Homework 4

Solutions

Reading assignments:

1. Sec. $6.1 \sim$ Sec. 6.7, textbook.
2. Sec. 7.1~ Sec. 7.6, textbook.

Problem assignments:

1. (a) Suppose that among the n games, the gambler wins k games and loses $n-k$, which gives $r=2 k-n$. Thus,

$$
P[X[n]=r s]=\left\{\begin{array}{cl}
\binom{n}{\frac{n+r}{2}} p^{\frac{n+r}{2}} q^{\frac{n-r}{2}}, & \text { if } \frac{n+r}{2} \text { an integer, } r \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) The mean function is

$$
E[X[n]]=\sum_{i=1}^{n} E[W[i]]=n s(p-q)
$$

The variance function is

$$
\operatorname{Var}(X[n])=E\left[X^{2}[n]\right]-(E[X[n]])^{2}
$$

for which we find $E\left[X^{2}[n]\right]$ first.
The second moment is

$$
\begin{aligned}
E\left[X^{2}[n]\right] & =E\left[\left(\sum_{i=1}^{n} W[i]\right)^{2}\right] \\
& =\sum_{i=1}^{n} E\left[W^{2}[i]\right]+\sum_{i \neq j} E[W[i] W[j]] \\
& =n s^{2}+n(n-1) s^{2}(p-q)^{2}
\end{aligned}
$$

Thus, the variance function is

$$
\begin{aligned}
\operatorname{Var}(X[n]) & =E\left[X^{2}[n]\right]-(E[X[n]])^{2} \\
& =n s^{2}\left(1-(p-q)^{2}\right) .
\end{aligned}
$$

Finally, the autocorrelation function for $m>n$ is

$$
\begin{aligned}
R_{X X}[m, n] & =E\left[X[m] X^{*}[n]\right] \\
& =E[(X[m]-X[n]+X[n]) X[n]] \\
& =E[X[m]-X[n]] E[X[n]]+E\left[X^{2}[n]\right] \quad \text { (indep. increment) } \\
& =(m-n) s(p-q) \cdot n s(p-q)+n s^{2}+n(n-1) s^{2}(p-q)^{2} \\
& =n s^{2}\left(1-(p-q)^{2}\right)+m n s^{2}(p-q)^{2} .
\end{aligned}
$$

Therefore, we have the autocorrelation function

$$
R_{X X}[m, n]=\min (m, n) s^{2}\left(1-(p-q)^{2}\right)+m n s^{2}(p-q)^{2}
$$

(c) Let E be the event that the gambler will end up with N dollars with initial possession of K dollars. And let H denote the event that the gambler wins the first game. Then, using the total probability, the probability P_{K} is

$$
\begin{aligned}
P_{K}=P[E] & =P[E \mid H] P[H]+P\left[E \mid H^{c}\right] P\left[H^{c}\right] \\
& =p P[E \mid H]+q P\left[E \mid H^{c}\right]
\end{aligned}
$$

By the independence of successive games, having won the first game is the same as if he were just starting but with $K+1$ dollars, so that $P[E \mid H]=P_{K+1}$. And, similarly, $P\left[E \mid H^{c}\right]=P_{K-1}$. Then, we have

$$
\begin{equation*}
P_{K}=p P_{K+1}+q P_{K-1}, \tag{1}
\end{equation*}
$$

where the boundary conditions P_{0} and P_{N} means the probability that the gambler ends up with N dollars if he starts with 0 and N dollars, respectively. It is clear to see that the boundary conditions satisfy $P_{0}=0$ and $P_{N}=1$. So our objective now is to solve equation (1), which can be further rearranged to

$$
P_{K+1}-P_{K}=\frac{q}{p}\left(P_{K}-P_{K-1}\right) \quad K=1,2, \ldots, N-1
$$

Solving for the above difference equation with the boundary conditions leads to

$$
P_{K}=\left\{\begin{array}{cl}
\frac{1-(q / p)^{K}}{1-(q / p)^{N}} & \text { if } p \neq \frac{1}{2} \\
\frac{K}{N} & \text { if } p=\frac{1}{2}
\end{array}\right.
$$

(d) Following the assumptions in part (c). By symmetry and replacing p by q and K by $N-K$, the probability Q_{K} that the gambler will end up having no money left is

$$
Q_{K}=\left\{\begin{array}{cl}
\frac{1-(p / q)^{N-K}}{1-(p / q)^{N}} & \text { if } q \neq \frac{1}{2} \\
\frac{N-K}{N} & \text { if } q=\frac{1}{2}
\end{array}\right.
$$

Please note that $P_{K}+Q_{K}=1$, which means with probability one the gambler either loses all his money or accumulates N dollars. The probability that the games continue forever indefinitely with the gambler's fortune swing between 1 and $N-1$ is zero.
(e) This problem is the famous gambler ruin problem. The gambler will very likely go bankrupt even by playing fair games $(p=q=1 / 2)$ if he greedily sets a very large N with only a small initial K. We can see this by letting N very very large and K finite, the probability Q_{K} will be very small even when $q=1 / 2$. This in some sense tells us that we are unlikely to earn big fortune in a casino if we only have very little money (small K), unless we have a winning strategy in a way to make p larger that $1 / 2$.
$2-7$ See below.

