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Stochastic Processes

Midterm 2
Solutions

1. Bayes Detection (10+10=20 points)

(a) Suppose the state of nature is Ω = {x1, · · · , xN}. The MAP decision rule based
on the observation Y = y is given by

X̂MAP = arg max
xj

P [X = xj | Y = y]

= arg max
xj

fY (y | X = xj)P [X = xj ].

When ci,j = 1− δi,j , the average cost is

C(D) , E[C]

=
∑

i

∑

j

ci,jP [decide Hi and Hj is true]

=
∑

i

∑

j

(1− δi,j)P [decide Hi and Hj is true]

=
∑

i6=j

P [decide Hi and Hj is true],

which is exactly the probability of decision error. Bayes detection rule guarantees
that this decision error probability is minimized.

(b) The maximum likelihood detection rules states

L(H1)
H1

≷
H2

L(H2),

where L(H1) and L(H2) are the likelihood of the signal s associated with hypoth-
esis H1 and H2, respectively. More specifically, by taking natural log of both
sides, we have

−1
2
(y − s)HK−1

n (y − s)
H1

≷
H2

−1
2
yHK−1

n y.

With rearrangement, it follows that

sHK−1
n︸ ︷︷ ︸

=wH
ML

·y
H1

≷
H2

sHK−1
n s

2
.

That is we can write the ML decision rule as

wH
ML · y

H1

≷
H2

η,

where

wML = K−1
n s and η =

sHK−1
n s

2
.
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2. Estimation (10 + 5 + 5 = 20 points)

Consider the linear model
y = Hx + w,

where H is a known m×n observation matrix, x is an n×1 unknown parameter, and
w is a Gaussian noise vector with w ∼ N (0, σ2I). Assume H is full rank.

(a) Let’s consider a more general case for w ∼ N (0,K) in the proof, where K is the
covariance matrix of w that is not necessarily diagonal. The situation in this
problem is just a special case that K = σ2I. So if w ∼ N (0,K), the ML linear
transformation matrix is

TML = (HTK−1H)−1HTK−1.

Let K1 and K2 be the covariance matrices of x̂ML and any other linear unbiased
estimator X̂ = T · y, respectively. Therefore, this problem requires you to show
that K2 −K1 is p.s.d., i.e.

αT (K2 −K1)α ≥ 0, ∀ α. (1)

The key steps have two:

→ Any covariance matrix K is p.s.d. (see topic2)
→ TH = I for any linear unbiased estimator x̂ = T · y in the linear model

y = Hx + w.
This can easily be shown that for E[x̂] = E[T · y] = THx = x, we must
have TH = I.

We will use these two facts later in the proof.

So, our objective is to show (1) is true. Carrying out the covariance matrices K1

and K2, we have

K1 = TMLKTT
ML,

K2 = TKTT .

It follows
K2 −K1 = TKTT −TMLKTT

ML.

Next we can conjecture that

K2 −K1 = (T−TML)K(T−TML)T . (2)

If this is the case, then by the fact that K is p.s.d., we know that

αT (K2 −K1)α = αT (T−TML)︸ ︷︷ ︸
βT

K (T−TML)T α︸ ︷︷ ︸
β

= βTKβ ≥ 0,

which reaches our objective in (1).
So, now the question is whether or not (2) is true.
Expanding (2) gives

TKTT −TMLKTT −TKTT
ML + TMLKTT

ML, (3)
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where

TMLKTT = (HTK−1H)−1HTK−1KTT

= (HTK−1H)−1 (we use TH=I in this equality)
TMLKTT

ML = (HTK−1H)−1HTK−1KK−1H(HTK−1H)−1

= (HTK−1H)−1.

Thus, we see the last 3 terms in (3) are identical. It follows that

(T−TML)K(T−TML)T = TKTT −TMLKTT −TKTT
ML + TMLKTT

ML

= TKTT −TMLKTT
ML

= K2 −K1.

This completes the proof.

(b) Since K2−K1 is p.s.d., it’s diagonal term is non-negative. This is because that,
if we choose the vector

α = [0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0]T ,

the vector with a ’1’ in the ith position and zero in others, then

αT (K2 −K1)α = (K2 −K1)ii ≥ 0, (4)

where (K2 −K1)ii is the ith diagonal term in K2 −K1.

Since (K2 −K1)ii = (K2)ii − (K1)ii, and the ith diagonal term of K2 and K1

is the variance of the ith component of x̂ and x̂ML, respectively. It follows from
(4) that

(K2 −K1)ii = (K2)ii − (K1)ii ≥ 0.

So the variance of the ith component of x̂ is greater than or equal to that of
x̂ML.

