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Stochastic Processes

Midterm 2
Solutions

Total: 100 points

1. (10+10=20 points)

(a) Suppose the state of nature is Ω = {x1, · · · , xN}. The MAP decision rule based
on the observation Y = y is given by

X̂MAP = arg max
xj

P [X = xj | Y = y]

= arg max
xj

fY (y | X = xj)P [X = xj ].

When ci,j = 1− δi,j , the average cost is

C(D) , E[C]

=
∑

i

∑

j

ci,jP [decide Hi and Hj is true]

=
∑

i

∑

j

(1− δi,j)P [decide Hi and Hj is true]

=
∑

i6=j

P [decide Hi and Hj is true],

which is exactly the probability of decision error. Bayes detection rule guarantees
that this decision error probability is minimized.

(b) The ML rule states the following decision

fy(y|α = 1)
α̂=1
≷

α̂=−1
fy(y|α = −1).

After certain manipulations, the maximum likelihood decision rule is

yTK−1
n h

α̂=1
≷

α̂=−1
0.

And, the probability of error is

Pe = P (decide 1|α = −1)P (α = −1) + P (decide -1|α = 1)P (α = 1).

Further algebraic effort gives

P (decide 1|α = −1) = P (yTK−1
n h > 0|α = −1)

= P ((−h + n)TK−1
n h > 0)

= Q

(√
hTK−1

n h
)

.

It can be found that P (decide -1|α = 1) = P (decide 1|α = −1). Thus, we have

Pe = Q

(√
hTK−1

n h
)

.

2. (10× 5 = 50 points)
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(a) We first find the moment generating function MZ2
i

of Z2
i

MZ2
i

= E[etZ2
i ]

=
∫ ∞

−∞

1√
2π

e
−z2

2 etz2
dz

= (1− 2t)
−1
2 .

Then, the moment generating function of Y is obtained as

MY (t) = E[etY ]

= E[et
∑n

i=1 Z2
i ]

=
n∏

i=1

E[etZ2
i ] since Zi’s for i = 1 . . . n are indep.

= (1− 2t)
−n
2 .

(b) The mean of Y is

E[Y ] = E

[
n∑

i=1

Z2
i

]

=
n∑

i=1

E[Z2
i ]

= n (since Zi ∼ N (0, 1), and therefore E[Z2
i ] = 1).

We need the 2nd moment of Y in order to find the variance of it. The 2nd
moment is given by

E[Y 2] = E




(
n∑

i=1

Z2
i

)2



= E

[
n∑

i=1

Z4
i

]
+ E


∑

i6=j

Z2
i Z2

j




=
n∑

i=1

E
[
Z4

i

]
+

∑

i 6=j

E
[
Z2

i

] [
Z2

j

]

= 3n + n(n− 1) = n2 + 2n.

Therefore, the variance of Y is obtained as

Var(Y ) = E[Y 2]− E[Y ]2 = 2n.

(c) For each deviation Xi − X̄n, we have

E
[
X̄n(Xi − X̄n)

]
= E[X̄nXi]−E[X̄2

n]

= E


 1

n

n∑

j=1

XjXi


− 1

n2

n∑

j=1

E[X2
j ]

=
1
n

E[X2
j ]− 1

n
E[X2

j ]

= 0,

which equals to E
[
X̄n

]
E

[
(Xi − X̄n)

]
. Therefore, we conclude that X̄n and

Xi − X̄n are uncorrelated, thus independent for Gaussian sample, for all i. We
therefore can conclude that the sample mean is independent with the sample
variance.
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(d) First, it is clear to see E[X̄n] = 1
n

∑n
i=1 E[Xi] = µ.

Second, we can use Chebyshev inequality to examine consistency of any unbiased
estimators. Here, we have

P
[ ∣∣X̄n − µ

∣∣ > k
] ≤ Var(X̄n)

k2
, for any k > 0. (1)

The variance of the sample mean is

Var(X̄n) = Var(
1
n

n∑

i=1

Xi) =
1
n2

Var(
n∑

i=1

Xi)

=
1
n2

n∑

i=1

Var(Xi) =
1
n

σ2.

Therefore, by plugging the above result into (1), we can easily show the consis-
tency of sample mean, i.e. for any k > 0,

lim
n→∞P

[ ∣∣X̄n − µ
∣∣ > k

]
= 0.

(e) This is Example 4.8-1 in the textbook. We need to find the corresponding z in
the following to specify a confidence interval with 90 percent confidence.

P

[
−z ≤ X̄n − µ

Sn/
√

n
≤ z

]
= 0.9,

where in this example n = 21, X̄21 = 3.5 and S21/
√

21 = 0.45. The probability
can be evaluated as

[−z ≤ T20 ≤ z] = FT (z, 20)− FT (−z, 20) = 2FT (z, 20)− 1 = 0.9.

We therefore have FT (z, 20) = 0.95, in which the value z can be looked up in the
table given in the cover page. Thus, z.95 = 1.725.

And the confidence interval is given by
[
X̄n − Snz√

n
≤ µ ≤ X̄n +

Snz√
n

]
= [3.5− 1.725 · 0.45 ≤ µ ≤ 3.5 + 1.725 · 0.45]

= [2.72, 4.28].

3. (10× 3 = 30 points)

(a) We can show that x and y are jointly Gaussian. Thus, the MMSE estimator is
given by the conditional expectation

x̂mmse = E
[
x|y = y

]

= mx + KxyK−1
y (y −my)

= KxyK−1
y y (since mx = my = 0)

= KxHT
(
HKxHT + Kz

)−1
y,

where the cross-covariance matrix and the covariance are respectively

Kxy = E[xyT ]

= E
[
x(Hx + z)T

]

= KxHT

Ky = E[yyT ]

= E
[
(Hx + z)(Hx + z)T

]

= HKxHT + Kz.
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(b) The mean squared error for the MMSE estimator is

MSE = E
[
||x− x̂mmse||2

]

= E
[
tr

{(
x−KxyK−1

y y
) (

x−KxyK−1
y y

)T
}]

= tr
{
Kx −KxyK−1

y Kyx

}

= tr
{
Kx −KxHT

(
HKxHT + Kz

)−1
HKx

}
.

(c) This is the orthogonality principle we’ve discussed in class, and can be shown as
follows.

E
[(

x− E[x|y]
)
· kT (y)

]
= E

[
xkT (y)

]−E
[
E [x|y] kT (y)

]

= E
[
xkT (y)

]−E
[
E

[
xkT (y)|y] ]

= E
[
xkT (y)

]−E
[
xkT (y)

]

= 0.
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