1. (a) The covariance matrix \mathbf{K} of the interference-plus-noise vector $\mathbf{i}+\mathbf{z}$ is

$$
E\left[(\mathbf{i}+\mathbf{z})(\mathbf{i}+\mathbf{z})^{T}\right]=\sum_{i=2}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I}
$$

(b) The optimal detector in terms of minimum error probability for X_{1} if there were only 1 user in the system is given by the MAP criterion, and can be obtained as

$$
\mathbf{h}_{1}^{T} \mathbf{y} \underset{\hat{X}_{1}=-1}{\stackrel{\hat{X}_{1}=1}{\gtrless} 0 .}
$$

The average probability of error P_{e} for user 1 is

$$
\begin{aligned}
P_{e} & =P\left[\mathbf{h}_{1}^{T} \mathbf{y}<0 \mid X_{1}=1\right] P\left[X_{1}=1\right]+P\left[\mathbf{h}_{1}^{T} \mathbf{y}>0 \mid X_{1}=-1\right] P\left[X_{1}=-1\right] \\
& =P\left[\mathbf{h}_{1}^{T} \mathbf{y}<0 \mid X_{1}=1\right] \\
& =P\left[\mathbf{h}_{1}^{T} \mathbf{z}<-\left(\left\|\mathbf{h}_{1}\right\|^{2}+\sum_{i \neq 1} \mathbf{h}_{1}^{T} \mathbf{h}_{i} X_{i}\right)\right] \\
& =E\left[P\left[\mathbf{h}_{1}^{T} \mathbf{z}<-\left(\left\|\mathbf{h}_{1}\right\|^{2}+\sum_{i \neq 1} \mathbf{h}_{1}^{T} \mathbf{h}_{i} X_{i}\right) \mid\left\{X_{i} \in\{-1,1\}, i \neq 1\right\}\right]\right] \\
& =\sum_{\left\{X_{i} \in\{-1,1\}, i \neq 1\right\}} Q\left(\frac{\left\|\mathbf{h}_{1}\right\|^{2}+\sum_{i \neq 1} \mathbf{h}_{1}^{T} \mathbf{h}_{i} X_{i}}{\sigma\left\|\mathbf{h}_{1}\right\|}\right) 2^{1-N} .
\end{aligned}
$$

(c) The LMMSE estimate of X_{1} is

$$
\hat{X}_{1_{l m}}(\mathbf{y})=E\left[X_{1}\right]+K_{X_{1} \mathbf{y}} \mathbf{K}_{\mathbf{y}}^{-1}(\mathbf{y}-E[\mathbf{y}])
$$

where

$$
\begin{aligned}
K_{X_{1} \mathbf{y}} & =E\left[X_{1} \mathbf{y}^{T}\right]=E\left[X_{1}\left(X_{1} \cdot \mathbf{h}_{1}+\mathbf{i}+\mathbf{z}\right)^{T}\right]=\mathbf{h}_{1}^{T} \\
\mathbf{K}_{\mathbf{y}} & =E\left[\mathbf{y} \mathbf{y}^{T}\right] \\
& =\sum_{i=1}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

where \mathbf{I} is the $M \times M$ identity matrix. Note that $\mathbf{K}_{\mathbf{y}}$ is nonsingular since $\mathbf{x}^{T} \mathbf{K}_{\mathbf{y}} \mathbf{x}>0$ for all nonzero vector \mathbf{x}. Thus,

$$
\hat{X}_{1_{l m}}(\mathbf{y})=\mathbf{h}_{1}^{T}\left(\sum_{i=1}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{y}
$$

Let $\mathbf{u}^{T}=\mathbf{h}_{1}^{T}\left(\sum_{i=1}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I}\right)^{-1}$. Then the decision rule is

$$
\mathbf{u}^{T} \mathbf{y} \underset{\hat{X}_{1}=-1}{\stackrel{\hat{X}_{1}=1}{\gtrless}} 0 .
$$

(d) The optimum combining filter $\mathbf{w}_{o p}$ is the vector \mathbf{w} that maximizes the signal to interference-plus-noise ratio (SINR) defined by

$$
\begin{aligned}
\mathrm{SINR} & =\frac{E\left[\left|\mathbf{w}^{H} \mathbf{s}\right|^{2}\right.}{E\left[\left|\mathbf{w}^{H}(\mathbf{i}+\mathbf{z})\right|^{2}\right.} \\
& =\frac{\mathbf{w}^{H} \mathbf{h}_{1} \mathbf{h}_{1}^{H} \mathbf{w}}{\mathbf{w}^{H} \mathbf{K} \mathbf{w}}
\end{aligned}
$$

As we did in HW\#3, the maximum SINR is achieved when

$$
\begin{aligned}
\mathbf{w} & =\mathbf{K}^{-1} \mathbf{h}_{1}=\left(\sum_{i=2}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{h}_{1} \\
& \triangleq \mathbf{w}_{o p} .
\end{aligned}
$$

