nctuee08f

Stochastic Processes

Midterm 2

9:00 a.m. - 11:30 a.m., 12/01/08

IMPORTANT:

- Remember to write down your i.d. number and your name.
- There are 4 problem sets with <u>110</u> points in total.
- Show all your work with detailed explanations. Correct answers *without* any explanations will carry **NO** credits. However, wrong answers with correct reasonings will get partial credits.

You will need the following definitions/formulas:

• For any arbitrary random variable X with mean E[X] and finite variance Var(X), we have

$$P\left[\left|X - E[X]\right| > k\right] \le \frac{\operatorname{Var}(X)}{k^2}, \quad \text{for any} \quad k > 0.$$

• Consider a jointly Gaussian random vector $[\mathbf{x}^T \ \mathbf{y}^T]^T$ with $\mathbf{x} \sim \mathcal{N}(\mathbf{m}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}})$ and $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_{\mathbf{y}}, \mathbf{K}_{\mathbf{y}})$. Then, the conditional density $f_{\mathbf{x}|\mathbf{y}}(\mathbf{x}|\mathbf{y})$ also follows a joint Gaussian density with

$$\mathbf{x}|\mathbf{y} \sim \mathcal{N}\Big(\mathbf{m}_{\mathbf{x}} + \mathbf{K}_{\mathbf{x}\mathbf{y}}\mathbf{K}_{\mathbf{y}}^{-1}(\mathbf{y} - \mathbf{m}_{\mathbf{y}}), \mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{x}\mathbf{y}}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{K}_{\mathbf{y}\mathbf{x}}\Big),$$

where $\mathbf{K}_{\mathbf{xy}} = E\left[(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{y} - \mathbf{m}_{\mathbf{y}})^H\right]$ and $\mathbf{K}_{\mathbf{yx}} = \mathbf{K}_{\mathbf{xy}}^H$

• A matrix **K** is *positive semi-definite* if

$$\mathbf{x}^T \mathbf{K} \mathbf{x} \ge 0$$

for any real-valued vector \mathbf{x} with appropriate dimension.

• An unbiased estimator $\hat{\theta}$ of a vector deterministic parameter θ is said to be more *efficient* than any other vector unbiased estimator $\hat{\theta}'$ if

$$\mathbf{K}_{\hat{\theta}} \leq \mathbf{K}_{\hat{\theta}'}$$

where the inequality for the matrix means $\mathbf{K}_{\hat{\theta}'} - \mathbf{K}_{\hat{\theta}}$ is a **positive semi-definite** matrix, where $\mathbf{K}_{\hat{\theta}}$ and $\mathbf{K}_{\hat{\theta}'}$ are the covariance matrices of $\hat{\theta}$ and $\hat{\theta}'$, respectively.

1. Bayes Detection (10+10=20 points)

- (a) Describe the maximum *a posteriori* (MAP) detection rule, and explain why MAP gives minimum probability of decision error.
- (b) Consider the problem of detecting a known signal \mathbf{s} , with dimension $m \times 1$, in the presence of additive noise \mathbf{n} . Assume the noise has a Gaussian distribution with $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_n)$ where \mathbf{K}_n is nonsingular. The detector is to determine whether the received signal \mathbf{y} consists of signal plus noise or noise alone. That is, the two hypotheses to be tested for are

$$\begin{aligned} &H_1: \quad \mathbf{y} = \mathbf{s} + \mathbf{n} \\ &H_2: \quad \mathbf{y} = \mathbf{n}. \end{aligned}$$

Determine the maximum likelihood decision rule for the two hypotheses.

2. Estimation (10 + 5 + 5 = 20 points)

Consider the linear model

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w},$$

where **H** is a known $m \times n$ observation matrix, **x** is an $n \times 1$ unknown parameter, and **w** is a Gaussian noise vector with $\mathbf{w} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. Assume **H** is full rank.

