
Stochastic Processes

Topic 2

Jointly Gaussian Random Variables
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Summary
This lecture reviews several important properties of Gaussian random vari-
ables. Specifically, I will discuss:

• Gaussian Random Variable

• Moment Generating Function

• Central Limit Theorem

• Jointly Gaussian Random Variables (Multivariate Normal)

• Joint Gaussian Density Function

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

• Boldface upper case letter to represent MATRIX

• Boldface lower case letter to represent vector

• Superscript (·)T and (·)H to denote transpose and hermitian (conjugate
transpose), respectively

• Upper case italic letter to represent RANDOM VARIABLE
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Motivation: Why a special attention to Gaussian RVs?

• They are analytically tractable

→ Preserved by linear systems

• Central limit theorem

→ Gaussian can approximate a large variety of distributions in large
samples

• Useful as models of communication links

— noise

— channel fading effects

1 Gaussian Random Variables

Definition 1 The probability density function (pdf) fX(x) for a Gaussian
random variable X with mean µ and variance σ2, denoted by X ∼ N (µ, σ2),
is given by

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)

for −∞ < x < ∞.

Remarks:

— Verify that X has mean µ and variance σ2

— If X ∼ N (µ, σ2), then the random variable Z = X−µ
σ

has a N (0, 1)
distribution, also known as the standard normal

— In general, the random variable Z1 = aX + b for any real scalars a and
b is also Gaussian with mean aµ + b and variance a2σ2

— A Gaussian random variable can be characterized by its first 2 mo-
ments; i.e. E[X] and E[X2]
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2 Moment Generating Function

Definition 2 The moment generating function (MGF) of a continuous ran-
dom variable X with pdf fX(x) is defined by

θ(t) , E[etX ] =

∫ ∞

−∞
etxfX(x)dx,

where t is a complex variable. For a discrete random variable X with proba-
bility mass function (pmf) pX(x) , PX [X = x], the MGF is defined by

θ(t) , E[etX ] =
∑

i

etxiPX [X = xi].

Remarks:

(1) It’s similar to the Laplace transform. Thus, in general, there is a one-
to-one correspondence between θ(t) and fX(x).

(2) As the name suggests, MGF is commonly used for computing moments

The nth moment of X can be obtained by

E[Xn] =
dn

dtn
(θ(t))

∣∣∣
t=0

.

(3) Solving problems involving sum of independent RV’s

(4) Analytical tool to demonstrate Central Limit Theorem

Example: Let X ∼ N (µX , σ2
X). Its MGF is given by

θ(t) = exp(µXt + σ2
Xt2/2). (2)

(1) We can compute E[X] = θ′(0) = µX and E[X2] = θ′′(0) = µ2
X + σ2

X .

(2) Sum of 2 indep. Gaussian

Suppose that Y ∼ N (µY , σ2
Y ) is independent with X. Then, the MGF

for Z = X + Y is

E[etZ ] = E[etX ] · E[etY ] = exp((µX + µY )t + (σ2
X + σ2

Y )t2/2),

which bears the same form as (2). Therefore, from the 1-to-1 corre-
spondence between distribution of a random variable and its MGF, we
conclude that Z ∼ N (µX + µY , σ2

X + σ2
Y ).
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3 Central Limit Theorem

Theorem 3 (CLT in Special Case) Let X1, X2, ..., Xn be independent and
identically distributed (i.i.d.) random variables with E[Xi] = 0 and Var[Xi] =
1 for all i. Then,

Zn , 1√
n

n∑
i=1

Xi

tends to the standard normal in the sense that its MGF satisfies

lim
n→∞

θZn(t) = et2/2,

which is the MGF of standard normal.

Remarks:

(1) For i.i.d. random variables X1 · · ·Xn with mean µ and variance σ2, the
CLT says that

1√
n

n∑
i=1

(
Xi − µ

σ

)
=
√

n

(
X − µ

σ

)

tends to standard normal where X = (1/n)
∑n

i=1 Xi.