The maximum SINR achieved is $\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}$.
(e) - For part (b), the error probability is

$$
\begin{aligned}
P[e] & =P\left[e \mid X_{1}=1\right] \\
& =P\left[\mathbf{h}_{1}^{T} \mathbf{y}<0 \mid X_{1}=1\right] \\
& =P\left[\mathbf{h}_{1}^{T}(\mathbf{i}+\mathbf{z})<-\left\|\mathbf{h}_{1}\right\|^{2}\right],
\end{aligned}
$$

where $\mathbf{i}+\mathbf{z}$ is now considered as $N(\mathbf{0}, \mathbf{K})$. By the definition of jointly Gaussian, it is clear that $\mathbf{h}_{1}^{T}(\mathbf{i}+\mathbf{z})$ is a Gaussian random variable with zero mean and variance $\mathbf{h}_{1}^{T} \mathbf{K h}_{1}$. Thus, we have

$$
\begin{aligned}
P[e] & =P\left[\mathbf{h}_{1}^{T}(\mathbf{i}+\mathbf{z})<-\left\|\mathbf{h}_{1}\right\|^{2}\right] \\
& =P\left[\frac{\mathbf{h}_{1}^{T}(\mathbf{i}+\mathbf{z})}{\sqrt{\mathbf{h}_{1}^{T} \mathbf{K \mathbf { h } _ { 1 }}}}<-\frac{\left\|\mathbf{h}_{1}\right\|^{2}}{\sqrt{\mathbf{h}_{1}^{T} \mathbf{K \mathbf { h } _ { 1 }}}}\right] \\
& =Q\left(\frac{\left\|\mathbf{h}_{1}\right\|^{2}}{\sqrt{\mathbf{h}_{1}^{T} \mathbf{K \mathbf { h } _ { 1 }}}}\right)
\end{aligned}
$$

- For part (c), similarly, the error probability is

$$
\begin{aligned}
P[e] & =P\left[e \mid X_{1}=1\right] \\
& =P\left[\mathbf{u}^{T} \mathbf{y}<0 \mid X_{1}=1\right] \\
& =P\left[\mathbf{u}(\mathbf{i}+\mathbf{z})<-\mathbf{u}^{T} \mathbf{h}_{1}\right],
\end{aligned}
$$

where $\mathbf{i}+\mathbf{z}$ is now considered as $N(\mathbf{0}, \mathbf{K})$. By the definition of jointly Gaussian, it is clear that $\mathbf{u}^{T}(\mathbf{i}+\mathbf{z})$ is a Gaussian random variable with zero mean and variance $\mathbf{u}^{T} \mathbf{K u}$. Thus, we have

$$
\begin{equation*}
P[e]=Q\left(\frac{\mathbf{h}_{1}^{T} \mathbf{K}_{\mathbf{y}}{ }^{-1} \mathbf{h}_{1}}{\sqrt{\mathbf{u}^{T} \mathbf{K u}}}\right) \tag{2}
\end{equation*}
$$

We can further simplify (2) using matrix inversion lemma, which states for non-singular matrices \mathbf{A}, \mathbf{B} and \mathbf{D}, and any matrices \mathbf{C}, the following formula holds true

$$
\begin{align*}
\mathbf{A} & =\mathbf{B}+\mathbf{C D C}^{H} \\
\mathbf{A}^{-1} & =\mathbf{B}^{-1}-\mathbf{B}^{-1} \mathbf{C}\left(\mathbf{D}^{-1}+\mathbf{C}^{H} \mathbf{B}^{-1} \mathbf{C}\right)^{-1} \mathbf{C}^{H} \mathbf{B} \tag{3}
\end{align*}
$$

The covariance matrix of $\mathbf{K}_{\mathbf{y}}$ can be represented by

$$
\begin{aligned}
\mathbf{K}_{\mathbf{y}} & =\sum_{i=1}^{N} \mathbf{h}_{i} \mathbf{h}_{i}^{T}+\sigma^{2} \mathbf{I} \\
& =\mathbf{K}+\mathbf{h}_{1} \mathbf{h}_{1}^{T} .
\end{aligned}
$$

Letting $\mathbf{B}=\mathbf{K}, \mathbf{C}=\mathbf{h}$ and $\mathbf{D}=1$, and substituting into (3), we have

$$
\mathbf{K}_{\mathbf{y}}{ }^{-1}=\mathbf{K}^{-1}-\frac{\mathbf{K}^{-1} \mathbf{h}_{1} \mathbf{h}_{1}^{T} \mathbf{K}^{-1}}{1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}
$$

Note that the denominator of the 2 nd term in the RHS is just a scalar. With this, the LMMSE weighting vector \mathbf{u} can be rewritten as

$$
\begin{aligned}
\mathbf{u} & =\mathbf{K}_{\mathbf{y}}{ }^{-1} \mathbf{h}_{1} \\
& =\left(\mathbf{K}^{-1}-\frac{\mathbf{K}^{-1} \mathbf{h}_{1} \mathbf{h}_{1}^{T} \mathbf{K}^{-1}}{1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}\right) \mathbf{h}_{1} \\
& =\mathbf{K}^{-1}\left(\mathbf{h}_{1}-\frac{\mathbf{h}_{1} \mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}{1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}\right) \\
& =\frac{\mathbf{K}^{-1} \mathbf{h}_{1}}{1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}} .
\end{aligned}
$$

