
Stochastic Processes nctuee09f

Homework 3
Solutions

Problem Assignments

1. (10 points) Note that for α ≥ x, and since x ≥ 0,

α2 = (α− x)2 + 2αx− x2

≥ (α− x)2 + 2x2 − x2

= (α− x)2 + x2.

Therefore,

Q(x) =
∫ ∞

x

1√
2π

e
−α2

2 dα

≤
∫ ∞

x

1√
2π

e−
(α−x)2+x2

2 dα

= e
−x2

2

∫ ∞

x

1√
2π

e−
(α−x)2

2 dα

=
1
2
e
−x2

2 .

2. (10+10=20 points)

(a) The ML rule states the following decision

fy(y|α = 1)
α̂=1
≷

α̂=−1
fy(y|α = −1).

After certain manipulations, the maximum likelihood decision rule is

yTh
α=1
≷

α=−1
0.

And, the probability of error is

Pe = Q

( ||h||
σ

)
. (1)

Note that the error probability depends on the ratio of the signal energy
Eb = ||h||2 and the noise power N0

2 = σ2, commonly referred to as the signal
to noise ratio (SNR). So, in the literature of communications theory, we often
see

Pe = Q
(√

2Eb/N0

)
.

(b) Adding one more hypothesis complicates the problem a little bit. The like-
lihood function for each value of α is as follows:

L(α = 1|y) ∝ exp
(
− 1

2σ2
||y − h||2

)

L(α = 0|y) ∝ exp
(
− 1

2σ2
||y||2

)

L(α = −1|y) ∝ exp
(
− 1

2σ2
||y + h||2

)
,



where the multiplicative constant is omitted. The maximum likelihood prin-
ciple requires us finding the α that is maximal among the three. So, the
detector chooses α̂ = 1 if L(α = 1|y) > L(α = 0|y) and L(α = 1|y) > L(α =
−1|y). Likewise for choosing α̂ = 0 and α̂ = −1. With some algebraic efforts,
we have the following decision rule:

α̂ = 1 if yTh ≥ 1
2
||h||2

α̂ = 0 if − 1
2
||h||2 ≤ yTh ≤ 1

2
||h||2

α̂ = −1 if yTh ≤ −1
2
||h||2.

To compute the error probability, we need

P [error|α = 1] = P

[
yTh <

1
2
||h||2

∣∣∣α = 1
]

= P

[
(h + z)Th <

1
2
||h||2

]

= Q

( ||h||
2σ

)

and

P [error|α = 0] = 1− P

[
−1

2
||h||2 ≤ yTh ≤ 1

2
||h||2

∣∣∣α = 0
]

= 1− P

[
−1

2
||h||2 ≤ zTh ≤ 1

2
||h||2

]

= 1−
(

Q

(
−||h||

2σ

)
−Q

( ||h||
2σ

))

= 2Q

( ||h||
2σ

)
.

We also need P [error|α = −1], which is equal to P [error|α = 1] by symmetry.
So, the probability of error is

Pe = P [error|α = 1]P [α = 1] + P [error|α = 0]P [α = 0] + P [error|α = −1]P [α = −1]

= p1 ·Q
( ||h||

2σ

)
+ 2p0 ·Q

( ||h||
2σ

)
+ (1− p0 − p1) ·Q

( ||h||
2σ

)

= (1 + p0) ·Q
( ||h||

2σ

)
.

where p0, p1, and 1 − p0 − p1 are the prior probabilities of α = 1, α = 0,
and α = −1, respectively. When the prior probabilities are equal, the error
probability is

Pe =
4
3
Q

( ||h||
2σ

)
.

