Homework 3

Due on $11 / \mathbf{1 7} / \mathbf{2 0 0 9}$, Tuesday, before class

Reading Assignments

Chapter 3 and Chapter 4 of Gallager's note. Sec. 4.8, Sec. 5.8, Sec. 5.9, and Sec. 5.10 of textbook.

Problem Assignments

1. (10 points) Show that the Q-function, defined by $Q(x)=P[Z \geq x]=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{z^{2}}{2}} d z$ with standard Gaussian random variable Z, has the following upper bound for $x \geq 0$.:

$$
Q(x) \leq \frac{1}{2} e^{-\frac{x^{2}}{2}}
$$

2. $(10+10=20$ points) Consider a binary hypothesis testing problem, and denote the hypotheses as $\mathrm{H}_{1}: \alpha=1$ and $\mathrm{H}_{2}: \alpha=-1$. Let \mathbf{h} be an $n \times 1$ real vector and the observation random vector y takes the form

$$
\mathrm{y}=\alpha \cdot \mathbf{h}+\mathrm{z}
$$

where $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$ is independent with α and \mathbf{I}_{n} is an $n \times n$ identity matrix.
(a) Find the maximum likelihood decision rule for α and find the probability of error in terms of the Q function.
(b) Now suppose a third hypothesis $\alpha=0$ is added to the situation of part (a). The observation random vector takes the same form, but here α can take on values $-1,0$ or 1 , equally likely. Find the maximum likelihood decision rule in this case, and determine the error probability.
3. $(10 \times 4=40$ points $)$ Let the mathematical model of a communication system with N transmit and M receive antennas be given by

$$
\mathbf{y}_{i}=\sqrt{\frac{E_{s}}{N}} \mathbf{H s}_{i}+\mathbf{w}_{i}
$$

where $\mathbf{y}_{i}=\left[y_{i, 1}, y_{i, 2}, \cdots, y_{i, M}\right]^{T}$ is the $M \times 1$ vector collecting received signals from all receive antennas at the i th time instant, \mathbf{H} is the time-invariant channel matrix with dimension $M \times N, \mathbf{s}_{i}$ is the $N \times 1$ transmitted signal vector (with unit average energy) at the i th time instant, E_{s} is the total energy of the transmitted signal, and $\mathbf{w}_{i} \sim \mathcal{C N}\left(\mathbf{0}, \mathrm{~N}_{0} \mathbf{I}_{M}\right)$ is the complex Gaussian noise vector with N_{0} being the variance of each noise component and \mathbf{I}_{M} the identity matrix with size $M \times M$. More specifically, the model tells that the m th component $y_{i, m}$ of \mathbf{y}_{i} represents the received signal at the m th antenna of the receiving device, and is equal to

$$
y_{i, m}=\sum_{n=1}^{N} h_{m, n} s_{i, n}+w_{i, m}
$$

where $h_{m, n}$ is the (m, n) th component of \mathbf{H} which means the channel gain between the nth transmit antenna and the m th receive antenna, $s_{i, n}$ is the nth component of \mathbf{s}_{i} signifying the transmitted signal from the nth transmit antenna at the i th time instant, and $w_{i, m}$ is the noise.

We collect T received signal vectors, from $i=1$ to $i=T$, and stack them into

$$
\mathbf{Y}=\sqrt{\frac{E_{s}}{N}} \mathbf{H S}+\mathbf{W}
$$

where $\mathbf{Y}=\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{T}\right]$, and likewise for the representations of \mathbf{S} and \mathbf{W}. The signal codeword matrix \mathbf{S} belongs to a set $\mathcal{S}=\left\{\mathbf{S}^{(1)}, \mathbf{S}^{(2)}, \cdots, \mathbf{S}^{(K)}\right\}$, called codebook, with size K.
(a) Given that the receiver knows the channel matrix \mathbf{H}, show that the ML detection rules gives the following decision criterion:

$$
\hat{\mathbf{S}}_{M L}=\arg \min _{\mathbf{S}}\left\|\mathbf{Y}-\sqrt{\frac{E_{s}}{N}} \mathbf{H S}\right\|_{F}^{2}
$$