With further algebraic efforts, we can find

$$
\begin{aligned}
\mathbf{h}_{1}^{T} \mathbf{K}_{\mathbf{y}}{ }^{-1} \mathbf{h}_{1} & =\frac{\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}{1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}} \\
\mathbf{u}^{T} \mathbf{K u} & =\frac{\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}{\left(1+\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}\right)^{2}} .
\end{aligned}
$$

Hence, we have the error probability for the LMMSE receiver

$$
P[e]=Q\left(\sqrt{\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}}\right),
$$

where $\mathbf{h}_{1}^{T} \mathbf{K}^{-1} \mathbf{h}_{1}$ is the maximum SINR achieved in part (d). This implies that the LMMSE receiver and Optimum Combining receiver are actually equivalent in terms of BER when interference-plus-noise is considered as Gaussian, which an important result in practical applications.
6.23
a)

$$
\begin{aligned}
\mu_{I}[n] & =E\left[A \cos \omega n+B \sin \omega_{n}\right] \\
& =E[A] \cdot \cos \omega n+E[B] \cdot \sin \omega n \\
& =0 \cdot " \quad+0 \cdot " \\
& =0, \text { a constant. }
\end{aligned}
$$

$$
\begin{aligned}
& E[X[n+m] X[n]]= \\
& =E[(A \cos \omega(n+m)+B \sin \omega(n+m))(A \cos \omega n+B \sin \omega n)] \\
& =\sigma^{2}(\cos \omega(n+m) \cos \omega n+\sin \omega(n+m) \sin \omega n) \\
& =\sigma^{2} \cos (\omega(n+m)-\omega n) \\
& =\sigma^{2} \cos \omega m=R_{X}[m] . \quad \therefore \omega s s .
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { Consider } E\left[X^{3}[n]\right]=E\left[(A \cos \omega n+B \sin \omega n)^{3}\right] \\
& =E\left[A^{3}\right] \cdot \cos ^{3} \omega n+E\left[A^{2} B\right](\cdot) \\
& +E\left[A B^{2}\right](\cdot)+E\left[B^{3}\right] \cdot \sin ^{3} \omega n \\
& \text { Now } E\left[A^{2} B\right]=E\left[A^{2}\right] \cdot E[B]=\sigma^{2} \cdot 0=0=E\left[A B^{2}\right]
\end{aligned}
$$

so

$$
\begin{aligned}
& E\left[X^{3}[n]\right]=\xi_{\uparrow} \cdot(\underbrace{\xi_{3}}_{\neq \text {constant }} \cdot\left(\cos ^{3} \omega n+\sin ^{3} \omega n\right) \\
& \begin{array}{c}
\text { Third-order } \\
\text { moment }
\end{array}(\neq 0)
\end{aligned}
$$

Hence $X[n]$ cannot be stationary in the stich sense.
(6.24) a) $K_{x}(0)$ must be non negative $+K_{x}[0]=p^{2}-\mu^{2}$
so $p^{2} \geq \mu^{2}$. \quad Sat $\sigma^{2} \triangleq p^{2}-\mu^{2}(\geqslant 0)$.
b)

$$
\begin{aligned}
& \underline{K}=\left[\begin{array}{cc}
\sigma^{2} & \\
\ddots & -\mu^{2} \\
-\mu^{2} & \ddots \\
& \\
\sigma^{2}
\end{array}\right] \begin{aligned}
\text { so } & \underline{R} \underline{a^{+}}=N \sigma^{2}-N(N-1) \mu^{2} \geqslant 0 \\
& (\text { since wee tole } \underline{a}=1 .)
\end{aligned} \\
& \text { so } \mu^{2} \leq \frac{N \sigma^{2}}{N(N-1)}=\frac{\sigma^{2}}{N-1} .
\end{aligned}
$$

c) By taking a sequace of ever increasing N valves, we Conclude μ must be zero, for finite P^{2} and hence σ^{2}.
6.36) (a) Since $\{0\}=[0,1]-(0,1]$
hence $P[\{0]=P[0,1]-P(0,1]$
or $P[\{0)]=P[\Omega]-P(0,1]$

$$
P[\{0\}]=1-1=0
$$

(b)
i) $X[n, \rho]=e^{-n \rho}$

$$
\begin{aligned}
E\left[|X[n, s]-0|^{2}\right] & =E\left[e^{-2 n s}\right] \\
& =\int_{0}^{1} 2 \cdot e^{-2 n S} d \zeta=\frac{e^{-2 n}-1}{-2 n} \\
\text { Let } n \rightarrow \infty \text { then } & \frac{e^{-2 n} \mid}{-2 n} \longrightarrow 0 .
\end{aligned}
$$ therefore $X[n, \zeta]$ converges in mean-square sense.

