
Stochastic Processes, 09

Homework 2
Solutions

Part I: Reading Assignment

1. Read textbook Sec. 3.2 ∼ Sec. 3.5, Sec. 4.1, and Sec. 4.2, which you should have learned
before in college level Probability course.

2. Read Chapter 2 of Gallager’s note.

Part II: Problem Assignment

1. (a) Let t = [t1, t2, t3]T . The joint MGF of w is given by

θw(t) = exp
(
tT mw +

1
2
tT Kwt

)

= exp
(

t1 + 2t2 +
3
2
t21 +

3
2
t22 +

1
2
t23 − t1t2 + t1t3

)
.

(b) For any real a and b,

a(X − αY ) + bY = aX + (b− aα)Y,

which, by definition, is a Gaussian random variable since X and Y are jointly Gaus-
sian. Thus, (X − αY ) and Y are jointly Gaussian.
With that (X − αY ) and Y are jointly Gaussian, what we need to do is to find α
such that

E[(X − αY )Y ] = E[X − αY ]E[Y ]. (1)

Thus, we need to know E[XY ] and E[Y 2].
The covariance matrix tells us that E[(X − 1)(Y − 2)] = −1 and E[(Y − 2)2] = 3,
from which we can obtain E[XY ] = 1 and E[Y 2] = 7. Substituting the above results
into (1) yields

α = −1
3
.

(c) From the covariance matrix we know that Y and Z are independent. Thus, E[Y 3|Z] =
E[Y 3]. With E[Y ] = 2, we have E[(Y − 2)3] = 0, expanding which gives

E[(Y − 2)3] = E[Y 3]− 6E[Y 2] + 12E[Y ]− 8
= E[Y 3]− 6 · 7 + 12 · 2− 8
= 0,

where E[Y 2] = 7 can be obtained from E[(Y − 2)2] = 3. Therefore, we have

E[Y 3] = 26.

(d) Since X and Y are jointly Gaussian, we know X +2Y is a Gaussian random variable.
We need its mean and variance for the density function. The mean is E[X]+2E[Y ] =
5, and the variance is E[(S−E[X]−2E[Y ])2] = E[(X−E[X]+2(Y −E[Y ]))2] = 11.

(e) Although X and Y are not zero mean in the current case, the decorrelation procedure
is identical to that in the problem on page 273 of the textbook.

2. (a) This problem is in essence equivalent to showing that x and z are collectively jointly
Gaussian. Since x and z are independent, αT x and βT y are also independent for
any real vector α and β. Thus, we know

αT x + βT y



is also a Gaussian random variable. This proves that x and z are collectively jointly
Gaussian.
Turning back to see whether u is a Gaussian random vector (jointly Gaussian). We
express

u =
[

Im 0
H In

] [
x
z

]
, (2)

where In and Im are n× n and m×m identity matrix respectively. We see that u is
a linear transformation of jointly Gaussian x and z. We therefore can conclude that
u is a random vector with jointly Gaussian elements.

(b) From (2), the covariance matrix Ku is

Ku =
[

Im 0
H In

] [
Kx 0
0 Kz

] [
Im HT

0 In

]
, (3)

where the matrix [
Im 0
H In

]

is nonsingular, no matter whether H is square, full rank or anything else. Therefore,
in order for Ku to be invertible (nonsingular), we need the condition that both Kx

and Kz are invertible.
(c) From (a), we know that x and y are jointly Gaussian. Thus, the conditional density

is also a Gaussian density with N
(
mx|y,Kx|y

)
where

mx|y = E
[
x|y = y

]

= mx + KxyKy
−1(y −my)

= KxyK−1
y y (since mx = my = 0)

= KxHT
(
HKxHT + Kz

)−1
y.

and

Kx|y = Kx −KxyK−1
y Kyx

= KxyK−1
y y

= Kx −KxHT
(
HKxHT + Kz

)−1
HKx.

3. (10 points)
For a circularly symmetric complex Gaussian random variable X = Xr + jXi, we know
that its mean and pseudo-covariance are both zero. Zero mean suggests that Xr and Xi

both have zero mean too. And, the pseudo-covariance gives

E[XXT ] = E[X2
r −X2

i ] + j2E[XrXi],

which is zero only when its real part and imaginary part are both zero, suggesting

E[X2
r ] = E[X2

i ] and E[XrXi] = 0.

This says the real part and the imaginary part have equal 2nd moment, and are uncor-
related. Since Xr and Xi are jointly Gaussian, uncorrelatedness implies independence.
Thus, we have shown that the real part and the imaginary part are i.i.d.

4. Problem 2.13 in Gallager’s note.

(a) For y = Aw, we have
E[wyT ] = E[wwT ]AT = AT .

So, we need AT = K. That is A = KT .