(2) It happens a lot that we’ll be asked to find

P

[
a ≤

n∑
i=1

Xi ≤ b

]

with moderately large n for i.i.d. samples Xi. We don’t really need to
find the pdf for the sum

∑
i Xi. CLT tells us we can approximate the

normalized sum to a standard normal.

(3) For a detailed proof of CLT, see [1]
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4 Jointly Gaussian Random Variables

Definition 4 (Jointly Gaussian) A collection of random variables X1, X2, · · · , Xn

are jointly Gaussian if
n∑

i=1

aiXi

is a Gaussian random variable for real ai for i = 1 · · ·n.

(1) In plain words, any linear combination of jointly Gaussian RV’s is again
a Gaussian random variable

(2) Let X1, X2, · · · , Xn be i.i.d. Gaussian. Then, they are jointly Gaus-
sian. → Check the MGF of

∑n
i=1 aiXi.

(3) Let x = [X1 · · ·Xn]T be a vector of n i.i.d. N (0, 1) random variables.
Then,

Ax + b

is a vector of jointly Gaussian random variables for all real determinis-
tic A and b

(4) JG→linear system→JG

(5) Jointly Gaussian implies Marginal Gaussian. But the converse is not
true
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5 Basic Definitions

Definition 5 (Joint Density) Let x = [X1 · · ·Xn]T be a random vector
with probability distribution function Fx(x). Then, by definition

Fx(x) , P [X1 ≤ x1, · · · , Xn ≤ xn] , P [x ≤ x] ,

where x = [x1, · · · , xn]T is a realization of the random vector x. If the nth
partial derivative of Fx(x) exists, the joint pdf is defined as

fx(x) , ∂nFx(x)

∂x1 · · · ∂xn

.

Definition 6 The joint moment generating function for N random variables
X1 · · ·XN is defined by

θ(t1, t2, · · · , tN) = E

[
exp

(
N∑

i=1

tiXi

)]
.

Remarks:

(1) Joint MGF uniquely determines the joint distribution of X1, · · · , Xn.

(2) X1, · · · , Xn are independent if and only if θ(t1, t2, · · · , tn) = θX1(t1) · · · θXn(tn).
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Covariance Matrix

(a) The cross-covariance matrix Kxy of two random vectors x and y con-
sisting of random variables X1, · · · , Xn and Y1, · · · , Yn, respectively, is
defined by

Kxy , Cov (x,y)

, E
[
(x− E[x])(y − E[y])H

]
,

where E[x] = [E[X1], · · · , E[Xn]]T is the vector of expected values of
Xi, and likewise for E[y].

(b) The covariance matrix Kxx of a random vector x is defined by Kxx =
E

[
(x− E[x])(x− E[x])H

]
.

Remarks:

(1) For any matrices A and B, and vectors c and d with proper dimension,
one has Cov(Ax + c,By + d) = A · Cov(x,y) ·BT

(2) The diagonal terms of Kxx, simply denoted by Kx, are the variances
σ2

1, · · · , σ2
n of X1, X2, · · · , Xn.

(3) Kx is a Hermitian (or real symmetric) matrix. (Kx = EΛEH)
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Uncorrelated, orthogonal, and independent

Consider two real n× 1 random vectors x and y. Then, we say

(a) x and y are uncorrelated if E[xyT ] = E[x] · E[yT ].

(b) x and y are orthogonal if E[xyT ] = 0.

(c) x and y are independent if fxy(x,y) = fx(x)fy(y).

Remarks:

(1) Independence implies uncorrelatedness, but the converse is NOT true.

(2) Covariance matrix of uncorrelated random variables X1, · · · , Xn is a
diagonal matrix. (Off-diagonal terms are zero.)

Example:(Decorrelation of random vectors) (See 5.4-2 in textbook!)
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6 Jointly Gaussian Density Function

We will determine in this section the joint density function for a jointly
Gaussian random vector. Let’s see some useful facts first.

(1) We denote x ∼ N (m,K) to indicate that x is a jointly Gaussian ran-
dom vector with mean vector m and covariance matrix K.

(2) Assume that x ∼ N (m,K), then Ax + b ∼ N (Am + b,AKAT ). (We
have already seen that any linear transformation of JG is also JG.)

