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Stochastic Processes

Midterm 1
Solutions

1. (15 points)

(⇒ (7 points)) Let X1, · · · , Xn be jointly Gaussian RVs. By definition, we
know

Y =
n∑

i=1

aiXi

is a Gaussian RV for any real ai. So, the case that a1 = 1 and all other ai = 0,
for i 6= 2, falls in that category, and we conclude that Y = X1 is a Gaussian
random variable. Similar argument applies to other Xi.

(⇐ (8 points)) Conversely, suppose X1, X2, · · · , Xn are individually Gaussian.
This does not necessarily imply that X1, X2, · · · , Xn are jointly Gaussian. This
can be explained by the example I mentioned in class. You can find that exam-
ple in problem 4 of last year’s midterm that I’ve posted on the course web.

2. (10+10=20 points)

Let X and Y be i.i.d. standard Gaussian random variables.

(a) This problem essentially requires you to prove the following two parts. The
first part needs you to explain that X +Y and X−Y are jointly Gaussian,
which is not difficult. (This part takes weight of 4 points.)

The second part needs you to use the fact that “jointly Gaussian random
variables are uncorrelated if and only if they are independent.” Thus, we
can check the uncorrelatedness between between X + Y and X − Y , i.e.
check whether E[(X + Y )(X − Y )] = E[X + Y ]E[X − Y ].

For that, we compute

E[(X + Y )(X − Y )] = E[X2]− E[Y 2] = 0. (since X and Y are i.i.d.)

And

E[X + Y ]E[X − Y ] = (E[X] + E[Y ])(E[X]− E[Y ]) = 0.

Thus, we conclude that X + Y and X − Y are independent.

(b) Find E[X3 − Y 3|X − Y ]. (Hint: Use part (a).)

The key to solve this problem is to express X3 − Y 3 in terms of X + Y
and X − Y only. It follows

X3 − Y 3 = (X − Y )(X2 + XY + Y 2)

= (X − Y )
(
(X + Y )2 −XY

)

= (X − Y )
(
(X + Y )2 − (

(X + Y )2 − (X − Y )2
)
/4

)

=
3

4
(X − Y )(X + Y )2 +

1

4
(X − Y )3.
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Thus, we have

E[X3 − Y 3|X − Y ] = E

[
3

4
(X − Y )(X + Y )2 +

1

4
(X − Y )3

∣∣∣X − Y

]

=
3

4
(X − Y )E[(X + Y )2|X − Y ] +

1

4
(X − Y )3

=
3

4
(X − Y )E[(X + Y )2] +

1

4
(X − Y )3

(the condition is removed since X + Y and X − Y are indep.)

The 2nd equality, where X−Y is regarded as a constant and moved outside
the expectation due to the conditioning on it, can be justified by Prob. 2
of homework 1. So it remains to find E[(X + Y )2], which is

E[(X + Y )2] = E[X2 + 2XY + Y 2]

= E[X2] + E[Y 2]

= 2. (X,Y are i.i.d. standard Gaussian)

It then gives

E[X3 − Y 3|X − Y ] =
3

2
(X − Y ) +

1

4
(X − Y )3.

3. (10 points× 5 = 50 points)

(a) We see that X +αZ and Z are jointly Gaussian. Thus, we can find α that
makes them uncorrelated, E[(X + αZ)Z] = 0, to achieve the goal. So we
have

E[XZ] + αE[Z2] = 0.

From the mean vector and covariance matrix , we know E[Z2] = 1 and
E[(X − 1)Z] = 1, which leads to E[XZ] = 1.

Therefore, α = −1.

(b) Since X, Y, Z are jointly Gaussian, by definition there any linear com-
bination is a Gaussian RV. So we know S is Gaussian. It’s mean is
E[S] = E[X + Y + Z] = 3, and variance is

Var(S) = E[(S − E[S])2]

= E
[(

(X − 1) + (Y − 2) + Z
)2

]

= E[(X − 1)2] + E[(Y − 2)2] + E[Z2] + 2E[(X − 1)(Y − 2)]

+2E[(X − 1)Z] + 2E[(Y − 2)Z]

= 3 + 3 + 1 + 2 + 2

= 11.

With mean and variance known, it’s an easy task to write down the pdf.