Also $\lim _{n \rightarrow \infty} X[n, \zeta]= \begin{cases}1, \zeta=0 & \text { therefore } X[n] \\ 0,0<\zeta \leq 1 & \text { converges almost everywhere }\end{cases}$
ii)

$$
\begin{aligned}
X & {[n, \zeta]=\sin \left(\zeta+\frac{1}{n}\right) \xrightarrow{n} \sin (\zeta) } \\
E & {\left[\left|\sin \left(\zeta+\frac{1}{n}\right)-\sin \zeta\right|^{2}\right] } \\
= & E\left\{\left|\sin \zeta \cos \frac{1}{n}+\cos \zeta \sin \frac{1}{n}-\sin \zeta\right|^{2}\right] \\
= & E\left\{\left|\sin \zeta\left[\cos \frac{1}{n}-1\right]+\cos \zeta \sin \frac{1}{n}\right|^{2}\right\} \\
= & E\left[\sin ^{2} \zeta\left[\cos \frac{1}{n}+1-2 \cos \frac{1}{n}\right]+\cos ^{2} \zeta \sin ^{2} \frac{1}{n}\right. \\
& \left.+2 \cos 3 \sin \frac{1}{n} \sin \zeta\left[\cos \frac{1}{n}-1\right]\right\} \\
= & E\left\{\sin ^{2} 3 \cos ^{2} \frac{1}{n}+\sin ^{2} 3-2 \sin ^{2} 3 \cos \frac{1}{n}+\cos ^{2} 3 \sin ^{2} \frac{1}{n}\right. \\
& \left.+2 \cos 3 \sin \zeta \cos \frac{1}{n} \sin \frac{1}{n}-2 \cos 3 \sin 3 \sin \frac{1}{n}\right\}
\end{aligned}
$$

If the expectation is performed (The integral is calculated), we see that: as $n \longrightarrow \infty$, the expected value goes to zero. Further $\operatorname{Sin}\left(\zeta+\frac{1}{n}\right) \rightarrow \operatorname{Sin} \zeta, \quad \forall \zeta \in S$
Therefore, the convergence is everywhere also.
(iii) $X[n, \zeta]=\cos ^{n} \zeta, \zeta \in[0,1]$

$$
\begin{aligned}
& \cos \zeta=\left\{\begin{array}{ll}
1, & \zeta=0 \\
<1, & 0<\zeta \leq 1
\end{array}, \quad\right. \text { Therefore } \\
& \lim _{n \rightarrow \infty} X[n, \zeta]=\lim _{n \rightarrow \infty} \cos ^{n} \zeta= \begin{cases}1, & \zeta=0 \\
0, & 0 \leq \zeta \leq 1\end{cases}
\end{aligned}
$$

Hence, it converges almost everywhere.

$$
\left.E\left\{1 \cos ^{n}(3)-0\right)^{2}\right\}=E\left[\cos ^{2 n} 3\right]
$$

however, as $n \rightarrow \infty, E\left[\cos ^{2 n} \zeta\right] \rightarrow 0$ hence, it converges in $m-s$. sense also.
(C)
i) $X[n, \zeta]=e^{-n \bar{S} \xrightarrow[n \rightarrow \infty]{ } 0}$
ii) $X[n, \zeta]=\operatorname{Sin}\left(\zeta+\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ } \operatorname{Sin} \zeta$
\therefore ii) $X[n, \zeta]=\cos ^{n} \zeta \xrightarrow[n \rightarrow \infty]{ } 0 \quad$ (ass.)
6.37 (1)

If $X[n] \longrightarrow X$ in mean-square, then
X is independent of $X[n]$ since
$X_{[n]}[n$ is a sequence of jointly independent
random variables.

$$
E\left[|X[n]-X|^{2}\right]=E\left|X^{2}[n]\right|-2 E[X[n] X]+E\left[X^{2}\right]
$$

$\because X$ independ $\varepsilon_{1} t$ of $X[n]$

$$
\Rightarrow E\left[|X[n]-X|^{2}\right]=E\left[X^{2}[n]\right]-2 E[X[n]] E[X]+E\left[X^{2}\right]
$$

Since X is a gaussian random variable with mean σ and variance σ^{2}.

$$
\begin{aligned}
\because & \lim _{n \rightarrow \infty} E\left[X^{2}[n]\right]=\sigma^{2}+\sigma^{2}=2 \sigma^{2} \\
& \lim _{n \rightarrow \infty} E[X[n]]=\sigma \\
\therefore & E[x]=\sigma
\end{aligned}
$$

$$
\begin{aligned}
& E\left[X^{2}\right]=2 \sigma^{2} \\
\Longrightarrow & \lim _{n \rightarrow \infty} E\left[|X[n]-X|^{2}\right]=\lim _{n \rightarrow \infty} E\left[X^{2}[n]\right] \\
& \left.-2 \lim _{n \rightarrow \infty} E[X[n]] \cdot E[x]+E[X]\right\} \\
\Longrightarrow & \lim _{n \rightarrow \infty} E\left[|X[n]-X|^{2}\right]=2 \sigma^{2}-2 \sigma \cdot \sigma+2 \sigma^{2}=2 \sigma^{2} \neq 0 .
\end{aligned}
$$

So, it doesntconverge in mean-square sense.
(ii) $X[n]$ does not converge in probability.
(iii) $X[n]$ clearly converges in pdt and PDF oo distribution with pdt given as,

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{1}{2 \sigma^{2}}(x-\sigma)^{2},-\infty<x<+\infty .
$$

