
Stochastic Processes

Topic 1

Probability and Linear Algebra – Review
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Summary
This lecture reviews several fundamental concepts in Linear Algebra and
Probability that we will see very often in this course. Specifically, I will
discuss:

• Eigenvectors and eigenvalues of a matrix

• Hermitian matrices

• Singular value decomposition (SVD)

• Random variable

• Conditional probability

• Expectation and conditional expectation

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

• Boldface upper case letter to represent MATRIX

• Boldface lower case letter to represent vector

• Superscript (·)T and (·)H to denote transpose and hermitian (conjugate
transpose), respectively
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1 Linear Algebra

(1) Eigenvector and Eigenvalue

Let A ∈ Cn×n. An eigenvector of A is a non-zero vector v ∈ Cn×1

such that
A · v = λ · v.

The constant λ ∈ C is called the eigenvalue associated with v.

(2) Finding Eigenvalues

Use the fact that A · v = λ · v if and only if

det(A− λ · I) = 0

to find eigenvalues. Having obtained all the eigenvalues, solve the lin-
ear equation (A−λ ·I) ·v = 0 to determine associated eigenvectors v′s.

(3) Matrix Decomposition

Suppose that A ∈ Cn×n admits n linearly independent eigenvectors
v1,v2, · · · ,vn with corresponding eigenvalues λ1, λ2, · · · , λn. Then, we
can decompose the matrix A into

A = E ·Λ · E−1,

where E = [v1,v2, · · · ,vn]n×n and Λ = diag(λ1, λ2, · · · , λn). With
this, we say the matrix A is diagonalizable.

Remark

— Note that NOT all square matrices have the above decomposi-
tions. There exist certain conditions for matrices to be diago-
nalizable. And having said that A have n linearly independent
eigenvectors satisfies the condition.
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(4) Hermitian Matrices

— A matrix A ∈ Cn×n is called Hermitian if A = AH . That is,
Aij = A∗

ji.

— Let A ∈ Cn×n be a Hermitian matrix. Then, A has n orthonormal
eigenvectors v1,v2, · · · ,vn that form a basis for Cn. (Orthonor-
mal means: vH

i vj = 0 for i 6= j, and ||vi||2 = 1. )

(5) Decomposition for Hermitian Matrices

Let A ∈ Cn×n be a Hermitian matrix. Then, we can decompose the
matrix A into

A = V ·Λ ·VH ,

where V = [v1,v2, · · · ,vn]n×n and Λ = diag(λ1, λ2, · · · , λn). The
matrix V consisting of the eigenvectors of A is unitary, i.e., VHV = I.

Remark: For any x ∈ Cn×1 and ||x|| = 1, one can show

λmin ≤ xHAx ≤ λmax.
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(6) Singular Value Decomposition (SVD)

Let A ∈ Cm×n be a rectangular matrix with rank r (implying that
r ≤ min(m,n)). Then, the matrix A can be decomposed into

A = U ·D ·VH ,

where U and V are m ×m and n × n unitary matrices, respectively,
and the matrix

D =




Σr×r 0

0 0




is a simple structured m×n matrix with Σr×r = diag(σ1, · · · , σr). The
diagonal terms of Σr×r are called the singular values of A, and are the
square roots of the positive eigenvalues of AHA or AAH .

Proof

−→ First, you should know

— Nonzero eigenvalues of AHA and AAH are identical.

— rank(A) = rank(AHA) = rank(AAH).

— Eigenvalues of AHA are non-negative.

−→ Consider the case m > n. Similar proof applies to the other case.

−→ It is clear that AHA is Hermitian, and can be decomposed into

AHA = V ·
[

Σ2
r×r 0
0 0

]

n×n

·VH

[
VH

1

VH
2

]
AHA[V1 | V2] =

[
Σ2

r×r 0
0 0

]

n×n

.

Therefore, we have VH
1 AHAV1 = Σ2

r×r and VH
2 AHAV2 = 0.





VH
1 AHAV1 = Σ2

r×r

VH
2 AHAV2 = 0 ⇒ AV2 = 0.
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−→ Note that
VH

1 AHAV1 = Σ2
r×r

has a symmetric structure, allowing us to perform further manip-
ulations and create a new m× r matrix

U1 = AV1Σ
−1

such that UH
1 U1 = I. The above tells us that U1 has r orthonor-

mal columns.

−→ Expand U1 into an m×m unitary matrix

U = [U1 | U2]

such that UHU = I, with





UH
1 U1 = I

UH
1 U2 = 0.