(3) The joint MGF of a jointly Gaussian random vector x ∼ N (m,K) is
given by

θx(t) = E[etT x] = exp

(
tTm +

1

2
tTKt

)
.

This can be verified by noting that Y , tTx is a Gaussian random
variable from Definition 4. And, the mean and variance of Y are tTm
and tTKt, respectively. Then, θx(t) = E[eY ] = θY (t)

∣∣
t=1

.

(4) Jointly Gaussian random variables are independent if and only if they
are uncorrelated.

(⇒) Much easier to check E[XY ] = E[X]E[Y ] if independence.

(⇐) Use the concept of MGF.

Suppose that x ∼ N (m,K) is a jointly Gaussian random vector of
uncorrelated Gaussian random variables X1 · · ·Xn, implying that K is
a diagonal matrix K = diag(σ2

1 · · · σ2
n). Therefore, the joint MGF is

θx(t) = exp

(
tTm +

1

2
tTKt

)
= exp

(
n∑

i=1

(timi +
1

2
t2i σ

2
i )

)

=
n∏

i=1

exp

(
timi +

1

2
t2i σ

2
i

)
= θX1(t1) · · · θXn(tn).

¥

Important:
This is an important result, since we can determine whether jointly
Gaussian random variables are independent by simply checking its
correlation. With independence, we can easily calculate, e.g., the
joint pdf and the conditional expectation E[X|Y ] = E[X].
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Example:
Let X and Y be jointly Gaussian random variables with zero mean, Var(X) =
σ2

X and Var(Y ) = σ2
Y . We can find a scalar α such that X − αY and Y are

independent Gaussian random variables by letting

E [(X − αY )Y ] = E[X − αY ]E[Y ] = 0.

From which, we have

α =
E[XY ]

E[Y 2]
= ρ

σX

σY

,

where ρ , Cov(X,Y )
σXσY

is the correlation coefficient between X and Y .
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Joint Density of Two JG RVs

The joint pdf for two real jointly Gaussian random variables X and Y is
given by

fXY (x, y) =
1

2πσXσY

√
1− ρ2

·

exp

(
−1

2(1− ρ2)

{(
x− µX

σX

)2

− 2ρ
(x− µX)(y − µY )

σXσY

+

(
y − µY

σY

)2
})

,

where µX = E[X], σ2
X = Var[X], µY = E[Y ], σ2

Y = Var[Y ], and

ρ =
E[(X − µX)(Y − µY )]

σXσY

is the correlation coefficient.

Proof
Let’s assume µX = µY = 0 for simplicity. Since X and Y are jointly Gaussian,
we know that

U = X − αY and V = Y

are also jointly Gaussian random variables. From the example in the last
page, we know that U and V are independent if α = ρσX

σY
. From Section 3.4

of the textbook, the joint pdf fX,Y (x, y) can be determined from fU,V (u, v)
by

fX,Y (x, y) =
1

|J|fU,V (u, v),

where |J| = det(J) and the matrix J is given by

J =

[
∂X/∂U ∂X/∂V
∂Y/∂U ∂Y/∂V

]
=

[
1 ρσX/σY

0 1

]
.

So, actually, we have

fX,Y (x, y) = fU,V (x− αy, y) = fU(x− αy)fV (y)

=
1

2πσUσV

exp

(
−(x− αy)2

2σ2
U

)
exp

(
− y2

2σ2
V

)
,

where σ2
U = E[U2] = E[(X − αY )2] = (1 − ρ2)σ2

X and σV = σY . Plugging
the results and performing some manipulations, we can show that fX,Y (x, y)
takes the form mentioned in the above. ¥
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Remarks:

(1) This joint pdf is commonly used to define two jointly Gaussian random
variables. (See p. 201 in textbook.)

(2) If ρ = 0, we have fX,Y (x, y) = fX(x)fY (y), showing that uncorrelated-
ness implies independence for jointly Gaussian random variables

(3) Recall that the joint MGF for JG only depends on the mean vector
and covariance matrix. We can deduce that the joint pdf for JG is also
the case.

