Stochastic Processes

Midterm 1

9:00 a.m. - 11:30 a.m., 10/27/08

IMPORTANT:

- Remember to write down your i.d. number and your name.
- There are 4 problem sets with 110 points in total.
- Show all your work with detailed explanations. Correct answers without any explanations will carry NO credits. However, wrong answers with correct reasonings will get partial credits.

You may need the following formulas:

- Let $\mathbf{x}=\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ be a real Gaussian random vector with mean vector \mathbf{m}_{x} and covariance matrix \mathbf{K}_{x}. Then, the joint pdf $f_{\mathbf{x}}(\boldsymbol{x})$ is given by

$$
f_{\mathbf{x}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}\left(\mathbf{K}_{x}\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\mathbf{m}_{x}\right)^{T} \mathbf{K}_{x}^{-1}\left(\boldsymbol{x}-\mathbf{m}_{x}\right)\right) .
$$

- Consider a jointly Gaussian random vector $\left[\mathbf{x}^{T} \mathbf{y}^{T}\right]^{T}$ with $\mathbf{x} \sim \mathcal{N}\left(\mathbf{m}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}}\right)$ and $\mathbf{y} \sim \mathcal{N}\left(\mathbf{m}_{\mathbf{y}}, \mathbf{K}_{\mathbf{y}}\right)$. Then, the conditional density $f_{\mathbf{x} \mid \mathbf{y}}(\mathbf{x} \mid \mathbf{y})$ also follows a joint Gaussian density with

$$
\mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mathbf{m}_{\mathbf{x}}+\mathbf{K}_{\mathrm{xy}} \mathbf{K}_{\mathbf{y}}^{-1}\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right), \mathbf{K}_{\mathbf{x}}-\mathbf{K}_{\mathrm{x} \mathbf{y}} \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{K}_{\mathbf{y x}}\right)
$$

where $\mathbf{K}_{\mathbf{x y}}=E\left[\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right)^{H}\right]$ and $\mathbf{K}_{\mathbf{y x}}=\mathbf{K}_{\mathbf{x y}}^{H}$

- The correlation coefficient ρ between random variables X and Y is defined by

$$
\rho \triangleq \frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}},
$$

where $\mu_{X}=E[X], \mu_{Y}=E[Y], \sigma_{X}^{2}=\operatorname{Var}(X)$, and $\sigma_{Y}^{2}=\operatorname{Var}(Y)$.

1. (15 points)

Jointly Gaussian implies marginal Gaussian, but the converse is not necessarily true. Please explain this statement, and justify it.
2. $(10+10=20$ points)

Let X and Y be i.i.d. standard Gaussian random variables.
(a) Show that $X+Y$ and $X-Y$ are independent.
(b) Find $E\left[X^{3}-Y^{3} \mid X-Y\right]$. (Hint: Use part (a).)
3. (10 points $\times 5=50$ points)

Let $\mathbf{w}=[X, Y, Z]^{T} \sim \mathcal{N}\left(\mathbf{m}_{\mathrm{w}}, \mathbf{K}_{\mathrm{w}}\right)$, where $\mathbf{m}_{\mathrm{w}}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{T}$ and the covariance matrix \mathbf{K}_{w} is

$$
\mathbf{K}_{\mathrm{w}}=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find α such that $X+\alpha Z$ and Z are independent.
(b) Find the probability density function (pdf) for $S=X+Y+Z$.
(c) Find the conditional variance $\operatorname{Var}(X \mid Y, Z)$.
(d) Find the correlation coefficient $\rho_{x y}$ between X and Y.
(e) Let $\mathbf{r}=[X, Z]^{T}$. Find \mathbf{A} and \mathbf{b} such that the linear transformation $\mathbf{A r}+\mathbf{b}$ is a Gaussian random vector with uncorrelated components, each with zero mean and unit variance.
4. $(10+15=25$ points $)$

Consider a communication system that is corrupted by unknown interferece Z and Gaussian noise W. Mathematically, the received signal Y can be modeled as

$$
Y=X+Z+W
$$

where X is the desired signal equally likely to 1 or -1 , and $W \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We are given that $E[Z]=0$ and $\operatorname{Var}(Z)=A^{2}$, but the exact statistical distribution of Z is not known. Assume X, Z, W are mutually independent.
(a) Suppose we model Z as a Gaussian random variable. Find the posterior probability $P[X=1 \mid Y=y]$.
(b) Suppose now Z is modeled as a binary discrete random variable equally likely to be A or $-A$. Again, find the posterior probability $P[X=1 \mid Y=$ $y]$.