Then, we can prove
A = U ·D ·VH .
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2 Probability [1]

(1) Elements of a Probabilistic Model

— The sample space Ω, which is the set of all possible outcomes
of an experiment.

⇒ An experiment is a process involved in every probabilistic
model and will produce exactly one outcome; e.g. tossing
a die.

⇒ A subset of the sample space is called an event.

— The probability law, which assigns an event A of possible out-
comes a nonnegative number P (A) (called the probability of A)
that encodes our knowledge of belief about the collective likelihood
of the elements of A.

(2) Probability Axioms

— (Nonnegativity) P [A] > 0 for every event A.

— (Additivity) If A and B are two disjoint events, then the prob-
ability of their union satisfies

P [A ∪B] = P [A] + P [B].

— (Normalization) The probability of the entire sample space Ω is
equal to 1, P [Ω] = 1.
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(3) Random Variable

— A random variable is a real-valued function of the experimental
outcome.

— Given an experiment and the corresponding set of possible out-
comes (the sample space), a random variable associates a partic-
ular number with each outcome.

— A function of random variable defines another random variable.

Examples of random variables:

(a) Flip a coin. Define a function X(head) = 1 and X(tail) = 0.
Then, X is a random variable.

(b) In an experiment involving a sequence of 5 flips of a coin, the
number of heads in the sequence is a random variable.

(b) In an experiment involving the transmission of a message, the time
needed to transmit the message, the number of symbols received
in error, and the delay with which the message is received are all
random variables.
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Why Introducing the Notion of Random Variable?

For mathematical convenience.

−→ We can describe complicated events using simple math expressions
by means of random variables

−→ This is particularly useful when outcomes of the considered ex-
periment do not involve with any numerical values, e.g. coin flip
(head, tail)

Examples:

Flip a coin 3 times. Define the random variable Xi = 1 if the ith
flip is a head, and Xi = 0 if tail.

— F ={Two heads in 3 flips}

— G ={1st flip is a head, 2nd and 3rd flips have different re-
sults}

−→ Every event has its particular physical meaning, and can be de-
scribed precisely and elegantly by properly defined random vari-
ables.
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(4) Conditional Probability

The conditional probability of an event A, given an event B with
P [B] > 0, is defined by

P [A|B] , P [A ∩B]

P [B]
.

Clarification
For independent random variables X and Y , which of the following
statements for an appropriate function g(·) is correct?

(i) P [g(X, Y ) ∈ A|Y = y0] = P [g(X, y0) ∈ A] (correct?)

(ii) P [g(X, Y ) ∈ A ∩ Y = y0] = P [g(X, y0) ∈ A] (correct?)

Consider an example first.
Toss a dice twice, and let the outcome for the first toss and the second
toss be X1 and X2, respectively. What is the probability P [X1 + X2 ≤ 8 ∩X1 = 5]?
And, what is the probability P [X1 + X2 ≤ 8|X1 = 5]?
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(5) Total Probability Theorem

Let A1, · · · , An be disjoint events that form a partition of the sample
space (each possible outcome is included in one and only one of the
events A1, · · · , An) and assume that P (Ai) > 0, for all i = 1, · · · , n.
Then, for any event B, we have

P [B] = P [A1]P [B|A1] + · · ·+ P [An]P [B|An].

(6) Bayes’ Rule

Let A1, · · · , An be disjoint events that form a partition of the sample
space and assume that P (Ai) > 0, for all i = 1, · · · , n. Then, for any
event B such that P [B] > 0, we have

P [Ai|B] =
P [Ai]P [B|Ai]

P [B]

=
P [Ai]P [B|Ai]∑n

j=1 P [Aj]P [B|Aj]
.

Remarks:

Bayes’ rule is often used to infer the most likely unobserved cause
(statistical inference) of a particular observed effect, by finding and
comparing the conditional probabilities P [Ai|B] of all possible causes
Ai’s given that we have observed the effect B

— The conditional probability P [Ai|B] is referred to as the poste-
rior probability, as compared to the prior probability P [Ai] of
the event Ai
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Example: (Total Probability and Bayes’ Rule)
Consider a person’s chest X-ray, and let the sample space be all the
possible outcomes of the X-ray images. The X-ray images that appear
to have at least a shaded region is a subset of the sample space, and
thus is an event, denoted by B.

Suppose we observe a shade in the person’s X-ray; that is the event B
is observed (the effect).