3. (10×4 = 40 points) This problem intends to let you have a taste of what “space-
time coding” is about in a multiple-transmit and receive antennas system. Ba-
sically, when equipping with more antennas, the system’s error performance can
be improved as compared to the single antenna counterpart. More specifically,
when the number of antennas grows, this benefit also gets prominent as the error
probability curve (versus signal-to-noise ratio) decreases in the large SNR regime
at a rate at most proportional to the product of the number of transmit antennas
and the number of receive antennas, as we shall exploit in this problem. This is
the maximal achievable diversity gain of the system.
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(a) Let y = [yt
1,y

t
2, ...,y

t
T ]t, where the superscript means transpose. The ML

detection rule for S = [s1, s2, ..., sT ] is

ŜML = arg max
s1,s2,...,sT

log fy(y|S),

where fy(y|S) = fy(y|s1, s2, ..., sT ) =
∏T

i=1 fyi(yi|si) is the likelihood func-
tion.
Since the receiver is assumed to know the channel H, we have

fyi(yi|si) =
1

πMN0
M

exp



−

1
N0

∥∥∥∥∥yi −
√

Es

N0
Hsi

∥∥∥∥∥
2




It follows that

ŜML = arg max
s1,s2,...,sT

T∑

i=1

log fyi(yi|si)

= arg min
s1,s2,...,sT

T∑

i=1

∥∥∥∥∥yi −
√

Es

N0
Hsi

∥∥∥∥∥
2

= arg min
S

∥∥∥∥∥Y −
√

Es

N
HS

∥∥∥∥∥
2

.

(b) Let’s see a FACT before we go into the derivation.
FACT
Let W be an M × T matrix where all entries are independent with wi,j ∼
CN (0, N0). Then, Tr(GW) is a complex gaussian random variable with

Tr(GW) ∼ CN (0, N0 · ‖G‖2
F ),

where G is a non-random, possibly complex, T ×M matrix.
(proof)

Tr(GW) =
T∑

p=1

(GW)pp

=
T∑

p=1

T∑

q=1

GpqWqp,

from which we know Tr(GW) is a linear combination of independent com-
plex gaussian random variable, and is therefore a complex gaussian R.V. It’s
straightforward to see the mean of Tr(GW) is zero.
The variance is

Var(Tr(GW)) = Var

(∑
p

∑
q

GpqWqp

)
=

∑
p

∑
q

|Gpq|2Var(Wqp)

= N0

∑
p

∑
q

|Gpq|2

= N0‖G‖2
F .

¥
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With the fact, we can obtain the conditional pairwise error probability (PEP)
as

P (S(i) → S(j)|H) = P




∥∥∥∥∥Y −
√

Es

N
HS(j)

∥∥∥∥∥
2

F

<

∥∥∥∥∥Y −
√

Es

N
HS(i)

∥∥∥∥∥
2

F

∣∣∣∣∣H,S = S(i)




= P

(
Tr




(
Y −

√
Es

N
HS(j)

)H (
Y −

√
Es

N
HS(j)

)


< Tr




(
Y −

√
Es

N
HS(i)

)H (
Y −

√
Es

N
HS(i)

)


∣∣∣∣∣H,S = S(i)

)

= P

(
Tr

[
(S(i) − S(j))HHHY + YHH(S(i) − S(j))

]

>

√
Es

N
Tr

[
S(i)H

HHHS(i) − S(j)H
HHHS(j)

] ∣∣∣∣∣H,S = S(i)

)

By inserting Y =
√

Es
N HS(i) +W into the above and having rearrangement

of several terms, it follows

P (S(i) → S(j)|H) = P

(
Tr

[
EH

i,jH
HW + WHHEi,j

]

>

√
Es

N
Tr

[
(S(i) − S(j))HHHH(S(i) − S(j))

])

= P

(
2Re

(
Tr[EH

i,jH
HW]

)
>

√
Es

N
‖HEi,j‖2

F

∣∣∣∣∣ H

)
,

where Re(·) means the real part operator and, by the fact, Tr[EH
i,jH

HW]
is a complex gaussian R.V. with mean 0 and variance N0‖EH

i,jH
H‖2

F =
N0‖HEi,j‖2

F .
We can let X = 2Re(Tr(EH

i,jH
HW)). We know X ∼ N (0, 2N0‖HEi,j‖2

F ).
Thus, the conditional PEP is given by

P (S(i) → S(j)|H) = P

(
X >

√
Es

N
‖HEi,j‖2

F

)