(c) The least squares estimator is defined as

x̂LS = arg min
x
||y −Hx||2.

This is equivalent to finding a vector Hx̂LS in the column space of H that
is closest to y. Thus, Hx̂LS is the orthogonal projection of y onto the space
spanned by the columns of H.

Geometrically, we see y−Hx̂LS will be orthogonal to Hx for all x. Mathemati-
cally, this is

(Hx)T (y −Hx̂LS) = 0 for all x.

This leads to the normal equation

HT (y −HxLS) = 0
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3. Conditional Expectation of Jointly Gaussian (10+10=20 points)

(a) The cross-covariance matrix Kyẑ = E
[
(y−my)(ẑ−E[ẑ])T

]
can be obtained as

Kyẑ = E
[
(y −my)(ẑ− E[ẑ])T

]

= E[(y −my)ẑT ]
= E[yẑT ] (since E[ẑ] = 0)

= E[yzT ]− E
[
yE[zT |y]

]

= E[yzT ]− E
[
E[yzT |y]

]

= E[yzT ]− E[yzT ]
= 0.

(b) (Not graded) See hw2 solutions.

4. Gaussian Sample (10× 5 = 50 points)

(a) First, it is clear to see E[X̄n] = 1
n

∑n
i=1 E[Xi] = µ.

Second, we can use Chebyshev inequality to examine consistency of any unbiased
estimators. Here, we have

P
[ ∣∣X̄n − µ

∣∣ > k
] ≤ Var(X̄n)

k2
, for any k > 0. (5)

The variance of the sample mean is

Var(X̄n) = Var(
1
n

n∑

i=1

Xi) =
1
n2

Var(
n∑

i=1

Xi)

=
1
n2

n∑

i=1

Var(Xi) =
1
n

σ2.

Therefore, by plugging the above result into (5), we can easily show the consistency
of sample mean, i.e. for any k > 0,

lim
n→∞P

[ ∣∣X̄n − µ
∣∣ > k

]
= 0.

(b) The mean and variance are both unknown. We need simultaneously find their ML
estimator jointly. That is the vector of parameter to be estimated is θ = [µ, σ2]T .

The likelihood function of θ given x = [X1 = x1, X2 = x2, · · · , Xn = xn] is

L(θ|x) = fx(x; θ) =
n∏

i=1

fXi(xi; θ)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

.

And, the log likelihood function is

log L(θ|x) = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(xi − θ)2.
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Taking partial derivative and solving the following equations simultaneously gives us
possible candidates of the ML estimators. It follows that

∂ log L(θ|x)
∂µ

= 0 −→ µ̂ML =
1
n

n∑

i=1

Xi = X̄n,

∂ log L(θ|x)
∂σ2

= 0 −→ σ̂2
ML =

1
n

n∑

i=1

(Xi − X̄n)2,

which are indeed the ML estimators after checking with the boundaries.

So, the answer to this problem is

σ̂2
ML =

1
n

n∑

i=1

(Xi − X̄n)2.

(c) We see the relation between σ̂2
ML and S2

n is given by

σ̂2
ML =

n− 1
n

S2
n.

And, since S2
n is unbiased, we thus conclude σ̂2

ML is not unbiased.

(d) The MSE between σ̂2
ML and σ2 is

E
[
(σ̂2

ML − σ2)2
]

= E

[(
n− 1

n
S2

n − σ2

)2
]

= E

[((
n− 1

n
S2

n −
n− 1

n
σ2

)
− 1

n
σ2

)2
]

= E

[(
n− 1

n
S2

n −
n− 1

n
σ2

)2
]

+
(

1
n

σ2

)2

=
(

n− 1
n

)2

Var
(
S2

n

)
+

(
1
n

σ2

)2

=
2n− 1

n2
σ4.

With a little more algebraic efforts, it is not difficult to see with positive integer n

2n− 1
n2

σ4 < Var(S2
n) =

2σ4

n− 1
.

This means the ML estimator of σ2 is more accurate in terms of MSE than the sample
variance estimator, although MLE is not unbiased.

(e) We know

1− 2FTn−1(−z) = P

[
−z ≤ X̄n − µ

Sn/
√

n
≤ z

]

= P

[
X̄n − Snz√

n
≤ µ ≤ X̄n +

Snz√
n

]

= 1− α.

For 1 − α = 0.95, we need FTn−1(−z) = 0.025, where FTn−1(−z) = P [Tn−1 ≤ −z]
is the cumulative distribution function of Tn−1. This yields z = −β. It follows the
interval with confidence level 0.95 is[

X̄n +
Snβ√

n
, X̄n − Snβ√

n

]
.
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