Stochastic Processes

Topic 1
Probability and Linear Algebra — Review

nctuee 09f

Summary

This lecture reviews several fundamental concepts in Linear Algebra and
Probability that we will see very often in this course. Specifically, I will
discuss:

e Eigenvectors and eigenvalues of a matrix

e Hermitian matrices

Singular value decomposition (SVD)

e Random variable

Conditional probability

Expectation and conditional expectation

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

e Boldface upper case letter to represent MATRIX
e Boldface lower case letter to represent vector

e Superscript (-)7 and (-)¥ to denote transpose and hermitian (conjugate
transpose), respectively
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1
(1)

Linear Algebra

Eigenvector and Eigenvalue

Let A € C™". An eigenvector of A is a non-zero vector v &€ C**!
such that
A-v=X\v.

The constant \ € C is called the eigenvalue associated with v.

Finding Eigenvalues

Use the fact that A - v = X\ - v if and only if
det(A—-X-I)=0

to find eigenvalues. Having obtained all the eigenvalues, solve the lin-
ear equation (A —\-I)-v = 0 to determine associated eigenvectors v's.

Matrix Decomposition

Suppose that A € C™™ admits n linearly independent eigenvectors
Vi, Vy, -+, Vv, with corresponding eigenvalues Ay, Ay, - -+, A\,. Then, we
can decompose the matrix A into

A=E-A-E}
where E = [vy,vy, -, Vu]uxn and A = diag(Ag, Ao, -+, A,). With
this, we say the matrix A is diagonalizable.
Remark

— Note that NOT all square matrices have the above decomposi-
tions. There exist certain conditions for matrices to be diago-
nalizable. And having said that A have n linearly independent
eigenvectors satisfies the condition.
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(4) Hermitian Matrices

— A matrix A € C™" is called Hermitian if A = A¥. That is,

— Let A € C™™ be a Hermitian matrix. Then, A has n orthonormal
eigenvectors vy, Vg, -+ , v, that form a basis for C". (Orthonor-
mal means: viv; =0 for i # j, and ||v;|[* =1. )

i

(5) Decomposition for Hermitian Matrices

Let A € C™" be a Hermitian matrix. Then, we can decompose the
matrix A into

A=V .A.-Vi

where V. = [vi, Vs, -+ Vp|uxn and A = diag(A, Ag, -+, \,). The
matrix V consisting of the eigenvectors of A is unitary, i.e., VIV =1,

Remark: For any x € C"! and ||x|| = 1, one can show

AInin S XHAX S Amax-
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(6) Singular Value Decomposition (SVD)

Let A € C™" be a rectangular matrix with rank r (implying that
r < min(m,n)). Then, the matrix A can be decomposed into

A=U-D-V¥

where U and V are m X m and n X n unitary matrices, respectively,
and the matrix

is a simple structured m X n matrix with 3,,, = diag(oy,- - ,0,). The
diagonal terms of X, are called the singular values of A, and are the
square roots of the positive eigenvalues of A A or AAH.

Proof

— First, you should know

— Nonzero eigenvalues of A”A and AA" are identical.
— rank(A) = rank(A# A) = rank(AA).
— Eigenvalues of A” A are non-negative.

— Consider the case m > n. Similar proof applies to the other case.

—— It is clear that A7 A is Hermitian, and can be decomposed into

2 0
ATA = V-[ 6” 0} -vH
nxn
V{_I H . EEXT 0
i Arave v =[]

Therefore, we have VEA# AV, = 32 and VIAH AV, = 0.

rXr

VEAHAV, = 32

rXr
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—— Note that
VIAPAV, = 32

TXT

has a symmetric structure, allowing us to perform further manip-
ulations and create a new m X r matrix

U; = AV, !

such that U{I U,; = 1. The above tells us that U; has r orthonor-
mal columns.

— Expand U; into an m X m unitary matrix
U=[U, | Uy

such that U U = I, with

Ullu, =1
Then, we can prove
A=U-D V"
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2 Probability [1]

(1) Elements of a Probabilistic Model

— The sample space (), which is the set of all possible outcomes
of an experiment.

= An experiment is a process involved in every probabilistic
model and will produce exactly one outcome; e.g. tossing
a die.