Objective:

We want to infer which of the following three mutually exclusive and
collectively exhaustive potential causes is the most likely one leading
the the effect B:

1. Cause 1 (event A1): there is a malignant tumor

2. Cause 2 (event A2): there is a nonmalignant tumor

3. Cause 3 (event A3): this corresponds to reasons other than a tumor

Assumptions:

We assume we know the prior probabilities P [Ai] and the cause-effect
transition probabilities P [B|Ai] for all i.

Approaches:

Given that we have observed a shade (event B occurs), find the poste-
rior probabilities P [Ai|B] for all i using Bayes’ rule:

P [Ai|B] =
P [Ai]P [B|Ai]

P [A1]P [B|A1] + P [A2]P [B|A2] + P [A3]P [B|A3]
, i = 1, 2, 3.

Choose the cause that has the largest posterior probability to be
the most likely cause.

Figure 1: Illustration of the above example.
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(7) Expectation

We define the expected value of a discrete random variable X, with
prob. mass function (PMF) pX(x) by

E[X] ,
∑

x

xpX(x),

where pX(x) = P [X = x].

(8) Expectation for Functions of Random Variables

Let X be a random variable with PMF pX(x), and let g(X) be a real-
valued function of X. Then, the expected value of the random variable
g(X) is given by

E[g(X)] =
∑

x

g(x)pX(x).

The above can be extended to continuous case.

Example:

Let X be a random variable with P [X = −1] = 0.2, P [X = 0] = 0.5,
and P [X = 1] = 0.3. Find E[X2].
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(9) Joint PMF

The joint PMF of two discrete random variables X and Y is defined by

pX,Y (x, y) = P [X = x, Y = y]

for all pairs of numerical values (x, y) that X and Y can take. (For
notational convenience, we use P [X = x, Y = y] to mean P [X =
x ∩ Y = y]).

(10) Marginal PMF from Joint PMF

The marginal PMF pX(x) and pY (y) can be calculated using

pX(x) =
∑

y

pX,Y (x, y), pY (y) =
∑

x

pX,Y (x, y).

(11) Conditional PMF

The conditional PMF pX|A(x) of a random variable X, conditioned on
a particular event A with P [A] > 0, is defined by

pX|A(x) = P [X = x|A] =
P [{X = x} ∩ A]

P [A]
.

(12) Marginal PMF from Conditional PMF

The marginal PMF pX(x) can be calculated using

pX(x) = P [X = x] =
∑

y

pX,Y (x, y)

=
∑

y

pY (y)pX|Y (x|y)

= E[ pX|Y (x|Y )︸ ︷︷ ︸
a function of Y

]
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(13) Conditional Expectation

The conditional expectation of X given a value y of Y is defined by

E[X|Y = y] ,
∑

x

xpX|Y (x|y)

=
∑

x

xP [X = x|Y = y]

Remarks about Conditional Expectation

(a) E[X|Y = y] is a number whose value depends on y.

(b) E[X|Y ] is a function of the random variable Y , hence is a random
variable.

(14) Cumulative Distribution Function (CDF)

The CDF, or sometimes called probability distribution function, of
a random variable X is denoted by FX and provides the probability
P [X ≤ x]. In particular, for continuous random variable X, we have

FX(x) , P [X ≤ x] =

∫ x

−∞
fX(α)dα,

where fX(α) is the probability density function of X.

Remarks

(a) The probability density function (pdf) can be calculated by

fX(x) =
dFX(x)

dx
.

(b) We know P [x1 < X ≤ x2] = FX(x2)− FX(x1).
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(15) Conditional Density Function

Let X and Y be continuous random variables with joint PDF fX,Y .
For any fixed y with fY (y) > 0, the conditional PDF of X given that
Y = y, is defined by

fX|Y (x|y) , fX,Y (x, y)

fY (y)
.

(16) Total Probability in Density Version

The probability density function fY (y) of a continuous random variable
Y can be evaluated by

fY (y) =
∑

i

PN [i]fY |N(y|i).

(17) Conditional Probability on a Continuous Random Variable

We are often interested in knowing the conditional probability P [N =
n|Y = y] conditioned on a continuous random variable Y at Y = y.
This is given by

P [N = n|Y = y] =
PN [n]fY |N(y|n)∑

i PN [i]fY |N(y|i) .
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Example:

A binary signal S ∈ {−1, +1} is transmitted, and we are given that
P (S = 1) = P (S = −1) = 1/2. The received signal at the receiver is

Y = S + N,

where N is normal noise, with zero mean and variance σ2, independent
of S.

What is the probability that S = −1, given that we have observed
Y = y?
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