rank(AHA).

(For any y ∈ N(A), we know Ay = 0, implying that AHAy = 0. Thus, y ∈ N(AHA).
Thus, N(A) ⊆ N(AHA). On the other hand, we can also show N(AHA) ⊆ N(A), thereby
completing the proof that N(A) = N(AHA). )

(c) To prove two vector spaces S and T are identical in a rigorous manner, we need to show
that S is a subset of T “and” T is also a subset of S. ( S ⊆ T and T ⊆ S)
First, we show that R(U1) = R(A).
I. (R(U1) ⊆ R(A))
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Let y be a vector in the range of U1. Then, there exists a vector x ∈ Rr such that
y = U1x. And, since U1 = AV1Σ−1

r , it follows that

y = AV1Σ−1
r x,

which clearly is in R(A).
II. (R(A) ⊆ R(U1))
Now let y ∈ R(A). Then, there exists a vector z ∈ Rn such that y = Az. Further, z
can be represented by a linear combination of any basis of Rn. By choosing the column
vectors of V as the basis for Rn, we have

z = Vp = V1p1 + V2p2,

for a unique p, where p = [pT
1 pT

2 ]T . It follows that

y = Az = A(V1p1 + V2p2)
= AV1p1 (since AV2 = 0)
= U1Σrp1,

which is clearly an element in R(U1).
Thus, we conclude that R(U1) = R(A).

Finally, it is relatively easier to show that R(V2) = N(A). With AV2 = 0, we know the
column vectors of V2 are in N(A). From the dimension theorem

rank(A) + dim(N(A)) = dim(Rn),

we know dim(N(A)) = n− r, which is exactly the number of columns of V2. This means
the linearly independent columns of V2 form a basis of N(A). We can conclude that
R(V2) = N(A).

5. (5+5=10 points)

(a) Singular value decomposition (SVD) tells us that we can decompose H into H = UDVH

with unitary matrices U, V and diagonal matrix D. With this,

ỹ = UHHVx̃ + UHn

= UHUDVHVx̃ + UHn

= Dx̃ + ñ.

Hence, we design U and V as the two unitary matrices in SVD of H. And the diagonal
entries of D will be the singular values of H.
Therefore, we can find U to be the matrix of eigenvectors of HHH and V to be the
matrix of eigenvectors of HHH. It’s easy to find

HHH =
[
4 2
2 4

]
, and HHH =

[
5

√
3√

3 3

]
.

With some algebraic efforts, we have

U =
1√
2

[−1 −1
−1 1

]
, V =

1
2

[−√3 1
−1 −√3

]
, and D =

[√
6 0

0
√

2

]
.

(b) First, this problem will not be graded. You automatically get the 5 pts.
With the answer in (a), we get

ỹ1 =
√

6 ∗ x̃1 + ñ1

ỹ2 =
√

2 ∗ x̃2 + ñ2.

We should give more power to the one which has a better channel, i.e., larger channel
gain(since the ñ1 and ñ2 have same attribution.) In this case, giving x̃1 more power is

better. (The answer may be x̃2 if you do (a) differently and result in D =
[√

2 0
0

√
6

]
.)
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