= A subset of the sample space is called an event.

— The probability law, which assigns an event A of possible out-
comes a nonnegative number P(A) (called the probability of A)
that encodes our knowledge of belief about the collective likelihood
of the elements of A.

(2) Probability Axioms

(Nonnegativity) P[A] > 0 for every event A.

(Additivity) If A and B are two disjoint events, then the prob-
ability of their union satisfies

P[AU B] = P[A] + P[B].

— (Normalization) The probability of the entire sample space (2 is
equal to 1, P[Q] = 1.
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(3) Random Variable

— A random variable is a real-valued function of the experimental
outcome.

— Given an experiment and the corresponding set of possible out-
comes (the sample space), a random variable associates a partic-
ular number with each outcome.

— A function of random variable defines another random variable.

Examples of random variables:

(a) Flip a coin. Define a function X(head) = 1 and X (tail) = 0.
Then, X is a random variable.

(b) In an experiment involving a sequence of 5 flips of a coin, the
number of heads in the sequence is a random variable.

(b) In an experiment involving the transmission of a message, the time
needed to transmit the message, the number of symbols received
in error, and the delay with which the message is received are all
random variables.
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Why Introducing the Notion of Random Variable?

For mathematical convenience.

— We can describe complicated events using simple math expressions
by means of random variables

—— This is particularly useful when outcomes of the considered ex-

periment do not involve with any numerical values, e.g. coin flip
(head, tail)

Examples:

Flip a coin 3 times. Define the random variable X; = 1 if the ith
flip is a head, and X; = 0 if tail.

— F ={Two heads in 3 flips}

— G ={1st flip is a head, 2nd and 3rd flips have different re-
sults}

— Every event has its particular physical meaning, and can be de-
scribed precisely and elegantly by properly defined random vari-
ables.
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(4) Conditional Probability

The conditional probability of an event A, given an event B with

P[B] > 0, is defined by

» PIANB]

PIAIB) £ =5

Clarification
For independent random variables X and Y, which of the following
statements for an appropriate function g(-) is correct?

(i) Plg(X,Y) € AlY =y = Plg(X,y0) € A] (correct?)
(i) Plg(X,Y)e ANY =yo] = Plg(X,v) € A] (correct?)

Consider an example first.

Toss a dice twice, and let the outcome for the first toss and the second

toss be X and X, respectively. What is the probability P [X; + X, < 8N X; = 5]7
And, what is the probability P [X; + X5 < 8| X = 5]7
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(5) Total Probability Theorem

Let Ay,---, A, be disjoint events that form a partition of the sample
space (each possible outcome is included in one and only one of the
events Ay, .-+, A,) and assume that P(A;) > 0, for alli = 1,---  n.

Then, for any event B, we have

P[B] = P|Ay|P[B|Ay] + - - + P[A,]P[B|A.).

(6) Bayes’ Rule

Let Ay,---, A, be disjoint events that form a partition of the sample
space and assume that P(A;) > 0, for all i = 1,--- ,n. Then, for any
event B such that P[B] > 0, we have

P[A)|P[BJA]
P[B]
P[A)P[BIA]

S, PIAJPBIA]

Jj=1

P[A¢|B] =

Remarks:

Bayes’ rule is often used to #nfer the most likely unobserved cause
(statistical inference) of a particular observed effect, by finding and
comparing the conditional probabilities P[A;|B] of all possible causes
A;’s given that we have observed the effect B

— The conditional probability P[A;|B] is referred to as the poste-
rior probability, as compared to the prior probability P[A;] of
the event A;
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Example: (Total Probability and Bayes’ Rule)

Consider a person’s chest X-ray, and let the sample space be all the
possible outcomes of the X-ray images. The X-ray images that appear
to have at least a shaded region is a subset of the sample space, and
thus is an event, denoted by B.

Suppose we observe a shade in the person’s X-ray; that is the event B
is observed (the effect).

