Stochastic Processes

Midterm 2
9:00 a.m. - 11:30 a.m., 12/01/08

IMPORTANT:

- Remember to write down your i.d. number and your name.
- There are 4 problem sets with $\underline{110}$ points in total.
- Show all your work with detailed explanations. Correct answers without any explanations will carry NO credits. However, wrong answers with correct reasonings will get partial credits.

You will need the following definitions/formulas:

- For any arbitrary random variable X with mean $E[X]$ and finite variance $\operatorname{Var}(X)$, we have

$$
P[|X-E[X]|>k] \leq \frac{\operatorname{Var}(X)}{k^{2}}, \quad \text { for any } \quad k>0
$$

- Consider a jointly Gaussian random vector $\left[\mathbf{x}^{T} \mathbf{y}^{T}\right]^{T}$ with $\mathbf{x} \sim \mathcal{N}\left(\mathbf{m}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}}\right)$ and $\mathbf{y} \sim$ $\mathcal{N}\left(\mathbf{m}_{\mathbf{y}}, \mathbf{K}_{\mathbf{y}}\right)$. Then, the conditional density $f_{\mathbf{x} \mid \mathbf{y}}(\mathbf{x} \mid \mathbf{y})$ also follows a joint Gaussian density with

$$
\mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mathbf{m}_{\mathbf{x}}+\mathbf{K}_{\mathbf{x y}} \mathbf{K}_{\mathbf{y}}^{-1}\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right), \mathbf{K}_{\mathbf{x}}-\mathbf{K}_{\mathbf{x y}} \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{K}_{\mathbf{y x}}\right)
$$

where $\mathbf{K}_{\mathbf{x} \mathbf{y}}=E\left[\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right)^{H}\right]$ and $\mathbf{K}_{\mathbf{y x}}=\mathbf{K}_{\mathbf{x y}}^{H}$

- A matrix \mathbf{K} is positive semi-definite if

$$
\mathbf{x}^{T} \mathbf{K} \mathbf{x} \geq 0
$$

for any real-valued vector \mathbf{x} with appropriate dimension.

- An unbiased estimator $\hat{\boldsymbol{\theta}}$ of a vector deterministic parameter $\boldsymbol{\theta}$ is said to be more efficient than any other vector unbiased estimator $\hat{\boldsymbol{\theta}}^{\prime}$ if

$$
\mathbf{K}_{\hat{\theta}} \leq \mathbf{K}_{\hat{\theta}^{\prime}}
$$

where the inequality for the matrix means $\mathbf{K}_{\hat{\theta}^{\prime}}-\mathbf{K}_{\hat{\theta}}$ is a positive semi-definite matrix, where $\mathbf{K}_{\hat{\theta}}$ and $\mathbf{K}_{\hat{\theta}^{\prime}}$ are the covariance matrices of $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}^{\prime}$, respectively.

1. Bayes Detection $(10+10=20$ points $)$
(a) Describe the maximum a posteriori (MAP) detection rule, and explain why MAP gives minimum probability of decision error.
(b) Consider the problem of detecting a known signal s, with dimension $m \times 1$, in the presence of additive noise \mathbf{n}. Assume the noise has a Gaussian distribution with $\mathbf{n} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{n}\right)$ where \mathbf{K}_{n} is nonsingular. The detector is to determine whether the received signal \mathbf{y} consists of signal plus noise or noise alone. That is, the two hypotheses to be tested for are

$$
\begin{array}{ll}
\mathrm{H}_{1}: & \mathbf{y}=\mathbf{s}+\mathbf{n} \\
\mathrm{H}_{2}: & \mathbf{y}=\mathbf{n} .
\end{array}
$$

Determine the maximum likelihood decision rule for the two hypotheses.
2. Estimation $(10+5+5=20$ points $)$

