Stochastic Processes

Topic 2

Jointly Gaussian Random Variables

nctuee09f

Summary

This lecture reviews several important properties of Gaussian random variables. Specifically, I will discuss:

- Gaussian Random Variable
- Moment Generating Function
- Central Limit Theorem
- Jointly Gaussian Random Variables (Multivariate Normal)
- Joint Gaussian Density Function

Notation

We will use the following notation rules, unless otherwise noted, to represent symbols during this course.

- Boldface upper case letter to represent **MATRIX**
- Boldface lower case letter to represent **vector**
- Superscript $(\cdot)^T$ and $(\cdot)^H$ to denote transpose and hermitian (conjugate transpose), respectively
- Upper case italic letter to represent RANDOM VARIABLE

2 - 1

Motivation: Why a special attention to Gaussian RVs?

- They are analytically tractable
 - \rightarrow Preserved by linear systems
- Central limit theorem
 - $\rightarrow\,$ Gaussian can approximate a large variety of distributions in large samples
- Useful as models of communication links

- noise

— channel fading effects

1 Gaussian Random Variables

Definition 1 The probability density function $(pdf) f_X(x)$ for a Gaussian random variable X with mean μ and variance σ^2 , denoted by $X \sim \mathcal{N}(\mu, \sigma^2)$, is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(1)

for $-\infty < x < \infty$.

- Verify that X has mean μ and variance σ^2
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then the random variable $Z = \frac{X-\mu}{\sigma}$ has a $\mathcal{N}(0, 1)$ distribution, also known as the *standard normal*
- In general, the random variable $Z_1 = aX + b$ for any real scalars a and b is also Gaussian with mean $a\mu + b$ and variance $a^2\sigma^2$
- A Gaussian random variable can be characterized by its first 2 moments; *i.e.* E[X] and $E[X^2]$

2 Moment Generating Function

Definition 2 The moment generating function (MGF) of a continuous random variable X with pdf $f_X(x)$ is defined by

$$\theta(t) \triangleq E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx,$$

where t is a complex variable. For a discrete random variable X with probability mass function (pmf) $p_X(x) \triangleq P_X[X = x]$, the MGF is defined by

$$\theta(t) \triangleq E[e^{tX}] = \sum_{i} e^{tx_i} P_X[X = x_i].$$

Remarks:

- (1) It's similar to the Laplace transform. Thus, in general, there is a one-to-one correspondence between $\theta(t)$ and $f_X(x)$.
- (2) As the name suggests, MGF is commonly used for computing moments The *n*th moment of X can be obtained by

$$E[X^n] = \frac{d^n}{dt^n}(\theta(t))\Big|_{t=0}.$$

- (3) Solving problems involving sum of independent RV's
- (4) Analytical tool to demonstrate Central Limit Theorem

Example: Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$. Its MGF is given by

$$\theta(t) = \exp(\mu_X t + \sigma_X^2 t^2/2).$$
(2)

- (1) We can compute $E[X] = \theta'(0) = \mu_X$ and $E[X^2] = \theta''(0) = \mu_X^2 + \sigma_X^2$.
- (2) Sum of 2 indep. Gaussian

Suppose that $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ is independent with X. Then, the MGF for Z = X + Y is

$$E[e^{tZ}] = E[e^{tX}] \cdot E[e^{tY}] = \exp((\mu_X + \mu_Y)t + (\sigma_X^2 + \sigma_Y^2)t^2/2),$$

which bears the same form as (2). Therefore, from the 1-to-1 correspondence between distribution of a random variable and its MGF, we conclude that $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

3 Central Limit Theorem

Theorem 3 (CLT in Special Case) Let $X_1, X_2, ..., X_n$ be independent and identically distributed (i.i.d.) random variables with $E[X_i] = 0$ and $Var[X_i] = 1$ for all *i*. Then,

$$Z_n \triangleq \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$$

tends to the standard normal in the sense that its MGF satisfies

$$\lim_{n \to \infty} \theta_{Z_n}(t) = e^{t^2/2},$$

which is the MGF of standard normal.

Remarks:

(1) For i.i.d. random variables $X_1 \cdots X_n$ with mean μ and variance σ^2 , the CLT says that

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right) = \sqrt{n}\left(\frac{\overline{X}-\mu}{\sigma}\right)$$

tends to standard normal where $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

(2) It happens a lot that we'll be asked to find

$$P\left[a \le \sum_{i=1}^{n} X_i \le b\right]$$

with moderately large n for i.i.d. samples X_i . We don't really need to find the pdf for the sum $\sum_i X_i$. CLT tells us we can approximate the normalized sum to a standard normal.