(7.8) (a) We know

$$
f_{T}(t ; n)=\underbrace{f_{T}(t) * \cdots * f_{T}}_{n \text { times }}(t)
$$

With

$$
f_{T}(t)=\lambda e^{-\lambda t}, t \geq 0
$$

therefore

$$
\begin{aligned}
f_{T}(t ; 2) & =f_{T}(t) * f_{T}(t)=\int_{0}^{t}\left(\lambda e^{-\lambda u}\right) \cdot\left(\lambda e^{-\lambda(t-u)}\right) d u \\
& =\int_{0}^{t} \lambda^{2} e^{-\lambda t} d u=\lambda^{2} t e^{-\lambda t} u(t),
\end{aligned}
$$

and $f_{T}(t ; 3)=f_{T}(t ; 2) * \lambda e^{-\lambda t}$

$$
\begin{aligned}
& =\int_{0}^{t}\left(t^{2} u e^{-\lambda u}\right)\left(\lambda e^{-\lambda(t-u)}\right) d u \\
& =\lambda^{3} e^{-\lambda t} \int_{0}^{t} u d u=\lambda^{3} \frac{t^{2}}{2} e^{-\lambda t} u(t)
\end{aligned}
$$

Hence for $f_{T}(t ; n)$, we will get;

$$
f_{T}(t ; n)=\frac{\lambda^{n} t^{n-1}}{(n-1)!} \cdot e^{-\lambda t} u(t)
$$

(b)

$$
\text { b) } \begin{aligned}
F_{\mathcal{T}_{[i]}^{\prime}\left(\tau^{\prime} \mid T=t\right)} & =P\left[\mathscr{T}[i] \leq \tau^{\prime}+t \mid \tau[i] \geq t\right] \\
& =\frac{\int_{t}^{t+\tau^{\prime}} e^{-\lambda \tau} d \tau}{\int_{t}^{\infty} \lambda e^{-\lambda \tau} d \tau}=\frac{\left.F e^{-\lambda \tau}\right]_{t}^{t+\tau^{\prime}}}{\left[-e^{-\lambda \tau}\right]_{t}^{\infty}} \\
& =1-e^{-\lambda \tau^{\prime}}
\end{aligned}
$$

or: $f_{\sigma T_{[i]}^{\prime}}\left(\tau^{\prime} \mid T=t\right)=\lambda e^{-\lambda \tau^{\prime}}$, same density as $T[c]$.
(c)

$$
f_{\left.T_{[i]}^{\prime}\right]}\left(\tau^{\prime}\right)=\int_{-\infty}^{+\infty} f_{\sigma \tau_{[i]}^{\prime}}\left(r^{\prime} \mid T=t\right) f_{T}(t) d t
$$

but from part (b), The conditional $p d f$ is independent of the variable t,
Thus,

$$
\begin{aligned}
f_{\tau_{[i]}^{\prime}}\left(\tau^{\prime}\right) & =f_{\tau\left[\tau^{\prime} \mid T=t\right)} \int_{-\infty}^{+\infty} f_{T}(t) d t \\
& =f_{T[i]}\left(\tau^{\prime}\right) \quad \text { using result of }(b) \text {. }
\end{aligned}
$$

(a) $X(t)=w^{2}(t), f_{w}(w, t)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{w}{2 t}\right)^{2}, t>0$

So, transformation is $x=w^{2}$,
with two roots at $w=+\sqrt{x}$ and $-\sqrt{x}$
So, $f_{x}(x ; t)=f_{w}(+\sqrt{x})_{\left\lvert\, \frac{1}{\mid} 1\right.}+f_{w}(-\sqrt{x}) \cdot \frac{1}{|J|}$
with $|J|=\left|\frac{d x}{d w}\right|=|2 w|=2 \sqrt{x}$
Thus, we get

$$
\begin{aligned}
& \qquad \begin{array}{rl}
f(x ; t) & =\frac{1}{\sqrt{2 \pi t}} \cdot \exp \\
& =\frac{1}{\sqrt{2 \pi x t}} \cdot \exp ^{\left(-\frac{x}{2 t}\right)} \cdot \frac{1}{2 \sqrt{x}} \cdot 2 \\
=0, \quad x>0 \\
=0 & x \leq 0
\end{array}
\end{aligned}
$$

(b) We first find the joint density $f_{x}\left(x_{2}, x_{1}\right)$

$$
\begin{aligned}
& f_{X}\left(x_{2}, x_{1}\right)=f_{w}\left(\sqrt{x_{2}}, \sqrt{x_{1}}\right) \cdot \frac{1}{|J|}+f_{w}\left(-\sqrt{x_{2}}, \sqrt{x_{1}}\right) \cdot \frac{1}{|J|} \\
&+f_{w}\left(\sqrt{x_{2}},-\sqrt{x_{1}}\right) \frac{1}{|J|}+f_{w}\left(-\sqrt{x_{2}},-\sqrt{x_{1}}\right) \cdot \frac{1}{|J|} \\
&|J|=\left|\begin{array}{cc}
2 w, 0 \\
0 & 2 w_{2}
\end{array}\right|=4 \sqrt{x_{1} x_{2}}
\end{aligned}
$$