Consider the linear model

$$
\mathbf{y}=\mathbf{H} \mathbf{x}+\mathbf{w}
$$

where \mathbf{H} is a known $m \times n$ observation matrix, \mathbf{x} is an $n \times 1$ unknown parameter, and \mathbf{w} is a Gaussian noise vector with $\mathbf{w} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)$. Assume \mathbf{H} is full rank.
(a) The maximum likelihood estimator for \mathbf{x} is given by

$$
\begin{aligned}
\hat{\mathbf{x}}_{M L} & =\underbrace{\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T}}_{\mathbf{T}_{M L}} \cdot \mathbf{y} \\
& =\mathbf{T}_{M L} \cdot \mathbf{y}
\end{aligned}
$$

where $\mathbf{T}_{M L}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T}$ is the linear transformation matrix.
Show that $\hat{\mathbf{x}}_{M L}$ is the most efficient estimator in the class \mathcal{L} of unbiased linear estimators, where \mathcal{L} is the set $\mathcal{L}=\{\hat{\mathbf{x}} \mid \hat{\mathbf{x}}=\mathbf{T} \cdot \mathbf{y}, \quad \forall \mathbf{T}$ such that $E[\hat{\mathbf{x}}]=\mathbf{x}\}$.
(Hint: For $E[\hat{\mathbf{x}}]=\mathbf{x}$, we must have $\mathbf{T H}=\mathbf{I}$)
(b) From part (a), explain that the variance of every component in $\hat{\mathbf{x}}_{M L}$ is no larger than that of $\hat{\mathbf{x}}$.
(c) Geometrically explain that the least square estimator $\hat{\mathbf{x}}_{L S}$ for \mathbf{x} satisfies the normal equation

$$
\left(\mathbf{H}^{T} \mathbf{H}\right) \hat{\mathbf{x}}_{L S}=\mathbf{H}^{T} \mathbf{y} .
$$

3. Conditional Expectation of Jointly Gaussian ($10+10=20$ points)

Let $\mathbf{x} \sim \mathcal{N}\left(\mathbf{m}_{x}, \mathbf{K}_{x}\right), \mathbf{y} \sim \mathcal{N}\left(\mathbf{m}_{y}, \mathbf{K}_{y}\right)$, and $\mathbf{z} \sim \mathcal{N}\left(\mathbf{m}_{z}, \mathbf{K}_{z}\right)$ be collectively jointly Gaussian random vectors, i.e. the elements of the random vector $\left[\mathbf{x}^{T}, \mathbf{y}^{T}, \mathbf{z}^{T}\right]^{T}$ are jointly Gaussian. Suppose \mathbf{y} and \mathbf{z} are not statistically independent. Define $\hat{\mathbf{z}} \triangleq$ $\mathbf{z}-E[\mathbf{z} \mid \mathbf{y}]$.
(a) Find the cross-covariance matrix $\mathbf{K}_{y \hat{z}}=E\left[\left(\mathbf{y}-\mathbf{m}_{y}\right)(\hat{\mathbf{z}}-E[\hat{\mathbf{z}}])^{T}\right]$.
(b) Show that $E[\mathbf{x} \mid \mathbf{y}, \mathbf{z}]=E[\mathbf{x} \mid \mathbf{y}, \hat{\mathbf{z}}]$.
4. Gaussian Sample ($10 \times 5=50$ points)

Let X_{1}, \cdots, X_{n} be i.i.d. Gaussian random variables each with unknown mean μ and unknown variance σ^{2}. The sample mean of the Gaussian sample is $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and sample variance is $S_{n}^{2} \triangleq \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$.
(a) Show that the sample mean is unbiased and consistent.
(b) Find the maximum likelihood (ML) estimator $\hat{\sigma}_{M L}^{2}$ for the variance based on X_{1}, \cdots, X_{n}.
(c) Are the ML estimator $\hat{\sigma}_{M L}^{2}$ for the variance unbiased? Please explain.
(d) Find the mean squared error (MSE) between $\hat{\sigma}_{M L}^{2}$ and σ^{2}. Then, compare your result with the MSE between S_{n}^{2} and σ^{2}. (Hint: $\operatorname{Var}\left(S_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}$ and S_{n}^{2} is unbiased)
(e) In order to find an interval estimator for the unknown mean, we typically use the following probability

$$
P\left[-z \leq \frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \leq z\right]=1-\alpha
$$

to specify an interval for μ with a confidence level $1-\alpha$. Suppose we are given that the value β satisfies $P\left[T_{n-1} \leq \beta\right]=0.025$, where T_{n-1} is the Student T random variable with $n-1$ degrees of freedom. Find the interval with a confidence level 0.95 .

