Stochastic Processes

Midterm 2

Solutions

1. Bayes Detection $(10+10=20$ points $)$
(a) Suppose the state of nature is $\Omega=\left\{x_{1}, \cdots, x_{N}\right\}$. The MAP decision rule based on the observation $Y=y$ is given by

$$
\begin{aligned}
\hat{X}_{\mathrm{MAP}} & =\arg \max _{x_{j}} P\left[X=x_{j} \mid Y=y\right] \\
& =\arg \max _{x_{j}} f_{Y}\left(y \mid X=x_{j}\right) P\left[X=x_{j}\right]
\end{aligned}
$$

When $c_{i, j}=1-\delta_{i, j}$, the average cost is

$$
\begin{aligned}
C(D) & \triangleq E[C] \\
& =\sum_{i} \sum_{j} c_{i, j} P\left[\text { decide } H_{i} \text { and } H_{j} \text { is true }\right] \\
& =\sum_{i} \sum_{j}\left(1-\delta_{i, j}\right) P\left[\text { decide } H_{i} \text { and } H_{j} \text { is true }\right] \\
& =\sum_{i \neq j} P\left[\text { decide } H_{i} \text { and } H_{j} \text { is true }\right]
\end{aligned}
$$

which is exactly the probability of decision error. Bayes detection rule guarantees that this decision error probability is minimized.
(b) The maximum likelihood detection rules states

$$
\mathrm{L}\left(\mathrm{H}_{1}\right) \underset{H_{2}}{\stackrel{H_{1}}{\gtrless}} \mathrm{~L}\left(\mathrm{H}_{2}\right),
$$

where $\mathrm{L}\left(\mathrm{H}_{1}\right)$ and $\mathrm{L}\left(\mathrm{H}_{2}\right)$ are the likelihood of the signal s associated with hypothesis H_{1} and H_{2}, respectively. More specifically, by taking natural \log of both sides, we have

$$
-\frac{1}{2}(\mathbf{y}-\mathbf{s})^{H} \mathbf{K}_{n}^{-1}(\mathbf{y}-\mathbf{s}) \underset{H_{2}}{\stackrel{H_{1}}{\gtrless}}-\frac{1}{2} \mathbf{y}^{H} \mathbf{K}_{n}^{-1} \mathbf{y} .
$$

With rearrangement, it follows that

$$
\underbrace{\mathbf{s}^{H} \mathbf{K}_{n}^{-1}}_{=\mathbf{w}_{\mathrm{ML}}^{H}} \cdot \mathbf{y} \underset{H_{2}}{\stackrel{H_{1}}{\gtrless}} \frac{\mathbf{s}^{H} \mathbf{K}_{n}^{-1} \mathbf{s}}{2} .
$$

That is we can write the ML decision rule as

$$
\mathbf{w}_{\mathrm{ML}}^{H} \cdot \mathbf{y} \underset{H_{2}}{\stackrel{H_{1}}{\gtrless}} \eta,
$$

where

$$
\mathbf{w}_{\mathrm{ML}}=\mathbf{K}_{n}^{-1} \mathbf{s} \quad \text { and } \quad \eta=\frac{\mathbf{s}^{H} \mathbf{K}_{n}^{-1} \mathbf{s}}{2}
$$

2. Estimation $(10+5+5=20$ points)

Consider the linear model

$$
\mathbf{y}=\mathbf{H x}+\mathbf{w}
$$

where \mathbf{H} is a known $m \times n$ observation matrix, \mathbf{x} is an $n \times 1$ unknown parameter, and \mathbf{w} is a Gaussian noise vector with $\mathbf{w} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)$. Assume \mathbf{H} is full rank.
(a) Let's consider a more general case for $\mathbf{w} \sim \mathcal{N}(0, \mathbf{K})$ in the proof, where \mathbf{K} is the covariance matrix of \mathbf{w} that is not necessarily diagonal. The situation in this problem is just a special case that $\mathbf{K}=\sigma^{2} \mathbf{I}$. So if $\mathbf{w} \sim \mathcal{N}(0, \mathbf{K})$, the ML linear transformation matrix is

$$
\mathbf{T}_{M L}=\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{K}^{-1}
$$

Let \mathbf{K}_{1} and \mathbf{K}_{2} be the covariance matrices of $\hat{\mathbf{x}}_{M L}$ and any other linear unbiased estimator $\hat{\mathbf{X}}=\mathbf{T} \cdot \mathbf{y}$, respectively. Therefore, this problem requires you to show that $\mathbf{K}_{2}-\mathbf{K}_{1}$ is p.s.d., i.e.