(a) The maximum likelihood estimator for \mathbf{x} is given by

$$\hat{\mathbf{x}}_{ML} = \underbrace{(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T}_{\mathbf{T}_{ML}} \cdot \mathbf{y}$$

$$= \mathbf{T}_{ML} \cdot \mathbf{y},$$

where $\mathbf{T}_{ML} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$ is the linear transformation matrix. Show that $\hat{\mathbf{x}}_{ML}$ is the most efficient estimator in the class \mathcal{L} of **unbiased** linear estimators, where \mathcal{L} is the set $\mathcal{L} = { \hat{\mathbf{x}} | \hat{\mathbf{x}} = \mathbf{T} \cdot \mathbf{y}, \quad \forall \mathbf{T} \text{ such that } E[\hat{\mathbf{x}}] = \mathbf{x} }.$ (Hint: For $E[\hat{\mathbf{x}}] = \mathbf{x}$, we must have $\mathbf{TH} = \mathbf{I}$)

- (b) From part (a), explain that the variance of every component in $\hat{\mathbf{x}}_{ML}$ is no larger than that of $\hat{\mathbf{x}}$.
- (c) Geometrically explain that the least square estimator $\hat{\mathbf{x}}_{LS}$ for \mathbf{x} satisfies the normal equation

$$\left(\mathbf{H}^T\mathbf{H}\right)\hat{\mathbf{x}}_{LS} = \mathbf{H}^T\mathbf{y}.$$

3. Conditional Expectation of Jointly Gaussian (10+10=20 points)

Let $\mathbf{x} \sim \mathcal{N}(\mathbf{m}_x, \mathbf{K}_x)$, $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_y, \mathbf{K}_y)$, and $\mathbf{z} \sim \mathcal{N}(\mathbf{m}_z, \mathbf{K}_z)$ be collectively jointly Gaussian random vectors, *i.e.* the elements of the random vector $[\mathbf{x}^T, \mathbf{y}^T, \mathbf{z}^T]^T$ are jointly Gaussian. Suppose \mathbf{y} and \mathbf{z} are not statistically independent. Define $\hat{\mathbf{z}} \triangleq \mathbf{z} - E[\mathbf{z}|\mathbf{y}]$.

- (a) Find the cross-covariance matrix $\mathbf{K}_{y\hat{z}} = E\Big[(\mathbf{y} \mathbf{m}_y)(\hat{\mathbf{z}} E[\hat{\mathbf{z}}])^T\Big].$
- (b) Show that $E[\mathbf{x}|\mathbf{y}, \mathbf{z}] = E[\mathbf{x}|\mathbf{y}, \hat{\mathbf{z}}].$

4. Gaussian Sample $(10 \times 5 = 50 \text{ points})$

Let X_1, \dots, X_n be i.i.d. Gaussian random variables each with **unknown** mean μ and **unknown** variance σ^2 . The sample mean of the Gaussian sample is $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, and sample variance is $S_n^2 \triangleq \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

- (a) Show that the sample mean is unbiased and consistent.
- (b) Find the maximum likelihood (ML) estimator $\hat{\sigma}_{ML}^2$ for the variance based on X_1, \dots, X_n .
- (c) Are the ML estimator $\hat{\sigma}_{ML}^2$ for the variance unbiased? Please explain.
- (d) Find the mean squared error (MSE) between $\hat{\sigma}_{ML}^2$ and σ^2 . Then, compare your result with the MSE between S_n^2 and σ^2 .

(Hint: Var $(S_n^2) = \frac{2\sigma^4}{n-1}$ and S_n^2 is unbiased)

(e) In order to find an interval estimator for the unknown mean, we typically use the following probability

$$P\left[-z \le \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} \le z\right] = 1 - \alpha$$

to specify an interval for μ with a confidence level $1-\alpha$. Suppose we are given that the value β satisfies $P[T_{n-1} \leq \beta] = 0.025$, where T_{n-1} is the Student T random variable with n-1 degrees of freedom. Find the interval with a confidence level 0.95.