Stochastic Processes, 09

Homework 2
Solutions

Part I: Reading Assignment

1. Read textbook Sec. 3.2 ~ Sec. 3.5, Sec. 4.1, and Sec. 4.2, which you should have learned
before in college level Probability course.

2. Read Chapter 2 of Gallager’s note.

Part II: Problem Assignment

1. (a) Let t = [t1,t2,t3]". The joint MGF of w is given by

O (t)

1
exp (tme + 2tTKwi:)
3 2 3 2 1 2
= exp tl —+ 2t2 + §t1 —+ §t2 —+ §t3 — t1t2 —+ tltg .

(b) For any real a and b,
a(X —aY)+bY =aX + (b—a)Y,

which, by definition, is a Gaussian random variable since X and Y are jointly Gaus-
sian. Thus, (X — aY’) and Y are jointly Gaussian.
With that (X — aY) and Y are jointly Gaussian, what we need to do is to find «
such that

E[(X —aY)Y] = E[X — oY]E[Y]. (1)
Thus, we need to know E[XY] and E[Y?].
The covariance matrix tells us that E[(X —

)
from which we can obtain E[XY] =1 and E[Y
into (1) yields

(Y —2)] = -1 and E[(Y — 2)?] = 3,
2] = 7. Substituting the above results

(c) From the covariance matrix we know that Y and Z are independent. Thus, E[Y?3|Z] =
E[Y3]. With E[Y] = 2, we have E[(Y — 2)3] = 0, expanding which gives

E[(Y —2)%] = E[Y?*] -6E[Y? +12E[Y] -8
= EY’-6-7+12-2-8
07

where E[Y?] = 7 can be obtained from E[(Y — 2)?] = 3. Therefore, we have
E[Y?3] = 26.

(d) Since X and Y are jointly Gaussian, we know X +2Y is a Gaussian random variable.
We need its mean and variance for the density function. The mean is E[X]+2E[Y] =
5, and the variance is E[(S — E[X] —2E[Y])?] = E[(X — E[X]+2(Y — E[Y]))?] = 11.

(e) Although X and Y are not zero mean in the current case, the decorrelation procedure
is identical to that in the problem on page 273 of the textbook.

2. (a) This problem is in essence equivalent to showing that x and z are collectively jointly
Gaussian. Since x and z are independent, a’x and 37y are also independent for
any real vector a and 8. Thus, we know

ox+ By



is also a Gaussian random variable. This proves that x and z are collectively jointly
Gaussian.
Turning back to see whether u is a Gaussian random vector (jointly Gaussian). We

express
I, O X
=] @

where I, and I,,, are n X n and m x m identity matrix respectively. We see that u is
a linear transformation of jointly Gaussian x and z. We therefore can conclude that
u is a random vector with jointly Gaussian elements.

(b) From (2), the covariance matrix K,, is

=[5 2] 2% ) g

where the matrix
I, O
H I,

is nonsingular, no matter whether H is square, full rank or anything else. Therefore,
in order for K, to be invertible (nonsingular), we need the condition that both K,
and K, are invertible.

(¢) From (a), we know that x and y are jointly Gaussian. Thus, the conditional density

" Kx‘y) where

is also a Gaussian density with A/ (mm|

= my+ nyKy_l(y - my)
= szKgly (since m; = m, = 0)

- K,HT(HK,HT +K.) 'y.
and

K,, = K.-K;K,;'Ky
= K, K,y
- K,-K,HT(HK,H” +K.) 'HK,.

3. (10 points)
For a circularly symmetric complex Gaussian random variable X = X,. + jX;, we know
that its mean and pseudo-covariance are both zero. Zero mean suggests that X, and X;
both have zero mean too. And, the pseudo-covariance gives

E[XXT] = E[X} — X}] + j2E[X, X)),
which is zero only when its real part and imaginary part are both zero, suggesting
E[X?] = E[X?] and E[X,X;]=0.

This says the real part and the imaginary part have equal 2nd moment, and are uncor-
related. Since X, and X; are jointly Gaussian, uncorrelatedness implies independence.
Thus, we have shown that the real part and the imaginary part are i.i.d.

4. Problem 2.13 in Gallager’s note.
(a) For y = Aw, we have
Ewy”] = ElwwT]AT = AT,

So, we need AT = K. That is A = KT
(b) E[wz!] = EfwwT]AT = K,B”. Thus, we need B = KTK, .