$$
\text { So, } \begin{aligned}
& f_{x}\left(x_{2}, x_{1}\right)=f_{w_{1}}\left(\sqrt{x_{1}}\right) f_{w_{2}-w_{1}}\left(\sqrt{x_{2}}-\sqrt{x_{1}}\right) \cdot \frac{1}{4 \sqrt{x_{2} x_{1}}} \\
&+f_{w_{1}}\left(\sqrt{x_{1}}\right) f_{w_{2}-w_{1}}\left(-\sqrt{x_{2}}-\sqrt{x_{1}}\right) \cdot \frac{1}{4 \sqrt{x_{2} x_{1}}} \\
&+f_{w_{1}}\left(-\sqrt{x_{1}}\right) f_{w_{2}-w_{1}}\left(\sqrt{x_{2}}+\sqrt{x_{1}}\right) \cdot \frac{1}{4 \sqrt{x_{2} x_{1}}} \\
&+f_{w_{1}}\left(-\sqrt{x_{1}}\right) f_{w_{2}}\left(-\sqrt{x_{2}}+\sqrt{x_{1}}\right) \cdot \frac{1}{\left.4 \sqrt{x_{2} x_{1}}\right)} \\
&=\frac{1}{2 \pi} \frac{1}{\sqrt{x_{1} t_{1} x_{2}\left(t_{2}-t_{1}\right)}}\left[\frac{1}{2} e^{\left(-\frac{x_{1}}{2 t_{1}-\left(\frac{\left(x_{2}-\sqrt{x_{2}}\right)}{2\left(t_{2}-t_{1}\right)}+\frac{1}{2} e^{\left(-\frac{x_{1}}{2 t_{1}}-\frac{\left(\sqrt{x_{1}+\alpha_{1}}\right)}{2\left(t_{2}-t_{1}\right)}\right]}\right]}\right.} \begin{array}{l}
t_{2}>t_{1}, x_{2}, x_{1}>0
\end{array}\right.
\end{aligned}
$$

Then,

$$
\begin{aligned}
& f\left(x_{2} \mid x_{1}\right)=f\left(x_{2}, x_{1}\right) / f\left(x_{1}\right) \\
& =\frac{1}{\sqrt{2 \pi x_{2}\left(t_{2}-t_{1}\right)}}\left[\frac{1}{2} e^{\left.\left.\left.-\frac{\left(\sqrt{x_{2}}-\sqrt{x_{1}}\right)^{2}}{2\left(t_{2}-t_{1}\right)^{2}}+\frac{1}{2} e^{-\frac{\left(\sqrt{x_{2}}+\sqrt{x_{1}}\right)^{2}}{2\left(t_{2}-t_{1}\right)}}\right] .\right] .\right] ~}\right. \\
& t_{2}>t_{1}, x_{2}, x_{1}>0
\end{aligned}
$$

(c) Yes, it is Markov.

Consider $f\left(x_{3}, x_{2}, x_{1} ; t_{3}, t_{2}, t_{1}\right)=f\left(x_{3}, x_{2}, x_{1}\right)$
Calculation shows that

$$
\begin{aligned}
f\left(x_{3}, x_{2}, x_{1}\right)= & \frac{1}{8 \sqrt{x_{3} x_{2} x_{1}}} f_{w}\left(\sqrt{x_{1}}\right) \cdot\left[f_{\Delta w}\left(\sqrt{x_{2}}-\sqrt{x_{1}}\right)+f_{\Delta w}\left(\sqrt{x_{2}}+\sqrt{x_{1}}\right)\right] \\
& \cdot\left[f_{\Delta w}\left(\sqrt{x_{3}}-\sqrt{x_{2}}\right)+f_{\Delta w}\left(\sqrt{x_{3}}+\sqrt{x_{2}}\right)\right]
\end{aligned}
$$

and from part (b)

$$
f_{C}\left(x_{2}, x_{1}\right)=\frac{1}{4 \sqrt{x_{2} x_{1}}} f_{W}\left(\sqrt{x_{1}}\right)\left[f_{\Delta W}\left(\sqrt{x_{2}}-\sqrt{x_{1}}\right)+f_{\Delta W}\left(\sqrt{x_{2}}+\sqrt{x_{1}}\right)\right]
$$

So,

$$
\begin{aligned}
f^{\prime}\left(x_{3} \mid x_{2} x_{1}\right) & =\frac{1}{2 \sqrt{x_{3}}}\left[f_{\Delta w}\left(\sqrt{x_{3}}-\sqrt{x_{2}}\right)+f_{\Delta w}\left(\sqrt{x_{3}}+\sqrt{x_{2}}\right)\right] \\
& =f\left(x_{3} \mid x_{2}\right) \text { from part }(b)
\end{aligned}
$$

Which is consistent with the definition of a Markov Process.
(d) From part (a) and part (b), we know

$$
f_{X}\left(x_{1}, x_{2} ; t_{2}, t_{1}\right) \nRightarrow f_{X}\left(x_{2}-x_{1} ; t_{2}, t_{1}\right) \cdot f_{X}\left(x_{1} ; t_{1}\right)
$$