where the Frobenious norm $\|\mathbf{A}\|_{F}$ of a $p \times q$ matrix \mathbf{A} is defined as the sum of squared absolute values of all components, i.e. $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{p} \sum_{j=1}^{q}\left|a_{i, j}\right|^{2}}$, where $a_{i, j}$ is the (i, j) th entry of the matrix \mathbf{A}.
(b) With the ML decision rule in part (a), show that the conditional pairwise error probability $P\left(\mathbf{S}^{(i)} \rightarrow \mathbf{S}^{(j)} \mid \mathbf{H}\right)$, which means the probability that the receiver decides the codeword $\mathbf{S}^{(j)}$ while the actual transmitted codeword is $\mathbf{S}^{(i)}$, is given by

$$
P\left(\mathbf{S}^{(i)} \rightarrow \mathbf{S}^{(j)} \mid \mathbf{H}\right)=Q\left(\sqrt{\frac{\rho\left\|\mathbf{H} \mathbf{E}_{i, j}\right\|_{F}^{2}}{2 N}}\right)
$$

where $\rho=\frac{E_{s}}{\mathrm{~N}_{0}}$ is the signal-to-noise ratio (SNR) and $\mathbf{E}_{i, j}=\mathbf{S}^{(i)}-\mathbf{S}^{(j)}$.
(Hint: You can use $\|\mathbf{A}\|_{F}^{2}=\operatorname{Tr}\left(\mathbf{A}^{H} \mathbf{A}\right)$, the trace of $\mathbf{A}^{H} \mathbf{A}$, to simplify the derivation.)
(c) From Problem 3 and part (b) of this problem, the conditional pairwise probability can be bounded by

$$
P\left(\mathbf{S}^{(i)} \rightarrow \mathbf{S}^{(j)} \mid \mathbf{H}\right) \leq e^{-\frac{\rho\left\|\mathbf{H E} \mathbf{E}_{i, j}\right\| \|_{F}^{2}}{4 N}} .
$$

Show that the average PEP can be bounded by

$$
P\left(\mathbf{S}^{(i)} \rightarrow \mathbf{S}^{(j)}\right) \leq\left(\frac{1}{\operatorname{det}\left(\mathbf{I}_{N}+\frac{\rho}{4 N} \mathbf{E}_{i, j} \mathbf{E}_{i, j}^{H}\right)}\right)^{M}
$$

where the average is taken over the channel matrix \mathbf{H} whose components are assumed to be i.i.d. complex Gaussian random variables with zero mean and unit variance, $i . e$. the (i, j) th component $h_{i, j} \sim \mathcal{C N}(0,1)$.
(d) Discuss how the average PEP in part (c) scales with the number of transmit (N) and receive (M) antennas as the SNR goes to infinity.
4. $\left(10+10=20\right.$ points) A gamma random variable Y_{k} with parameter (k, λ) can be considered as the sum of k independent exponential random variables T_{i} for $i=1 \cdots k$ with parameter λ, i.e.

$$
Y_{k}=\sum_{i=1}^{k} T_{i}
$$

The gamma random variable Y_{k} is commonly used to model the total amount of time that one has to wait until the k th Poisson event has occurred. Or, equivalently, T_{i} is used to model the inter-arrival time between the $(i-1)$ th and the i th occurrence of the Poisson event, where the time of the zero-th occurrence is labelled as the origin.
(a) Find the probability distribution function $F_{Y_{k}}(y)=P\left[Y_{k} \leq y\right]$ of Y_{k}. (Hint: consider the event that the number of Poisson events occurred in the interval $[0, y]$ is greater than k.)
(b) Find the probability density function of Y_{k} by differentiating $F_{Y_{k}}(t)$ in part (a).
5. (10 points) Justify that the sample variance is an unbiased estimator.

Extra Problems

You do NOT need to turn in your solutions for the following problems. However, I strongly encourage you to work through them.

1. Consider a communication system that is corrupted by unknown interference Z and Gaussian noise W. Mathematically, the received signal Y can be modeled as

$$
Y=X+Z+W
$$

where X is the desired signal equally likely to 1 or -1 , and $W \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Assume X, Z, W are mutually independent.
(a) Suppose we model the interference Z as a Gaussian random variable with $Z \sim \mathcal{N}\left(0, A^{2}\right)$. Find the maximum likelihood decision rule for X from the received signal Y. What is the probability of error decision? And, how does the error probability behave when the power A^{2} approaches to infinity?
(b) More practically, we now model the interference Z as a binary discrete random variable equally likely to be A or $-A$. Find the maximum likelihood decision rule for X from the received signal Y.
(c) In part (b), obtain the ML decision rule when A approaches to infinity. And, calculate the probability of error decision in this large power condition.
(d) Explain intuitively the difference between part (a) and part (c).