(c) From part (b), we know that we are looking for B such that BK, = K”. Assuming
that BT = [by|---|b,,] and K = [ky|---|k,,], let us rewrite K,” BT = K in the
following form

Ko[bi] - [bm] = [k - [kp]

This can be decomposed into a set of linear equations
K:b; =k; (4)

for i = 1---m. Since now K, is singular, we cannot uniquely determine b;. Assume
the covariance matrix K, has rank r, it can be decomposed to K, = EAET where
A =diag (A -+ A, 0,---,0) . Substituting this into (4) gives

AETDb;, = E"k;,

of which the lower (m — r) equations equal to zero, i.e. e]Tki =0, for j > r+ 1 where
e; is the jth column vector of the matrix E. In other words, each column of K is
orthogonal to all the eigenvectors that have a zero eigenvalue. This is equivalent to
saying that each column of K belongs the space V = span{e;,--- ,e,}.

In conclusion, for B to satisfy the desired cross-correlation matrix, each column of
K must belongs to the space spanned by the eigenvectors that correspond to the
non-zero eigenvalues of K,. |

5. This problem again reflects the importance of Gaussian density, where with only mean
and variance of a random variable, we can model the random variable as Gaussian in the
sense that the Gaussian density maximizes the entropy of the random variable.

In this problem, the only things we have are:

| v = (5)

—00

/oo ap(z)dr = p (6)

— 00

/OO 2?p(z)de = p?®+ o> (7)

— 00

We want to find a p(z) that maximizes the entropy

H[X] = - /OQ p(z) Inp(z)dz,

—o0
while satisfying the above three conditions. This is a typical constrained optimization
problem, and we can resort to Lagrange Multiplier technique to find a solution.

The cost function for the constrained optimization problem here is

Qp(z)) = / [—p(2) Inp(x) + Aip(x) + Aoxp(x) + Asz’p(x)] da,
where A1, Ao, and\s are the Lagrange multipliers. Taking the derivative with respect to
p(x) and letting the result equal to zero give

lnp(ac) =14 + Xz + )\35(52.

So, we have
2
p(d)) K- 6A2x+)\3z ) (8)

~1+M1 We will solve for these 3 Lagrange multipliers using (1), (2), and (3).

where K = e
Actually, we don’t need to solve for A1, A2 and A3 explicitly. Based on (1) and (4), we
know

o0 2
K / ettt ATt gy —
— 00

where the exponent is quadratic with respect to x. Merely from this observation, we can
conclude that p(x) is a Gaussian density with proper coefficient K. Then, from (2) and
(3), we know p(z) is Gaussian with mean p and variance o2. [ |



Extra Problems

This problem is very important. It states that, when the jointly Gaussian random vectors
y and z are dependent, conditioning on z can always be replaced by conditioning on
another Gaussian random vector z, where z and y are statistically independent. We
will use this property later this semester when discussing the recursive minimum mean
squared estimator, or the so-called Kalman filter.

(a) Let s £ [y"z"]" be the (m + ) x 1 vector collecting y and z. In topic 3, we learn

that the conditional mean
Elx|y,z] = E[x|s] = my + szstl(s — my), (9)

where my and mg are the mean vector of x and s, respectively. In the following, the
notation m, refers to the mean vector of *.

We first carry out Kys and stl. The cross-covariance matrix between x and s is
an n X (m -+ r) matrix and can be written in a block matrix form as

Kxs = B [(x = m) (s = ma)" | = [Kay | Knal
where Ky, and Ky, are the cross-covariance matrix of [x and y, and [x and z,
respectively.

Since y and z are independent, their cross-covariance matrix Ky, is a zero matrix.
Therefore, the covariance matrix of s is

K-z ||

It is clear that

This can be seen by directly expanding the matrix multiplication KsKg !, and show
the result is an identity matrix. With straightforward manipulations, we find

szKs_1<s - ms) = [nyKy_ly szKz_l] : |: y My :|

Z —1m,
= nyKy_l(y —my) + szKz_l(z —m,)
E[x|y] — my + E[x|z] — my. (10)

Substituting (10) into (9) yields
Elx|y,z] = E[x|y] + E[x|z] — my,

when y and z are statistically independent.