So, $X(t)$ doesn't have independent increments.
7.34

$$
R_{Y}(\tau)=E[Y(t) Y(t+\tau)]=E_{w}[E[Y(t) Y(t+\tau) \mid W]]
$$

Let $W=w$ \& evaluate $E[Y(t) Y(t+T) \mid W=w]$. Since not a function of t, can tale t at stat of pulse (by w Ss a Y)

Now to $\tau<\omega \quad y_{1}=y_{2}$

$$
\text { so } y_{1} y_{2}=y_{1}^{2}
$$

for $\tau>\omega \quad y_{1} y_{2}$ with $y_{1}+y_{2}$

$$
\begin{aligned}
E\left[Y(t) y(t+\tau) \mid w_{2}=w\right] & =E\left[y_{1} y_{2}\right]=E\left[y_{1}\right] E\left[y_{2}\right]=E^{2}[y], \tau>w \\
& =E\left[y_{1}^{2}\right]=E\left[Y^{2}\right], \quad \tau<w
\end{aligned}
$$

os $: E[Y(t) Y(t+\tau) \mid w=w]=\left\{\begin{array}{lr}E^{2}[y] & \tau>w \\ E\left[y^{2}\right] & \tau<w\end{array}\right.$
So

$$
E[E[y(t) y(t+\tau) \mid W]]=E^{2}[Y] P\left[W\langle\tau]+E\left[Z^{2}\right] P[I T>\tau]\right.
$$

申 $E[x]=0, P[I Q>T]=\int_{T}^{\infty} \lambda e^{-\lambda w} d w=e^{-\lambda T}$

$$
\begin{aligned}
E\left[Y^{2}\right]=\int_{-\infty}^{+\infty} y^{2} f_{X}(y) d y=\sigma^{2} & (E[\bar{y}]=0 \text { since he } \\
& \text { process is zero med n }
\end{aligned}
$$

$$
\therefore R_{\Sigma}(\tau)=\sigma^{2} e^{-\lambda \tau}, \tau>0
$$

Since $R y(Y)$ must be even in τ, we have

$$
\begin{array}{ll}
R_{\underline{Y}}(\tau)=\sigma^{2} \exp -\lambda / \tau 1 \\
S_{Y}(\omega)=\frac{2 \lambda \sigma^{2}}{\omega^{2}+\lambda^{2}} & \text { for }-\infty<\omega<+\infty<+\infty .
\end{array}
$$

$T=0, \quad R_{I}(0)=\sigma^{2}=$ mex square value of X, as it should be.
$\tau=\infty, R_{I}(\infty)=0=$ mean valve of the processinered. Seperdid elements become uncorrelated.
7.38

$$
\text { (a) } \begin{aligned}
\mu_{x}(t) & =E\left[N \cos \left(2 \pi f_{0} t+\theta\right)\right] \\
& =E\{N] E\left[\cos \left(2 \pi f_{0} t+\theta\right)\right] \\
\Longrightarrow u_{x}(t) & =0
\end{aligned}
$$

(b)

$$
\begin{aligned}
K_{x}(t, s) & =R_{x}(t, s) \text {, since } \mu_{x}(t)=0, \forall t \\
= & E\left[N^{2} \cos \left(2 \pi f_{0} t+\theta\right) \cos \left(2 \pi f_{0} s+\theta\right)\right] \\
= & E\left[N^{2}\right] \int_{-\pi}^{\pi} \cos \left(2 \pi f_{0} t+\theta\right) \cos \left(2 \pi f_{0} s+\theta\right) \frac{d \theta}{2 \pi} \\
= & E\left[N^{2}\right] \int_{-\pi}^{+\pi} \cos \left(2 \pi f_{0}(t-s)+\theta\right) \cos \theta \frac{d \theta}{2 \pi}
\end{aligned}
$$

We remember:

$$
\begin{gathered}
\cos (A+B)=\cos A \cos B-\sin A \sin B \\
\cos (A-B)=\cos A \cos B+\sin A \sin B \\
\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\text { so, } \cos \left(2 \pi f_{0}(t-s)+\theta\right) \cos \theta \\
=\frac{1}{2} \cos \left(2 \pi f_{0}(t-s)+2 \theta\right)+\frac{1}{2} \cos 2 \pi f \cdot(t-s)
\end{gathered}
$$

Now,

$$
\int_{-\pi}^{+\pi} \cos 2 \theta \frac{d \theta}{2 \pi}=0 \times \int_{-\pi}^{+\pi} 1 \cdot \frac{d \theta}{2 \pi}=1
$$

So, $\int_{-\pi}^{+\pi} \cos \left(2 \pi f_{0}(t-s)+\theta\right) \cos \theta \frac{d \theta}{2 \pi}=\frac{1}{2} \cos 2 \pi f_{0}(t-s)$
For the poisson r.v.; we have $E\left[N^{2}\right]=\lambda+\lambda^{2}$ when $\lambda=\operatorname{Var}(N) x \lambda^{2}=\left(\mu_{N}\right)^{2}$. Thus

$$
K_{x}(t, s)=\frac{1}{2}\left(\lambda+\lambda^{2}\right) \cos 2 \pi f_{0}(t-s)
$$

(c) By definition of w.s.s., the answers to the (a) and (b) show that $X(t)$ is w.s.s.
(d) To show strict sense stationarity, we must show that for any m, the moth order distribution function:

