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Stochastic Processes

Midterm 2

Solutions

1. Bayes Detection (10+10=20 points)

(a)

Suppose the state of nature is Q = {x1,--- ,xzx}. The MAP decision rule based
on the observation Y = y is given by

Xymap = argmax P[X = zj | Y =y
z;

= argmax fy(y | X = 2;) P[X = z;].
J

When ¢; ; =1 —9; 4, the average cost is

C(D) = E[C]
= Z ZcmP[decide H; and Hj is true]

i
= Z Z(l — 0; ;) P[decide H; and Hj is true]
i

= Z Pldecide H; and Hj is true],
i#]
which is exactly the probability of decision error. Bayes detection rule guarantees
that this decision error probability is minimized.

The maximum likelihood detection rules states

Hy
L(H;) = L(Hs),
Ho

where L(H;) and L(Hsg) are the likelihood of the signal s associated with hypoth-
esis H; and Hs, respectively. More specifically, by taking natural log of both

sides, we have
1 _ Hio 1 _
—5 v =9)"K(y —5) 2 oy Ky,
Ho

With rearrangement, it follows that

Hi gHK - 1g
Hyr—1 n
s"K, "y 2 -
N—— H,

—wH
=WML

That is we can write the ML decision rule as

H 4]
WL Y 27,
Ho
where o1
_ s"K~'s
WML, = Knls and 7= T”



2. Estimation (10 + 5 + 5 = 20 points)
Consider the linear model

y=Hx+w,

where H is a known m X n observation matrix, x is an n X 1 unknown parameter, and
w is a Gaussian noise vector with w ~ A (0,0%I). Assume H is full rank.

(a) Let’s consider a more general case for w ~ N(0, K) in the proof, where K is the
covariance matrix of w that is not necessarily diagonal. The situation in this
problem is just a special case that K = ¢%I. So if w ~ N(0,K), the ML linear
transformation matrix is

Ty = (H K 'H)'HITK L.

Let Ky and Ks be the covariance matrices of X;;7, and any other linear unbiased
estimator X = T -y, respectively. Therefore, this problem requires you to show
that Ko — K is p.s.d., i.e.

ol (Ky—K)a>0, VYVa. (1)

The key steps have two:

— Any covariance matrix K is p.s.d. (see topic2)

— TH = 1 for any linear unbiased estimator X = T -y in the linear model
y = Hx+w.
This can easily be shown that for F[x] = E[T -y| = THx = x, we must
have TH =1.

We will use these two facts later in the proof.

So, our objective is to show (1) is true. Carrying out the covariance matrices K
and Ko, we have

K, = Ty KT%,;,
K, = TKT?.
It follows
Ky, - K; = TKT? —T),,KT?,,.

Next we can conjecture that
Ky — Ky = (T — Ty ) K(T — Tpp)?. (2)
If this is the case, then by the fact that K is p.s.d., we know that

aT(Kg — Kl)a = aT(T — TML) K (T — TML)TOL

BT e
= BTKB >0,

which reaches our objective in (1).
So, now the question is whether or not (2) is true.
Expanding (2) gives

TKT? — Ty, KT? — TKTY,, + T3, KTE,;, (3)



where

Ty KTT = H'K'H)'H'K'KT?
= (HTK'H)™! (weuse TH=I in this equality)
Ty KT, = (H'K'H)'H'K'KK'HH'K'H)!
_ (HTK IH) 1

Thus, we see the last 3 terms in (3) are identical. It follows that

(T — Ty)K(T - Typ)! = TKT? — Ty KT — TKTL,, + Ty KTE,,
= TKT? — T, KT%,,
= K, K.

This completes the proof.

Since Ko — Kj is p.s.d., it’s diagonal term is non-negative. This is because that,
if we choose the vector

a:[oa'”707 1 707”'70]T7

ith position
the vector with a ’1’ in the ith position and zero in others, then
a’ (Ko — Ki)a = (Ks — Ki);; > 0, (4)

where (Ko — Kj);; is the ith diagonal term in Ko — Kj.
Since (K2 — Ki)ii = (K2)ii — (K1)ii, and the ith diagonal term of Ky and K;
is the variance of the ith component of X and X, respectively. It follows from
(4) that

(K2 — K1)ii = (K2)ii — (K1) > 0.
So the variance of the ith component of X is greater than or equal to that of
XMI-

The least squares estimator is defined as
%15 = argmin ||y — Hx]||?.
X

This is equivalent to finding a vector Hxyg in the column space of H that
is closest to y. Thus, Hxyg is the orthogonal projection of y onto the space
spanned by the columns of H.
Geometrically, we see y — HX g will be orthogonal to Hx for all x. Mathemati-
cally, this is

(Hx)? (y — Hxzg) =0 for all x.

This leads to the normal equation

H'(y —Hx;5) =0



3.

4.

(a)

Conditional Expectation of Jointly Gaussian (10+10=20 points)

(a) The cross-covariance matrix K,; = E [(y -my)(z—E [2])T} can be obtained as

Ky: = Bl(y—m,)@- F@2)7]

(b) (Not graded) See hw?2 solutions.

Gaussian Sample (10 x 5 = 50 points)

First, it is clear to see E[X,,] = 13" | E[X;] =
Second, we can use Chebyshev inequality to examine consistency of any unbiased
estimators. Here, we have

Var(X,,)

P10 > 4] < Y]

for any £ > 0. (5)

The variance of the sample mean is

n

Var(X,) = Var(% ZXZ) = ﬁVar(Z Xi)

=1 =1
1 n
= ﬁ Zvar(Xl) -
=1

Therefore, by plugging the above result into (5), we can easily show the consistency
of sample mean, i.e. for any k > 0,

lim P[|X,—u|>k =0.

n—oo

The mean and variance are both unknown. We need simultaneously find their ML
estimator jointly. That is the vector of parameter to be estimated is 8 = [u, 0%]7 .

The likelihood function of @ given x = [X; = x1, Xo = x2,- -+ , X;, = X5 is

n

LOx) = fulx0) =]] fx(xi;0)

i=1

1 1< )
= G <‘202 2 i =) ) -
=1

And, the log likelihood function is

1 n
logL(0|x) = ——log (2rc?) ~ 5,2 Z —0)?



Taking partial derivative and solving the following equations simultaneously gives us
possible candidates of the ML estimators. It follows that

0log L(0|x) . 1< -

—F— =0— =-) Xi=Xy,
M HML n ;

Olog L(0|x) 9 1< = |9

o2 07 0MmL= EiZI(Xi_Xn) :

which are indeed the ML estimators after checking with the boundaries.

So, the answer to this problem is

. 1 >
i=1

We see the relation between 62,; and S2 is given by

.9 _n—l 9
oML = n Sn

And, since S2 is unbiased, we thus conclude 6]2\4 7, is not unbiased.

The MSE between &%/1 ; and o2 is

B0} -o??| = F

With a little more algebraic efforts, it is not difficult to see with positive integer n

on—1 , 204
o' < Var(8?) = —.

This means the ML estimator of o2 is more accurate in terms of MSE than the sample
variance estimator, although MLE is not unbiased.

We know
Xn_:u
_ Spz _ Spz
- P|X, - <pu<X, + 22
[ VTR +ﬁ}

= 1-a.

For 1 — a = 0.95, we need Fr, ,(—z) = 0.025, where Fr, ,(—z) = P[Th—1 < —2]
is the cumulative distribution function of T, ;. This yields z = —3. It follows the
interval with confidence level 0.95 is

¢ o Ol o SuB
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