= P

(
X

σX
>

√
Es

2N0N
‖HEi,j‖2

F

)

= Q

(√
ρ‖HEi,j‖2

F

2N

)
,

where X
σX

is a standard gaussian R.V.
(c) The average PEP can be upper bounded as

P (S(i) → S(j)) = E[P (S(i) → S(j)|H)]

≤ E[e−
ρ‖HEi,j‖2F

4N ],

in which the random term is ‖HEi,j‖2
F .
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By the definition of Frobenious norm, we know

‖HEi,j‖2
F = ‖(HEi,j)H‖2

F

= ‖EH
i,jH

H‖2
F

=
M∑

p=1

‖EH
i,jhp‖2,

where hp is the pth column of HH with hp ∼ CN (0, IN ). Therefore we have

P (S(i) → S(j)) ≤ E


exp


− ρ

4N

M∑

p=1

‖EH
i,jhp‖2





 ,

where the average is taken over h = [ht
1,h

t
2, ...,h

t
M ]t with a joint density

fh(h) =
M∏

p=1

1
πN

exp(−hH
p hp).

Thus, it yields

P (S(i) → S(j)) ≤ E


exp


− ρ

4N

M∑

p=1

‖EH
i,jhp‖2







=
∫ ∞

−∞
exp

{
− ρ

4N

M∑

p=1

hH
p Ei,jEH

i,jhp

}
· fh(h)dh

=
∫ ∞

−∞

1
πMN

exp
{
−

M∑

p=1

hH
p (IN +

ρ

4N
Ei,jEH

i,j)hp

}
dhp,

where the integration in the 2nd equality is taken with respect to all com-
ponents in h and, likewise, the integration is with respect to all entries in
hp in the 3rd equality. Setting K−1 = IN + ρ

4N Ei,jEH
i,j gives

P (S(i) → S(j)) ≤
∫ ∞

−∞

1
πMN

exp


−

M∑

p=1

hH
p K−1hp


 dhp

=
∫ ∞

−∞

1
πMN det(K)M

exp


−

M∑

p=1

hH
p K−1hp


 dhp · det(K)M

=
∫ ∞

−∞

M∏

p=1

1
πN det(K)

exp
(−hH

p K−1hp

)
dhp

︸ ︷︷ ︸
=1 (intergral of a density from −∞ to ∞)

·det(K)M

= det(K)M

=

(
1

det(IN + ρ
4N Ei,jEH

i,j)

)M

.

(d) Since Ei,jEH
i,j is a Hermitian matrix, we can decompose it to

Ei,jEH
i,j = UΛUH

where U is a unity matrix consisting of eigenvectors of Ei,jEH
i,j and Λ =

diag(λ1, λ2, ..., λN ) is a diagonal matrix in which we arrange the eigenvalues
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in a decreasing order λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0. If rank(Ei,jEH
i,j) = r ≤ N ,

then there are r nonzero eigenvalues λ1, λ2, ..., λr.
We then can represent the PEP as

P (S(i) → S(j)) ≤
(

det(IN +
ρ

4N
Ei,jEH

i,j)
)−M

=

(
r∏

k=1

(
1 +

ρ

4N
λk

))−M

.

For SNR ρ >> 1, the PEP approaches

P (S(i) → S(j)) ≤
( ρ

4N

)−rM
(

r∏

k=1

λk

)−M

.

Note that when the matrix Ei,jEH
i,j has full rank N , the error probability

scales with ρ−NM , in which the product NM is the maximum achievable
diversity gain, which can be realized by proper designs of Ei,j that makes
the matrix Ei,jEH

i,j of full-rank, or equivalently the matrix Ei,j = S(i) − S(j)

of full rank N for T ≥ N . (since rank(Ei,j) = rank(Ei,jEH
i,j)). We see

the design of Ei,j is across spatial domain over N multiple transmit anten-
nas and across temporal domain over T transmit time slots. Thus, we call
the design of the codeword matrix Ei,j as “space-time coding.” Current
WLAN standard IEEE 802.11n adopts the space-time technology in wireless
routers, as you can see the most updated wireless routers in the market are
all equipped with multiple antennas.

4. (10+10=20 points)

(a) The number X of Poisson events with parameter λ occurred in the time span
[0, t] has the probability mass function

P [X(t) = n] = e−λt (λt)n

n!
.

Let A be the event that the number of Poisson events occurred in the interval
[0, y] is greater than k. The probability distribution function is

FYk
(y) = P

[
Yk ≤ y

]

= P [A]

= P
[
X(y) ≥ k

]

= 1− P
[
X(y) < k

]

= 1−
k−1∑

n=0

e−λy (λy)n

n!
.

(b) The probability density function of Yk is

fYk
(y) = dFYk

(y)/dy

=
(λy)k−1λe−λy

(k − 1)!
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5. (10 points) By checking the following expansion
n∑

i=1

(Xi − X̄n)2 =
n∑

i=1

(Xi − µ− (X̄n − µ))2

=
n∑

i=1

(Xi − µ)2 +
n∑

i=1

(X̄n − µ)2 − 2
n∑

i=1

(Xi − µ)(X̄n − µ)

=
n∑

i=1

(Xi − µ)2 + n(X̄n − µ)2 − 2(nX̄n − nµ)(X̄n − µ)

=
n∑

i=1

(Xi − µ)2 − n(X̄n − µ)2,

and taking the expectation

E

[
n∑

i=1

(Xi − X̄n)2
]

=
n∑

i=1

E
[
(Xi − µ)2

]− nE
[
(X̄n − µ)2

]

= nσ2 − n ·Var(X̄n) = (n− 1)σ2,

we can see the unbiasedness of the sample variance.

Extra Problems

You do NOT need to turn in your solutions for the following problems. However, I
strongly encourage you to work through them.

1. (a) We see Z +W ∼ N (0, A2 +σ2). So, the ML rule is simply choosing X̂ = +1
if y > 0 and X̂ = −1 otherwise. And the error probability

Pe = Q

(
1√

A2 + σ2

)
→ 0.5 as A →∞.

(b) The likelihood ratio is

Λ(y) =
exp

(
− (y−(1+A)2)

2σ2

)
+ exp

(
− (y−(1−A)2)

2σ2

)

exp
(
− (y−(−1+A)2)

2σ2

)
+ exp

(
− (y−(−1−A)2)

2σ2

)

= exp
(

2y

σ2

) cosh
(

A(y−1)
σ2

)

cosh
(

A(y+1)
σ2

)

So, the ML rule is choosing X̂ = +1 if Λ(y) > 1 and X̂ = −1 otherwise.
(c) When A →∞, we have

Λ(y) →





exp
(

2y
σ2

)
exp

(−2A
σ2

)
= exp

(
2(y−A)

σ2

)
if y > 1

exp
(

2y
σ2

)
exp

(
−2Ay

σ2

)
= exp

(
2(1−A)y

σ2

)
if −1 < y < 1

exp
(

2y
σ2

)
exp

(
2A
σ2

)
= exp

(
2(y+A)

σ2

)
if y < −1

And, the ML rule becomes

X̂ = +1, if y > A or −A < y < 0
X̂ = −1, if y < −A or 0 < y < +A.
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It follows the error probability is

Pe =
1
4
P

(
X̂ = +1|X = −1, Z = A

)
+

1
4
P

(
X̂ = +1|X = −1, Z = −A

)

+
1
4
P

(
X̂ = −1|X = +1, Z = A

)
+

1
4
P

(
X̂ = −1|X = +1, Z = −A

)

= Q

(
1
σ

)
+

1
2

(
Q

(
A− 1

σ

)
+ Q

(
A + 1

σ

))
− 1

2

(
Q

(
2A− 1

σ

)
+ Q

(
2A + 1

σ

))

→ Q

(
1
σ

)
as A →∞.

(d) In (a), interference is Gaussian so it acts like noise. In (c), interference has
structure so when it is very strong, one can make use of its structure to
distinguish it from the desired signal.
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