$$
\begin{equation*}
\boldsymbol{\alpha}^{T}\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right) \boldsymbol{\alpha} \geq 0, \quad \forall \boldsymbol{\alpha} \tag{1}
\end{equation*}
$$

The key steps have two:
\rightarrow Any covariance matrix \mathbf{K} is p.s.d. (see topic2)
$\rightarrow \mathbf{T H}=\mathbf{I}$ for any linear unbiased estimator $\hat{\mathbf{x}}=\mathbf{T} \cdot \mathbf{y}$ in the linear model $\mathbf{y}=\mathbf{H x}+\mathbf{w}$.
This can easily be shown that for $E[\hat{\mathbf{x}}]=E[\mathbf{T} \cdot \mathbf{y}]=\mathbf{T H x}=\mathbf{x}$, we must have $\mathbf{T H}=\mathbf{I}$.

We will use these two facts later in the proof.

So, our objective is to show (1) is true. Carrying out the covariance matrices \mathbf{K}_{1} and \mathbf{K}_{2}, we have

$$
\begin{aligned}
& \mathbf{K}_{1}=\mathbf{T}_{M L} \mathbf{K} \mathbf{T}_{M L}^{T} \\
& \mathbf{K}_{2}=\mathbf{T K T}^{T}
\end{aligned}
$$

It follows

$$
\mathbf{K}_{2}-\mathbf{K}_{1}=\mathbf{T K} \mathbf{T}^{T}-\mathbf{T}_{M L} \mathbf{K} \mathbf{T}_{M L}^{T}
$$

Next we can conjecture that

$$
\begin{equation*}
\mathbf{K}_{2}-\mathbf{K}_{1}=\left(\mathbf{T}-\mathbf{T}_{M L}\right) \mathbf{K}\left(\mathbf{T}-\mathbf{T}_{M L}\right)^{T} \tag{2}
\end{equation*}
$$

If this is the case, then by the fact that \mathbf{K} is p.s.d., we know that

$$
\begin{aligned}
\boldsymbol{\alpha}^{T}\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right) \boldsymbol{\alpha} & =\underbrace{\boldsymbol{\alpha}^{T}\left(\mathbf{T}-\mathbf{T}_{M L}\right)}_{\boldsymbol{\beta}^{T}} \mathbf{K} \underbrace{\left(\mathbf{T}-\mathbf{T}_{M L}\right)^{T} \boldsymbol{\alpha}}_{\boldsymbol{\beta}} \\
& =\boldsymbol{\beta}^{T} \mathbf{K} \boldsymbol{\beta} \geq 0
\end{aligned}
$$

which reaches our objective in (1).
So, now the question is whether or not (2) is true.
Expanding (2) gives

$$
\begin{equation*}
\mathbf{T K} \mathbf{T}^{T}-\mathbf{T}_{M L} \mathbf{K} \mathbf{T}^{T}-\mathbf{T K} \mathbf{T}_{M L}^{T}+\mathbf{T}_{M L} \mathbf{K} \mathbf{T}_{M L}^{T} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{T}_{M L} \mathbf{K} \mathbf{T}^{T} & =\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{K} \mathbf{T}^{T} \\
& =\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \quad(\text { we use } \mathbf{T H}=\mathbf{I} \text { in this equality }) \\
\mathbf{T}_{M L} \mathbf{K} \mathbf{T}_{M L}^{T} & =\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{K} \mathbf{K}^{-1} \mathbf{H}\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \\
& =\left(\mathbf{H}^{T} \mathbf{K}^{-1} \mathbf{H}\right)^{-1} .
\end{aligned}
$$

Thus, we see the last 3 terms in (3) are identical. It follows that

$$
\begin{aligned}
\left(\mathbf{T}-\mathbf{T}_{M L}\right) \mathbf{K}\left(\mathbf{T}-\mathbf{T}_{M L}\right)^{T} & =\mathbf{T K T}^{T}-\mathbf{T}_{M L} \mathbf{K T}^{T}-\mathbf{T K} \mathbf{T}_{M L}^{T}+\mathbf{T}_{M L} \mathbf{K T}_{M L}^{T} \\
& =\mathbf{T K T}^{T}-\mathbf{T}_{M L} \mathbf{K T}_{M L}^{T} \\
& =\mathbf{K}_{2}-\mathbf{K}_{1} .
\end{aligned}
$$

This completes the proof.
(b) Since $\mathbf{K}_{2}-\mathbf{K}_{1}$ is p.s.d., it's diagonal term is non-negative. This is because that, if we choose the vector

$$
\boldsymbol{\alpha}=[0, \cdots, 0, \underbrace{1}_{i \text { th position }}, 0, \cdots, 0]^{T},
$$

the vector with a ' 1 ' in the i th position and zero in others, then

$$
\begin{equation*}
\boldsymbol{\alpha}^{T}\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right) \boldsymbol{\alpha}=\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)_{i i} \geq 0 \tag{4}
\end{equation*}
$$

where $\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)_{i i}$ is the i th diagonal term in $\mathbf{K}_{2}-\mathbf{K}_{1}$.
Since $\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)_{i i}=\left(\mathbf{K}_{2}\right)_{i i}-\left(\mathbf{K}_{1}\right)_{i i}$, and the i th diagonal term of \mathbf{K}_{2} and \mathbf{K}_{1} is the variance of the i th component of $\hat{\mathbf{x}}$ and $\hat{\mathbf{x}}_{M L}$, respectively. It follows from (4) that

$$
\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)_{i i}=\left(\mathbf{K}_{2}\right)_{i i}-\left(\mathbf{K}_{1}\right)_{i i} \geq 0
$$

So the variance of the i th component of $\hat{\mathbf{x}}$ is greater than or equal to that of $\hat{\mathbf{x}}_{M L}$.
(c) The least squares estimator is defined as

$$
\hat{\mathbf{x}}_{L S}=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{H x}\|^{2} .
$$

This is equivalent to finding a vector $\mathbf{H} \hat{\mathbf{x}}_{L S}$ in the column space of \mathbf{H} that is closest to \mathbf{y}. Thus, $\mathbf{H} \hat{\mathbf{x}}_{L S}$ is the orthogonal projection of \mathbf{y} onto the space spanned by the columns of \mathbf{H}.
Geometrically, we see $\mathbf{y}-\mathbf{H} \hat{\mathbf{x}}_{L S}$ will be orthogonal to $\mathbf{H x}$ for all \mathbf{x}. Mathematically, this is

$$
(\mathbf{H x})^{T}\left(\mathbf{y}-\mathbf{H} \hat{\mathbf{x}}_{L S}\right)=0 \quad \text { for all } \mathbf{x} .
$$

This leads to the normal equation

$$
\mathbf{H}^{T}\left(\mathbf{y}-\mathbf{H} \mathbf{x}_{L S}\right)=0
$$

3. Conditional Expectation of Jointly Gaussian ($10+10=20$ points)
(a) The cross-covariance matrix $\mathbf{K}_{y \hat{z}}=E\left[\left(\mathbf{y}-\mathbf{m}_{y}\right)(\hat{\mathbf{z}}-E[\hat{\mathbf{z}}])^{T}\right]$ can be obtained as

$$
\begin{aligned}
\mathbf{K}_{y \hat{z}} & =E\left[\left(\mathbf{y}-\mathbf{m}_{y}\right)(\hat{\mathbf{z}}-E[\hat{\mathbf{z}}])^{T}\right] \\
& =E\left[\left(\mathbf{y}-\mathbf{m}_{y}\right) \hat{\mathbf{z}}^{T}\right] \\
& =E\left[\mathbf{y} \hat{\mathbf{z}}^{T}\right] \quad(\text { since } E[\hat{\mathbf{z}}]=0) \\
& =E\left[\mathbf{y} \mathbf{z}^{T}\right]-E\left[\mathbf{y} E\left[\mathbf{z}^{T} \mid \mathbf{y}\right]\right] \\
& =E\left[\mathbf{y} \mathbf{z}^{T}\right]-E\left[E\left[\mathbf{y} \mathbf{z}^{T} \mid \mathbf{y}\right]\right] \\
& =E\left[\mathbf{y z} \mathbf{z}^{T}\right]-E\left[\mathbf{y} \mathbf{z}^{T}\right] \\
& =\mathbf{0} .
\end{aligned}
$$

(b) (Not graded) See hw2 solutions.
4. Gaussian Sample ($10 \times 5=50$ points)
(a) First, it is clear to see $E\left[\bar{X}_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=\mu$.

Second, we can use Chebyshev inequality to examine consistency of any unbiased estimators. Here, we have

$$
\begin{equation*}
P\left[\left|\bar{X}_{n}-\mu\right|>k\right] \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{k^{2}}, \quad \text { for any } \quad k>0 \tag{5}
\end{equation*}
$$

The variance of the sample mean is

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{n}\right) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n} \sigma^{2}
\end{aligned}
$$

Therefore, by plugging the above result into (5), we can easily show the consistency of sample mean, i.e. for any $k>0$,

$$
\lim _{n \rightarrow \infty} P\left[\left|\bar{X}_{n}-\mu\right|>k\right]=0
$$

(b) The mean and variance are both unknown. We need simultaneously find their ML estimator jointly. That is the vector of parameter to be estimated is $\boldsymbol{\theta}=\left[\mu, \sigma^{2}\right]^{T}$.

The likelihood function of $\boldsymbol{\theta}$ given $\mathrm{x}=\left[X_{1}=\mathrm{x}_{1}, X_{2}=\mathrm{x}_{2}, \cdots, X_{n}=\mathrm{x}_{\mathrm{n}}\right]$ is

$$
\begin{aligned}
\mathrm{L}(\boldsymbol{\theta} \mid \mathrm{x}) & =f_{\mathbf{x}}(\mathrm{x} ; \theta)=\prod_{i=1}^{n} f_{X_{i}}\left(\mathrm{x}_{\mathrm{i}} ; \theta\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}\right)
\end{aligned}
$$

And, the \log likelihood function is

$$
\log \mathrm{L}(\theta \mid \mathrm{x})=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}-\theta\right)^{2}
$$

Taking partial derivative and solving the following equations simultaneously gives us possible candidates of the ML estimators. It follows that

$$
\begin{aligned}
& \frac{\partial \log \mathrm{L}(\theta \mid \mathrm{x})}{\partial \mu}=0 \longrightarrow \hat{\mu}_{M L}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}_{n} \\
& \frac{\partial \log \mathrm{~L}(\theta \mid \mathrm{x})}{\partial \sigma^{2}}=0 \longrightarrow \hat{\sigma}_{M L}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{aligned}
$$

which are indeed the ML estimators after checking with the boundaries.
So, the answer to this problem is

$$
\hat{\sigma}_{M L}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

(c) We see the relation between $\hat{\sigma}_{M L}^{2}$ and S_{n}^{2} is given by

$$
\hat{\sigma}_{M L}^{2}=\frac{n-1}{n} S_{n}^{2}
$$

And, since S_{n}^{2} is unbiased, we thus conclude $\hat{\sigma}_{M L}^{2}$ is not unbiased.
(d) The MSE between $\hat{\sigma}_{M L}^{2}$ and σ^{2} is

$$
\begin{aligned}
E\left[\left(\hat{\sigma}_{M L}^{2}-\sigma^{2}\right)^{2}\right] & =E\left[\left(\frac{n-1}{n} S_{n}^{2}-\sigma^{2}\right)^{2}\right] \\
& =E\left[\left(\left(\frac{n-1}{n} S_{n}^{2}-\frac{n-1}{n} \sigma^{2}\right)-\frac{1}{n} \sigma^{2}\right)^{2}\right] \\
& =E\left[\left(\frac{n-1}{n} S_{n}^{2}-\frac{n-1}{n} \sigma^{2}\right)^{2}\right]+\left(\frac{1}{n} \sigma^{2}\right)^{2} \\
& =\left(\frac{n-1}{n}\right)^{2} \operatorname{Var}\left(S_{n}^{2}\right)+\left(\frac{1}{n} \sigma^{2}\right)^{2} \\
& =\frac{2 n-1}{n^{2}} \sigma^{4}
\end{aligned}
$$

With a little more algebraic efforts, it is not difficult to see with positive integer n

$$
\frac{2 n-1}{n^{2}} \sigma^{4}<\operatorname{Var}\left(S_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

This means the ML estimator of σ^{2} is more accurate in terms of MSE than the sample variance estimator, although MLE is not unbiased.
(e) We know

$$
\begin{aligned}
1-2 F_{T_{n-1}}(-z) & =P\left[-z \leq \frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \leq z\right] \\
& =P\left[\bar{X}_{n}-\frac{S_{n} z}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+\frac{S_{n} z}{\sqrt{n}}\right] \\
& =1-\alpha
\end{aligned}
$$

For $1-\alpha=0.95$, we need $F_{T_{n-1}}(-z)=0.025$, where $F_{T_{n-1}}(-z)=P\left[T_{n-1} \leq-z\right]$ is the cumulative distribution function of T_{n-1}. This yields $z=-\beta$. It follows the interval with confidence level 0.95 is

$$
\left[\bar{X}_{n}+\frac{S_{n} \beta}{\sqrt{n}}, \bar{X}_{n}-\frac{S_{n} \beta}{\sqrt{n}}\right] .
$$