(3) For a detailed proof of CLT, see [1]

4 Jointly Gaussian Random Variables

Definition 4 (Jointly Gaussian) A collection of random variables X_1, X_2, \dots, X_n are *jointly Gaussian* if

$$\sum_{i=1}^{n} a_i X_i$$

is a Gaussian random variable for real a_i for $i = 1 \cdots n$.

- (1) In plain words, any linear combination of jointly Gaussian RV's is again a Gaussian random variable
- (2) Let X_1, X_2, \dots, X_n be i.i.d. Gaussian. Then, they are jointly Gaussian. \rightarrow Check the MGF of $\sum_{i=1}^n a_i X_i$.
- (3) Let $\mathbf{x} = [X_1 \cdots X_n]^T$ be a vector of n i.i.d. $\mathcal{N}(0,1)$ random variables. Then,

$\mathbf{A}\mathbf{x} + \mathbf{b}$

is a vector of jointly Gaussian random variables for all real deterministic ${\bf A}$ and ${\bf b}$

- (4) $JG \rightarrow linear system \rightarrow JG$
- (5) Jointly Gaussian implies Marginal Gaussian. But the converse is not true

5 Basic Definitions

Definition 5 (Joint Density) Let $\mathbf{x} = [X_1 \cdots X_n]^T$ be a random vector with probability distribution function $F_{\mathbf{x}}(\mathbf{x})$. Then, by definition

$$F_{\mathbf{x}}(\mathbf{x}) \triangleq P\left[X_1 \leq x_1, \cdots, X_n \leq x_n\right] \triangleq P\left[\mathbf{x} \leq \mathbf{x}\right],$$

where $\boldsymbol{x} = [x_1, \cdots, x_n]^T$ is a realization of the random vector \mathbf{x} . If the nth partial derivative of $F_{\mathbf{x}}(\boldsymbol{x})$ exists, the joint pdf is defined as

$$f_{\mathbf{x}}(\boldsymbol{x}) \triangleq \frac{\partial^n F_{\mathbf{x}}(\boldsymbol{x})}{\partial x_1 \cdots \partial x_n}.$$

Definition 6 The joint moment generating function for N random variables $X_1 \cdots X_N$ is defined by

$$\theta(t_1, t_2, \cdots, t_N) = E\left[\exp\left(\sum_{i=1}^N t_i X_i\right)\right].$$

- (1) Joint MGF uniquely determines the joint distribution of X_1, \dots, X_n .
- (2) X_1, \dots, X_n are independent if and only if $\theta(t_1, t_2, \dots, t_n) = \theta_{X_1}(t_1) \dots \theta_{X_n}(t_n)$.

Covariance Matrix

(a) The cross-covariance matrix $\mathbf{K}_{\mathbf{xy}}$ of two random vectors \mathbf{x} and \mathbf{y} consisting of random variables X_1, \dots, X_n and Y_1, \dots, Y_n , respectively, is defined by

$$\mathbf{K}_{\mathbf{x}\mathbf{y}} \triangleq \operatorname{Cov}(\mathbf{x}, \mathbf{y}) \\ \triangleq E\left[(\mathbf{x} - E[\mathbf{x}])(\mathbf{y} - E[\mathbf{y}])^H\right],$$

where $E[\mathbf{x}] = [E[X_1], \cdots, E[X_n]]^T$ is the vector of expected values of X_i , and likewise for $E[\mathbf{y}]$.

(b) The covariance matrix $\mathbf{K}_{\mathbf{xx}}$ of a random vector \mathbf{x} is defined by $\mathbf{K}_{\mathbf{xx}} = E\left[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^H\right]$.

- (1) For any matrices **A** and **B**, and vectors **c** and **d** with proper dimension, one has $Cov(\mathbf{Ax} + \mathbf{c}, \mathbf{By} + \mathbf{d}) = \mathbf{A} \cdot Cov(\mathbf{x}, \mathbf{y}) \cdot \mathbf{B}^T$
- (2) The diagonal terms of $\mathbf{K}_{\mathbf{xx}}$, simply denoted by $\mathbf{K}_{\mathbf{x}}$, are the variances $\sigma_1^2, \cdots, \sigma_n^2$ of X_1, X_2, \cdots, X_n .
- (3) $\mathbf{K}_{\mathbf{x}}$ is a Hermitian (or real symmetric) matrix. ($\mathbf{K}_{\mathbf{x}} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^{H}$)

Uncorrelated, orthogonal, and independent

Consider two real $n \times 1$ random vectors **x** and **y**. Then, we say

- (a) **x** and **y** are uncorrelated if $E[\mathbf{x}\mathbf{y}^T] = E[\mathbf{x}] \cdot E[\mathbf{y}^T]$.
- (b) **x** and **y** are orthogonal if $E[\mathbf{x}\mathbf{y}^T] = \mathbf{0}$.
- (c) **x** and **y** are independent if $f_{\mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}) = f_{\mathbf{x}}(\mathbf{x})f_{\mathbf{y}}(\mathbf{y})$.