(c) Let r = [Y, Z]T . The conditional variance can be found by the formula

Var(X|Y, Z) = Kx|r = Kx −KxrK
−1
r Krx,
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where Kx is just the variance of X, Kxr is the cross covariance between X
and r, and Kr is the covariance matrix of r. Further calculations give

Kxr = E
[
(X − 1)[Y − 2, Z]

]
=

[
E[(X − 1)(Y − 2)], E[(X − 1)Z]

]
= [1, 1]

Kr = E
[

[Y − 2, Z]T [Y − 2, Z]
]

=

[
3 0
0 1

]

It follows that the conditional variance

Var(X|Y, Z) = 3− [1, 1]

[
1
3

0
0 1

]
[1, 1]T = 5/3.

(d) This one is straightforward by applying the formula given on the cover
page.

ρxy = E[(X − E[X])(Y − E[Y ])]/σXσY = 1/3.

(e) From the covariance matrix of w we know Y, Z are independent. Thus we
can simply choose the matrix A to be a diagonal matrix

A =

[ 1√
3

0

0 1

]

such that both the covariance matrix of Ar and Ar + b for any b, i.e.
AKrA

T is an identity matrix.

Note that adding a vector b to Ar does NOT alter the covariance matrix.
But the mean after adding the vector b to Ar becomes Amr+b. Therefore,
letting b = −Amr shifts the mean to zero. Thus, we need

b =

[ −2√
3

0

]
.

4. (10+15=25 points)

(a) This problem is essentially the same as the example I raised during class.

Suppose Z is Gaussian with zero mean and variance A2. Let N = Z + W .
We know N is Gaussian with mean 0 and variance σ2 + A2.

Thus, the system model now becomes

Y = X + N.

Then the posterior probability is given by

P [X = 1|Y = y] =
fY |X(y|X = 1)P [X = 1]

fY |X(y|X = 1)P [X = 1] + fY |X(y|X = −1)P [X = −1]

=
e
− (y−1)2

2(A2+σ2)

e
− (y−1)2

2(A2+σ2) + e
− (y+1)2

2(A2+σ2)

=
e

y

A2+σ2

e
y

A2+σ2 + e
−y

A2+σ2

3



(b) Suppose now Z is modeled as a binary discrete random variable equally
likely to be A or −A. This model reveals that the interference has a
structure, rather than just Gaussian noise, that we can further exploit.

The posterior probability, by total probability theorem, is

P [X = 1|Y = y] = P [X = 1, Z = A|Y = y]︸ ︷︷ ︸
(1)

+ P [X = 1, Z = −A|Y = y]︸ ︷︷ ︸
(2)

.

The first term is

P [X = 1, Z = A|Y = y] = fY |X,Z(y|X = 1, Z = A)P [X = 1, Z = A]
/


 ∑

x∈{1,−1},z∈{A,−A}
fY |X,Z(y|X = x, Z = z)P [X = x, Z = z]




=
e−

(y−1−A)2

2σ2

e−
(y−1−A)2

2σ2 + e−
(y−1+A)2

2σ2 + e−
(y+1−A)2

2σ2 + e−
(y+1+A)2

2σ2

We can similarly find term (2) as

P [X = 1, Z = −A|Y = y] = fY |X,Z(y|X = 1, Z = −A)P [X = 1, Z = −A]
/


 ∑

x∈{1,−1},z∈{A,−A}
fY |X,Z(y|X = x, Z = z)P [X = x, Z = z]




=
e−

(y−1+A)2

2σ2

e−
(y−1−A)2

2σ2 + e−
(y−1+A)2

2σ2 + e−
(y+1−A)2

2σ2 + e−
(y+1+A)2

2σ2

.

It follows that

P [X = 1|Y = y] =
e−

(y−1+A)2

2σ2 + e−
(y−1−A)2

2σ2

e−
(y−1−A)2

2σ2 + e−
(y−1+A)2

2σ2 + e−
(y+1−A)2

2σ2 + e−
(y+1+A)2

2σ2

.

In part (a), the interference is modeled as Gaussian. And thus we treat it as
noise. But on the other hand, in part (b), the interference is modeled more
realistically, wherein the interference has a structure, rather than being treated
as Gaussian noise, that we can further exploit to help us gain useful information
about the desired signal X.

We will look deeper into this problem again when we talk about detection
later in this course.
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