(b) E[wzT ] = E[wwT ]AT = KzBT . Thus, we need B = KT Kz
−1.
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(c) From part (b), we know that we are looking for B such that BKz = KT . Assuming
that BT = [b1| · · · |bm] and K = [k1| · · · |km], let us rewrite Kz

T BT = K in the
following form

Kz[b1| · · · |bm] = [k1| · · · |km]

This can be decomposed into a set of linear equations

Kzbi = ki (4)

for i = 1 · · ·m. Since now Kz is singular, we cannot uniquely determine bi. Assume
the covariance matrix Kz has rank r, it can be decomposed to Kz = EΛET where
Λ = diag (λ1 · · ·λr, 0, · · · , 0) . Substituting this into (4) gives

ΛET bi = ET ki,

of which the lower (m− r) equations equal to zero, i.e. eT
j ki = 0, for j ≥ r +1 where

ej is the jth column vector of the matrix E. In other words, each column of K is
orthogonal to all the eigenvectors that have a zero eigenvalue. This is equivalent to
saying that each column of K belongs the space V = span{e1, · · · , er}.
In conclusion, for B to satisfy the desired cross-correlation matrix, each column of
K must belongs to the space spanned by the eigenvectors that correspond to the
non-zero eigenvalues of Kz. ¥

5. This problem again reflects the importance of Gaussian density, where with only mean
and variance of a random variable, we can model the random variable as Gaussian in the
sense that the Gaussian density maximizes the entropy of the random variable.
In this problem, the only things we have are:

∫ ∞

−∞
p(x)dx = 1 (5)

∫ ∞

−∞
xp(x)dx = µ (6)

∫ ∞

−∞
x2p(x)dx = µ2 + σ2. (7)

We want to find a p(x) that maximizes the entropy

H[X] , −
∫ ∞

−∞
p(x) ln p(x)dx,

while satisfying the above three conditions. This is a typical constrained optimization
problem, and we can resort to Lagrange Multiplier technique to find a solution.
The cost function for the constrained optimization problem here is

Q(p(x)) =
∫ ∞

−∞

[−p(x) ln p(x) + λ1p(x) + λ2xp(x) + λ3x
2p(x)

]
dx,

where λ1, λ2, andλ3 are the Lagrange multipliers. Taking the derivative with respect to
p(x) and letting the result equal to zero give

ln p(x) = −1 + λ1 + λ2x + λ3x
2.

So, we have
p(x) = K · eλ2x+λ3x2

, (8)

where K = e−1+λ1 . We will solve for these 3 Lagrange multipliers using (1), (2), and (3).
Actually, we don’t need to solve for λ1, λ2 and λ3 explicitly. Based on (1) and (4), we
know

K ·
∫ ∞

−∞
eλ2x+λ3x2

dx = 1,

where the exponent is quadratic with respect to x. Merely from this observation, we can
conclude that p(x) is a Gaussian density with proper coefficient K. Then, from (2) and
(3), we know p(x) is Gaussian with mean µ and variance σ2. ¥
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Extra Problems

This problem is very important. It states that, when the jointly Gaussian random vectors
y and z are dependent, conditioning on z can always be replaced by conditioning on
another Gaussian random vector ẑ, where ẑ and y are statistically independent. We
will use this property later this semester when discussing the recursive minimum mean
squared estimator, or the so-called Kalman filter.

(a) Let s , [yT zT ]T be the (m + r) × 1 vector collecting y and z. In topic 3, we learn
that the conditional mean

E[x|y, z] = E[x|s] = mx + KxsKs
−1(s−ms), (9)

where mx and ms are the mean vector of x and s, respectively. In the following, the
notation m∗ refers to the mean vector of ∗.
We first carry out Kxs and Ks

−1. The cross-covariance matrix between x and s is
an n× (m + r) matrix and can be written in a block matrix form as

Kxs = E
[
(x−mx) (s−ms)

T
]

= [Kxy | Kxz] ,

where Kxy and Kxz are the cross-covariance matrix of [x and y, and [x and z,
respectively.
Since y and z are independent, their cross-covariance matrix Kyz is a zero matrix.
Therefore, the covariance matrix of s is

Ks = E

[[
y −my

z−mz

]
· [(y −my)T , (z−mz)T ]

]
=




Ky 0

0 Kz


 .

It is clear that

Ks
−1 =




Ky
−1 0

0 Kz
−1


 .

This can be seen by directly expanding the matrix multiplication KsKs
−1, and show

the result is an identity matrix. With straightforward manipulations, we find

KxsKs
−1(s−ms) = [KxyKy

−1, KxzKz
−1] ·

[
y −my

z−mz

]

= KxyKy
−1(y −my) + KxzKz

−1(z−mz)
= E[x|y]−mx + E[x|z]−mx. (10)

Substituting (10) into (9) yields

E[x|y, z] = E[x|y] + E[x|z]−mx,

when y and z are statistically independent.
(b) This part is somewhat involved, and its result is very important, as I mentioned.