Remarks:

- (1) Independence implies uncorrelatedness, but the converse is **NOT** true.
- (2) Covariance matrix of uncorrelated random variables X_1, \dots, X_n is a diagonal matrix. (Off-diagonal terms are zero.)

Example:(Decorrelation of random vectors) (See 5.4-2 in textbook!)

6 Jointly Gaussian Density Function

We will determine in this section the *joint density function* for a jointly Gaussian random vector. Let's see some useful facts first.

- (1) We denote $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$ to indicate that \mathbf{x} is a jointly Gaussian *random vector* with mean vector \mathbf{m} and covariance matrix \mathbf{K} .
- (2) Assume that $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$, then $\mathbf{A}\mathbf{x} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{K}\mathbf{A}^T)$. (We have already seen that any linear transformation of JG is also JG.)
- (3) The joint MGF of a jointly Gaussian random vector $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$ is given by

$$\theta_{\mathbf{x}}(\mathbf{t}) = E[e^{\mathbf{t}^T \mathbf{x}}] = \exp\left(\mathbf{t}^T \mathbf{m} + \frac{1}{2} \mathbf{t}^T \mathbf{K} \mathbf{t}\right).$$

This can be verified by noting that $Y \triangleq \mathbf{t}^T \mathbf{x}$ is a Gaussian random variable from Definition 4. And, the mean and variance of Y are $\mathbf{t}^T \mathbf{m}$ and $\mathbf{t}^T \mathbf{K} \mathbf{t}$, respectively. Then, $\theta_{\mathbf{x}}(\mathbf{t}) = E[e^Y] = \theta_Y(t)|_{t=1}$.

- (4) Jointly Gaussian random variables are independent if and only if they are uncorrelated.
 - (\Rightarrow) Much easier to check E[XY] = E[X]E[Y] if independence.

 (\Leftarrow) Use the concept of MGF.

Suppose that $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$ is a jointly Gaussian random vector of uncorrelated Gaussian random variables $X_1 \cdots X_n$, implying that \mathbf{K} is a diagonal matrix $\mathbf{K} = \text{diag}(\sigma_1^2 \cdots \sigma_n^2)$. Therefore, the joint MGF is

$$\theta_{\mathbf{x}}(\mathbf{t}) = \exp\left(\mathbf{t}^{T}\mathbf{m} + \frac{1}{2}\mathbf{t}^{T}\mathbf{K}\mathbf{t}\right) = \exp\left(\sum_{i=1}^{n} (t_{i}m_{i} + \frac{1}{2}t_{i}^{2}\sigma_{i}^{2})\right)$$
$$= \prod_{i=1}^{n} \exp\left(t_{i}m_{i} + \frac{1}{2}t_{i}^{2}\sigma_{i}^{2}\right) = \theta_{X_{1}}(t_{1})\cdots\theta_{X_{n}}(t_{n}).$$

Important:

This is an important result, since we can determine whether jointly Gaussian random variables are *independent* by simply *checking its correlation*. With independence, we can easily calculate, e.g., the joint pdf and the conditional expectation E[X|Y] = E[X].

Example:

Let X and Y be jointly Gaussian random variables with zero mean, $\operatorname{Var}(X) = \sigma_X^2$ and $\operatorname{Var}(Y) = \sigma_Y^2$. We can find a scalar α such that $X - \alpha Y$ and Y are independent Gaussian random variables by letting

$$E[(X - \alpha Y)Y] = E[X - \alpha Y]E[Y] = 0.$$

From which, we have

$$\alpha = \frac{E[XY]}{E[Y^2]} = \rho \frac{\sigma_X}{\sigma_Y},$$

where $\rho \triangleq \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$ is the correlation coefficient between X and Y.

Joint Density of Two JG RVs

The joint pdf for two real jointly Gaussian random variables X and Y is given by

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \cdot \exp\left(\frac{-1}{2(1-\rho^2)}\left\{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right\}\right),$$

where $\mu_X = E[X], \sigma_X^2 = \operatorname{Var}[X], \mu_Y = E[Y], \sigma_Y^2 = \operatorname{Var}[Y]$, and

$$\rho = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

is the correlation coefficient.