Let z , [X Y ]T . The mean vector mz = [E[X] E[Y ]]T , and covariance

matrix Kz =

[
σ2

X ρσXσY

ρσXσY σ2
Y

]
determines the joint pdf in the form

fz(z) =
1

2π det(Kz)1/2
exp

(
−1

2
(z −mz)

TK−1
z (z −mz)

)
.

(4) The contour and the surface of the joint pdf for two zero mean jointly
Gaussian X1 and X2 with variance 2 and correlation coefficients ρ = 0.5
are plotted respectively in Fig. 1.
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Figure 1: The contour and the surface of the pdf for jointly Gaussian X1

and X2 with variance 2 and ρ = 0.5.
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Joint Density of n JG RVs

1. (Recall) Any jointly Gaussian random vector x can be represented by
a linear combination of the vector of i.i.d. standard normal random
variables z ∼ N (0, In).

That is, if x ∼ N (mx,Kx), we can write

x = Kx
1/2z + mx,

where Kx
1/2 = EΛ

1
2EH with E being the matrix of orthonormal eigen-

vectors and Λ the diagonal matrix of eigenvalues of Kx.

2. Let z ∼ N (0, In) and U be a unitary matrix. Then, Uz has an identical
distribution as z, denoted by

z
d
=Uz.

(Justify)

a. Uz is jointly Gaussian.

b. Mean vector of Uz is a zero vector.

c. Cov(Uz,Uz) = UCov(z, z)UT = UUT = I
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3. (General Expression) Let x = [X1, X2, · · · , Xn] be a real jointly Gaus-
sian random vector (Normal random vector) with mean vector mx and
covariance matrix Kx. Then, the joint pdf fx(x) is given by

fx(x) =
1

(2π)n/2 det(Kx)1/2
exp

(
−1

2
(x−mx)

TK−1
x (x−mx)

)
.

Remarks:

(1) Please note the difference between random vector x and determin-
istic vector x.

(2) Assume the elements X1, X2, · · · , Xn of the random vector x are
uncorrelated, each with variances Var(Xi) = σ2

i , then the joint
pdf is reduced to

fx(x) =
1

(2π)n/2 ∏n
i=1 σi

exp

(
−1

2

n∑
i=1

(
xi − µi

σi

)2
)

.
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Proof Recall that any jointly Gaussian random vector can be repre-
sented by a linear combination of a standard Gaussian random vector,
we can write

x = Kx

1
2z + mx

= EΛ
1
2ETz + mx

where Kx

1
2 , EΛ

1
2ET . Since E is a unitary matrix, ETz is also a

standard Gaussian random vector. It follows that x has an identical
distribution with EΛ

1
2z + mx.

Let y = Λ
1
2z. It is clear that y is also jointly Gaussian distributed with

N(0, Λ), and also a vector of independent Gaussian RVs. Then, the
joint pdf for y is given by

fy(y) =
n∏

i=1

1√
2πλ

1/2
i

exp

(
− y2

i

2λi

)

=
1

(2π)n/2 det(Λ)1/2
exp

(
−1

2
yTΛ−1y

)
.

Once we have the joint pdf of y, we can use the concept of linear
transformation to determine the joint pdf of x from

x = Ey + mx.

That is,

fx(x) =
1

|J|fy

(
ET (x−mx)

)

= fy

(
ET (x−mx)

)
since |J| = 1

=
1

(2π)n/2 det(Λ)1/2
exp

(
−1

2
(x−mx)

TEΛ−1ET (x−mx)

)

=
1

(2π)n/2 det(Kx)1/2
exp

(
−1

2
(x−mx)

TK−1
x (x−mx)

)
.

¥
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4. To conclude, the following 3 statements are equivalent:

• Random variables X1, X2, · · · , Xn are jointly Gaussian.

• The random variable Y =
∑n

i=1 aiXi is a Gaussian random vari-
able for any real ai.

• The joint pdf for X1, X2, · · · , Xn is given by

fx(x) =
1

(2π)n/2 det(Kx)1/2
exp

(
−1

2
(x−mx)

TK−1
x (x−mx)

)
.
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