Intuitively, since y and z are dependent, knowing both y and z is not necessary. We
can work on statistically independent y and ẑ, and apply part (1) to find E[x|y, ẑ].
The proof in this part basically includes 3 things:
— expand E[x|y, z]
— expand E[x|y, ẑ], and
— compare the above expanded results
Again, let s , [yT zT ]T . We know

E[x|y, z] = mx + [Kxy | Kxz]︸ ︷︷ ︸
=Kxs

[
Ky Kyz

Kzy Kz

]−1

︸ ︷︷ ︸
=Ks

−1

[
y −my

z−mz

]
. (11)

The inverse of Ks can be further carried out as

Ks
−1 =

[
Ky Kyz

Kzy Kz

]−1

=
[

A B
BT C

]
,
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where

A = Ky
−1 + Ky

−1KyzCKzyKy
−1

B = −Ky
−1KyzC

C =
(
Kz −KzyKy

−1Kyz

)−1
.

By plugging all these into (11), we have

E[x|y, z] = mx +
(
KxyKy

−1 + KxyKy
−1KyzCKzyKy

−1 −KxzCKzyKy
−1

)
(y −my)

+
(
KxzC−KxyKy

−1KyzC
)
(z−mz)

= mx +
(
KxyKy

−1 +
(
KxyKy

−1Kyz −Kxz

)
CKzyKy

−1
)

(y −my)

+
(
Kxz −KxyKy

−1Kyz

)
C(z−mz). (12)

On the other hand, the conditional expectation conditioned on y and ẑ can be given
by

E[x|y, ẑ] = mx + [Kxy | Kxẑ]
[

Ky 0
0 Kẑ

]−1 [
y −my

ẑ−mẑ

]

= mx + KxyKy
−1(y −my) + KxẑKẑ

−1 (ẑ−mẑ) , (13)

where mẑ = E[ẑ] = 0 and we have used the property that y and ẑ are independent,
i.e.

Cov(y, ẑ) = E[(y −my)ẑT ] = E[yẑT ]
= E[yzT ]− E[yE[zT |y]]
= E[yzT ]− E[E[yzT |y]]
= E[yzT ]− E[yzT ] = 0.

Now, it remains to find Kxẑ and Kẑ
−1 in (13). It is straightforward to show that

Kxẑ = E
[(

x−mx

)(
z−mz −KzyKy

−1(y −my)
)T

]
= Kxz −KxyKy

−1Kyz

Kẑ = E
[(

z−mz −KzyKy
−1(y −my)

)(
z−mz −KzyKy

−1(y −my)
)T

]

= Kz −KzyKy
−1Kyz.

We see that Kẑ
−1 = C. Again, plugging these results into (13) yields

E[x|y, ẑ] = mx + KxyKy
−1(y −my) +

(
Kxz −KxyKy

−1Kyz

)
C (z− E[z|y])

= mx + KxyKy
−1(y −my) +

(
Kxz −KxyKy

−1Kyz

)
C

× (
z−mz −KzyKy

−1(y −my)
)

= mx +
(
KxyKy

−1 +
(
KxyKy

−1Kyz −Kxz

)
CKzyKy

−1
)

(y −my)

+
(
Kxz −KxyKy

−1Kyz

)
C(z−mz),

which is exactly the same as the result in (12).

(Another approach:)
Another easier way to prove the statement given in the problem is using the concept
of linear transformation. Since y and z are jointly Gaussian, we know

ẑ = z− E[z|y] = z−mz −KzyKy
−1(y −my) (14)

Let ŝ , [yT ẑT ]T . Then, it follows from (14) that ŝ can be written as

ŝ =
[

y
ẑ

]
=

[
I 0

−KzyKy
−1 I

]

︸ ︷︷ ︸
,A

[
y
z

]
+

[
0

−mz + KzyKy
−1my

]

︸ ︷︷ ︸
,b

.
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That is, with y and z being jointly Gaussian, the vector ŝ is in fact a linear transfor-
mation of the vector s with

ŝ = As + b, (15)

where A and b are defined in the previous equation. Since x and s are jointly
Gaussian, it can be easily shown that x and ŝ are also jointly Gaussian. Then, the
conditional mean can be expressed by

E[x|̂s] = mx + KxŝKŝ
−1(̂s−mŝ). (16)

What remains is to find the expression of Kxŝ and Kŝ. With the equality (15), we
can find explicit relationships between Kxŝ and Kxs, as well as Kŝ and Ks as follows:

Kxŝ = E
[
(x−mx)(̂s−mŝ)T

]

= E
[(

x−mx

)(
As + b− (Ams + b)

)T
]

= E
[(

x−mx

)(
s−ms

)T]
·AT

= Kxs ·AT

Kŝ = E
[
(̂s−mŝ)(̂s−mŝ)T

]

= A · E [
(s−ms)(s−ms)T

] ·AT

= AKsAT .

Substituting these two into (16) gives rise to

E[x|̂s] = mx + KxŝKŝ
−1(̂s−mŝ)

= mx + Kxs ·AT
(
AKsAT

)−1 · (As−Ams)

= mx + KxsKs
−1(s−ms),

which is exactly the result of E[x|s] under the condition that A−1 exists. We can
justify A is indeed nonsingular by checking its determinant det(A) = 1.
This implies that, since A is nonsingular, the linear transformation As + b does not
lose any information that s originally provides, nor does it add in anything new.
Therefore, conditioning on As + b is equivalent to conditioning on s. ¥
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