Proof

Let's assume $\mu_X = \mu_Y = 0$ for simplicity. Since X and Y are jointly Gaussian, we know that

$$U = X - \alpha Y$$
 and $V = Y$

are also jointly Gaussian random variables. From the example in the last page, we know that U and V are independent if $\alpha = \rho \frac{\sigma_X}{\sigma_Y}$. From Section 3.4 of the textbook, the joint pdf $f_{X,Y}(x,y)$ can be determined from $f_{U,V}(u,v)$ by

$$f_{X,Y}(x,y) = \frac{1}{|\mathbf{J}|} f_{U,V}(u,v),$$

where $|\mathbf{J}| = \det(\mathbf{J})$ and the matrix \mathbf{J} is given by

$$\mathbf{J} = \begin{bmatrix} \frac{\partial X}{\partial U} & \frac{\partial X}{\partial V} \\ \frac{\partial Y}{\partial U} & \frac{\partial Y}{\partial V} \end{bmatrix} = \begin{bmatrix} 1 & \rho \sigma_X / \sigma_Y \\ 0 & 1 \end{bmatrix}.$$

So, actually, we have

$$f_{X,Y}(x,y) = f_{U,V}(x - \alpha y, y) = f_U(x - \alpha y)f_V(y)$$

= $\frac{1}{2\pi\sigma_U\sigma_V}\exp\left(-\frac{(x - \alpha y)^2}{2\sigma_U^2}\right)\exp\left(-\frac{y^2}{2\sigma_V^2}\right),$

where $\sigma_U^2 = E[U^2] = E[(X - \alpha Y)^2] = (1 - \rho^2)\sigma_X^2$ and $\sigma_V = \sigma_Y$. Plugging the results and performing some manipulations, we can show that $f_{X,Y}(x,y)$ takes the form mentioned in the above.

Remarks:

- (1) This joint pdf is commonly used to define two jointly Gaussian random variables. (See p. 201 in textbook.)
- (2) If $\rho = 0$, we have $f_{X,Y}(x, y) = f_X(x)f_Y(y)$, showing that uncorrelatedness implies independence for jointly Gaussian random variables
- (3) Recall that the joint MGF for JG only depends on the mean vector and covariance matrix. We can deduce that the joint pdf for JG is also the case.

Let $\mathbf{z} \triangleq [X \ Y]^T$. The mean vector $\mathbf{m}_z = [E[X] \ E[Y]]^T$, and covariance matrix $\mathbf{K}_z = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}$ determines the joint pdf in the form $f_{\mathbf{z}}(\mathbf{z}) = \frac{1}{2\pi \det(\mathbf{K}_z)^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{z} - \mathbf{m}_z)^T \mathbf{K}_z^{-1}(\mathbf{z} - \mathbf{m}_z)\right).$

(4) The **contour** and the surface of the joint pdf for two zero mean jointly Gaussian X_1 and X_2 with variance 2 and correlation coefficients $\rho = 0.5$ are plotted respectively in Fig. 1.

Figure 1: The contour and the surface of the pdf for jointly Gaussian X_1 and X_2 with variance 2 and $\rho = 0.5$.

Joint Density of *n* JG RVs

1. (Recall) Any jointly Gaussian random vector \mathbf{x} can be represented by a linear combination of the vector of i.i.d. standard normal random variables $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$.

That is, if $\mathbf{x} \sim \mathcal{N}(\mathbf{m}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}})$, we can write

$$\mathbf{x} = \mathbf{K}_{\mathbf{x}}^{1/2} \mathbf{z} + \mathbf{m}_{\mathbf{x}},$$

where $\mathbf{K_x}^{1/2} = \mathbf{E} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{E}^H$ with \mathbf{E} being the matrix of orthonormal eigenvectors and $\mathbf{\Lambda}$ the diagonal matrix of eigenvalues of $\mathbf{K_x}$.