Objective:

We want to infer which of the following three mutually exclusive and
collectively exhaustive potential causes is the most likely one leading
the the effect B:

1. Cause 1 (event Aj): there is a malignant tumor

2. Cause 2 (event Ay): there is a nonmalignant tumor

3. Cause 3 (event Aj3): this corresponds to reasons other than a tumor

Assumptions:

We assume we know the prior probabilities P[A;] and the cause-effect
transition probabilities P[B|A;] for all i.

Approaches:

Given that we have observed a shade (event B occurs), find the poste-
rior probabilities P[A;|B] for all i using Bayes’ rule:

P[A;]P|B|Aj] .
PIAIB] = S PBIAT + PIA PB4 7 P PBIA] |~ 2

Choose the cause that has the largest posterior probability to be
the most likely cause.

A, :
B
Effect
Cause 2 Shade Obse

Nonmalignant_-{~
Tumor

Cause 1
Malignant Tumor

Figure 1: Illustration of the above example.
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(7)

Expectation

We define the expected value of a discrete random variable X, with
prob. mass function (PMF) px(x) by

E[X] 2 prx(x),

where px(z) = P[X = z].

Expectation for Functions of Random Variables

Let X be a random variable with PMF px(z), and let g(X) be a real-
valued function of X. Then, the expected value of the random variable
g(X) is given by

Elg(X)] =) g(x)px(x).

The above can be extended to continuous case.

Example:

Let X be a random variable with P[X = —1] = 0.2, P[X = 0] = 0.5,
and P[X =1] = 0.3. Find E[X?].
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(9)

(10)

(12)

Joint PMF
The joint PMF of two discrete random variables X and Y is defined by

pxy(r,y) =PX =2,Y =y

for all pairs of numerical values (z,y) that X and Y can take. (For
notational convenience, we use P[X = z,Y = y] to mean P[X =
rNY =y)).

Marginal PMF from Joint PMF
The marginal PMF px(z) and py(y) can be calculated using

px(z) = ZPX,Y(%?J% py(y) = ZPX,Y(CU,?J)-

Conditional PMF

The conditional PMF pxa(x) of a random variable X, conditioned on
a particular event A with P[A] > 0, is defined by

PX =2} N A]

pria(e) = PIX = 2]4) = =5 p

Marginal PMF from Conditional PMF
The marginal PMF px(z) can be calculated using

px(¥) = PX=a]=) pxy(z,y)

= ZPY(y)pXIY(x|y)

= E[PX|Y(33’Y)]
N———

a function of Y’
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(13) Conditional Expectation
The conditional expectation of X given a value y of Y is defined by

EX[Y =y] £ > apxy(zly)

= ZxP[X = z|Y =y]

Remarks about Conditional Expectation

(a) E[X|Y = y] is a number whose value depends on y.

(b) E[X]Y]is a function of the random variable Y, hence is a random
variable.

(14) Cumulative Distribution Function (CDF)

The CDF, or sometimes called probability distribution function, of
a random variable X is denoted by F'x and provides the probability
P[X < z]. In particular, for continuous random variable X, we have

Fx(z) 2 P[X <z2] = /x fx(a)da,

where fx(a) is the probability density function of X.

Remarks
(a) The probability density function (pdf) can be calculated by

Ix() In

(b) We know Pr; < X < x9] = Fx(x2) — Fx(x1).
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(15) Conditional Density Function

Let X and Y be continuous random variables with joint PDF fxy.
For any fixed y with fy(y) > 0, the conditional PDF of X given that
Y =y, is defined by

a fx,y(w,y)‘

fX|Y(x|y) fY(y)

(16) Total Probability in Density Version

The probability density function fy (y) of a continuous random variable
Y can be evaluated by

fy(y) = ZPN[i]ny(y\i)-

(17) Conditional Probability on a Continuous Random Variable

We are often interested in knowing the conditional probability P[N =
n|Y = y| conditioned on a continuous random variable Y at Y = y.
This is given by

—nlY =¢y| = Py[n] fyin(yn)
PIN =nlY =y S Pulilyn i)
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Example:

A binary signal S € {—1,+1} is transmitted, and we are given that
P(S =1)=P(S=—1) =1/2. The received signal at the receiver is

Y =S +N,

where N is normal noise, with zero mean and variance o2, independent

of S.

What is the probability that S = —1, given that we have observed
Y =97
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