This part is somewhat involved, and its result is very important, as I mentioned.
Intuitively, since y and z are dependent, knowing both y and z is not necessary. We
can work on statistically independent y and Z, and apply part (1) to find E[x|y, Z].
The proof in this part basically includes 3 things:

— expand E[x]y, z]

— expand E[x|y, Z], and

— compare the above expanded results

Again, let s = [yTz"]T. We know

_ Ky Ky, | [y-my
Ex|y,z] = mx + [Kxy | Kxz] [ K, K, } [ Z—m, (11)
—K,.
—K, !

The inverse of K¢ can be further carried out as

-1
K —1 _ Ky Kyz _ A B
s K, K, c |



where

A = K, '+K, 'K,,CK, K, '
B = -K, 'K,C
C = (K,—K,K, 'Ky,) .

By plugging all these into (11), we have

Elxly,z] = my+ (nyKy—1 + KK, 'Ky, CK, K, ' — KXZCszKy_l) (y —my)

+ (K€ ~ Kiy Ky 'Ky, C) (2~ m,)
= mx+ (KXyKyi1 + (KXyKyilez - sz) CKZyKyil) (y —my)
+(sz - nyKy_lez)C(z —m,).

On the other hand, the conditional expectation conditioned on y and Z can be given
by

K, 0] '[y-m
E[X|y’2} = my + [ny | sz] [ Oy Kﬁ :| |: 2 - m;, :|
= my + KoKy ' (y —my) + KoK, ™' (2 -mj), (13)

where m; = E[Z] = 0 and we have used the property that y and Z are independent,
i.e.

Cov(y,z) = E|
= E| [
= Elyz'] - E[Blyz"ly]]
= E| yz"
Now, it remains to find Ky; and K5 ™' in (13). It is straightforward to show that
_ T _
Ky = E [(x —my) (z — m, — K,y K, (v — my)) } = Ky — Ky Ky 'Ky,
_ _ T
K:=FE [(Z —m, — K,y Ky Yy - my)) (z —m; — K,y Ky Yy - my)) ]
=K, - K, K, 'Ky,.
We see that K; ! = C. Again, plugging these results into (13) yields
Elxly,2] = me+KqgK, ' (y - my) + (Kx — KoKy 7'Ky,) C(z — Elzly])
= my+ nyKy_l(y —my) + (sz - KXyKy_leZ) C
X (z —m, — szKy_l(y — my))
= mt (K Ky '+ (K Ky 'Ky — Koo) CKy Ky ™) (v — my)
+ (Ko ~ KiyKy 'Ky, ) C(z — my),

which is exactly the same as the result in (12).
(Another approach:)

Another easier way to prove the statement given in the problem is using the concept
of linear transformation. Since y and z are jointly Gaussian, we know

%=2z— Elzly] =2z —m, - K,, K, '(y — my) (14)
Let § 2 [y727]T. Then, it follows from (14) that § can be written as

|

y | _ I 0 Y|4 0
2| | KyK, ' Iz ~—m, + K, K, 'm,

2A 2p

(12)



That is, with y and z being jointly Gaussian, the vector § is in fact a linear transfor-

mation of the vector s with
§=As+b, (15)

where A and b are defined in the previous equation. Since x and s are jointly
Gaussian, it can be easily shown that x and § are also jointly Gaussian. Then, the
conditional mean can be expressed by

E[x[8] = my + Ky sKs ™ '(8 — my). (16)

What remains is to find the expression of Kyxs and Kg. With the equality (15), we
can find explicit relationships between Kys and Kyg, as well as Kz and Ky as follows:

Ky = E[(x—my)(8— mg)T}
( )(As+b— (Am, + b))’ |
(

F|(x—my
= E[(x—mx) s—ms)T} AT

= sz 'AT
Kg = F [(é — mg)(§ — mg)T]
= A -E[(s—m)(s—mg)"] AT
= AK.AT.

Substituting these two into (16) gives rise to

Ex|8] = my+KeeKs (8 ms)
= my+ Ky AT (AK,AT) - (As — Amy,)
= mx+szKS_1(S_ms)7

which is exactly the result of E[x|s] under the condition that A~! exists. We can
justify A is indeed nonsingular by checking its determinant det(A) = 1.

This implies that, since A is nonsingular, the linear transformation As + b does not
lose any information that s originally provides, nor does it add in anything new.
Therefore, conditioning on As + b is equivalent to conditioning on s. [ |