2. Let $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ and \mathbf{U} be a unitary matrix. Then, $\mathbf{U}\mathbf{z}$ has an identical distribution as \mathbf{z} , denoted by

$$\mathbf{z} \stackrel{d}{=} \mathbf{U} \mathbf{z}.$$

(Justify)

- a. $\mathbf{U}\mathbf{z}$ is jointly Gaussian.
- b. Mean vector of $\mathbf{U}\mathbf{z}$ is a zero vector.
- c. $Cov(Uz, Uz) = UCov(z, z)U^T = UU^T = I$

3. (General Expression) Let $\mathbf{x} = [X_1, X_2, \cdots, X_n]$ be a real jointly Gaussian random vector (Normal random vector) with mean vector $\mathbf{m}_{\mathbf{x}}$ and covariance matrix $\mathbf{K}_{\mathbf{x}}$. Then, the joint pdf $f_{\mathbf{x}}(\mathbf{x})$ is given by

$$f_{\mathbf{x}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{K}_x)^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \mathbf{m}_x)^T \mathbf{K}_x^{-1}(\boldsymbol{x} - \mathbf{m}_x)\right).$$

- (1) Please note the difference between random vector \mathbf{x} and deterministic vector \mathbf{x} .
- (2) Assume the elements X_1, X_2, \dots, X_n of the random vector **x** are uncorrelated, each with variances $\operatorname{Var}(X_i) = \sigma_i^2$, then the joint pdf is reduced to

$$f_{\mathbf{x}}(\boldsymbol{x}) = \frac{1}{\left(2\pi\right)^{n/2} \prod_{i=1}^{n} \sigma_{i}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{x_{i} - \mu_{i}}{\sigma_{i}}\right)^{2}\right).$$

Proof Recall that any jointly Gaussian random vector can be represented by a linear combination of a standard Gaussian random vector, we can write

$$\mathbf{x} = \mathbf{K}_{\mathbf{x}}^{\frac{1}{2}}\mathbf{z} + \mathbf{m}_{\mathbf{x}}$$
$$= \mathbf{E}\mathbf{\Lambda}^{\frac{1}{2}}\mathbf{E}^{T}\mathbf{z} + \mathbf{m}_{\mathbf{x}}$$

where $\mathbf{K}_{\mathbf{x}}^{\frac{1}{2}} \triangleq \mathbf{E} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{E}^{T}$. Since **E** is a unitary matrix, $\mathbf{E}^{T} \mathbf{z}$ is also a standard Gaussian random vector. It follows that **x** has an identical distribution with $\mathbf{E} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{z} + \mathbf{m}_{\mathbf{x}}$.

Let $\mathbf{y} = \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{z}$. It is clear that \mathbf{y} is also jointly Gaussian distributed with $N(0, \Lambda)$, and also a vector of independent Gaussian RVs. Then, the joint pdf for \mathbf{y} is given by

$$\begin{split} f_{\mathbf{y}}(\boldsymbol{y}) &= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \lambda_{i}^{1/2}} \exp\left(-\frac{y_{i}^{2}}{2\lambda_{i}}\right) \\ &= \frac{1}{(2\pi)^{n/2} \det(\boldsymbol{\Lambda})^{1/2}} \exp\left(-\frac{1}{2} \boldsymbol{y}^{T} \boldsymbol{\Lambda}^{-1} \boldsymbol{y}\right). \end{split}$$

Once we have the joint pdf of \mathbf{y} , we can use the concept of linear transformation to determine the joint pdf of \mathbf{x} from

$$\mathbf{x} = \mathbf{E}\mathbf{y} + \mathbf{m}_{\mathbf{x}}$$

That is,

$$f_{\mathbf{x}}(\boldsymbol{x}) = \frac{1}{|\mathbf{J}|} f_{\mathbf{y}} \left(\mathbf{E}^{T}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}}) \right)$$

= $f_{\mathbf{y}} \left(\mathbf{E}^{T}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}}) \right)$ since $|\mathbf{J}| = 1$
= $\frac{1}{(2\pi)^{n/2} \det(\mathbf{\Lambda})^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}})^{T} \mathbf{E} \mathbf{\Lambda}^{-1} \mathbf{E}^{T}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}}) \right)$
= $\frac{1}{(2\pi)^{n/2} \det(\mathbf{K}_{\mathbf{x}})^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}})^{T} \mathbf{K}_{\mathbf{x}}^{-1}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}}) \right).$

- 4. To conclude, the following 3 statements are equivalent:
 - Random variables X_1, X_2, \cdots, X_n are jointly Gaussian.
 - The random variable $Y = \sum_{i=1}^{n} a_i X_i$ is a Gaussian random variable for any real a_i .
 - The joint pdf for X_1, X_2, \cdots, X_n is given by

$$f_{\mathbf{x}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{K}_{\mathbf{x}})^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}})^T \mathbf{K}_{\mathbf{x}}^{-1}(\boldsymbol{x} - \mathbf{m}_{\mathbf{x}})\right).$$

References

[1] W. Feller, An Introduction to Probability Theory and Its Applications, New York: John Wily, 2nd edition, 1971.