Stochastic Processes

Topic 3

More on Joint Gaussian Density

nctuee09f

Summary
In this lecture, I will discuss:

e Conditional Jointly Gaussian Density
e Complex Gaussian Random Vector

e A Simple Detection Problem

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

e Boldface upper case letter to represent MATRIX
e Boldface lower case letter to represent vector

e Superscript (-)7 and (-)¥ to denote transpose and hermitian (conjugate
transpose), respectively

e Upper case italic letter to represent RANDOM VARIABLE

3-1



1 Conditional Joint Gaussian Density

Consider a jointly Gaussian random vector [x? yT]7 with x ~ N (my, Ky)
and y ~ N (my, Ky ). Then, the conditional density fx)y(x|y) also follows a
joint Gaussian density with

x|y ~ N( m, + K, K, '(y —m,), Ky — nyKleyx) :

where Kyy = F [(x — my)(y — my)?] and Kyx = K&

Proof

: fxy (2,
(1) Using fxy(x|y) = #

(Tedious process and not obvious. See Gallager’s note.)

(2) As an alternative approach, we first find the matrix A such that the
random vector
z=(x—my) — Ay — my)

is independent with y. It is clear that z is a linear combination of
x and y, and therefore is also a Gaussian random wvector (i.e.
all components of z are jointly Gaussian) with mean vector zero and
covariance matrix Ky — K KJ Ky,

The idea here is to express x by two terms, one independent with y
and the other solely dependent on y. That is

X=Z+X—1%Z

By doing so, the conditional random vector x|y can also be expressed
in two terms, one is constant due to the conditioning on y and the
other, i.e. the random vector z, is the only random term contained in
x|y. Hence, we know x|y is also a Gaussian random vector with mean

o+ 2l(x- )]

— E[z} + E[(mx + Ay — my)> ‘y]
= my + nyKy’l(y —my),

Exly] = E[z

and covariance matrix

Cov(x|y) = Cov(z) = Kx — nyK;IKyX.

3-2



Remarks:

— The conditional mean vector E[x|y]| is also a Gaussian random vector
(all components are jointly Gaussian) depending on y only.

— The variance of each element in x is reduced due to the observation of
y.
= Observation of y gives us additional information about x, thus
reducing the variance of it.

— It will be shown in later lectures that the minimum mean-square
error (MMSE) estimate of x based on the observation y is given by

Xumse = Exlyl,

which is generally a nonlinear function of y.

When x and y are jointly Gaussian, the MMSE estimate is linear in
y.
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2 Complex Gaussian Vector

(1) A complex Gaussian vector x = X, + jX; is a random vector whose
real part x, and imaginary part x; are collectively jointly Gaussian.

— The joint pdf of an n-dimensional complex random vector x =

X, + 7x; is defined to be the joint pdf of the 2n-dimensional real
random vector [x,x7|T.

— A complex Gaussian vector is completely specified by the mean
m, = E[x], the covariance matrix

K = E[(x — my) (x — my)"7],
and the pseudo-covariance matrix
Jx = B(x — my)(x — my)"]

of the complex vector x.

(2) In applications of wireless communications, we are almost exclusively
interested in complex random vectors that have the circular symme-

try property:

x is circularly symmetric if ¢/%x has the same distribution as x for any 6

— For a circularly symmetric complex random vector x, its mean
vector is a zero vector and its pseudo-covariance matrix is a zero
matrix.

— A circularly symmetric compler Gaussian random vector
x is completely specified by its covariance matrix and is denoted

as x ~ CN(0,Ky).

3-4



(3) A complex Gaussian random variable X = X, + jX; with i.i.d. zero
mean Gaussian real and imaginary components is circular symmetric.

—— The statistics of X are fully specified by the variance 0 = E[| X |?],
and is denoted as X ~ CN(0,0?).

— We can represent X in polar form X = || X||e/®, where the phase
© is uniform over [0, 27| and independent of the magnitude || X || =

(X2 4+ X2)"? | which has a density given by

r —r2
fix)(r) = -2 XP (Tﬂ) , 1=20

and is known as a Rayleigh random variable.

See Example 3.3-9 (p. 150) in textbook for a derivation of the
Rayleigh density, and Example 3.3-10 (p. 151) for the Rician den-
sity.
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(4) A collection of n i.i.d. CAN(0,1) random variables forms a standard
circularly symmetric Gaussian random vector w and is denoted by
CN(0,1I). The joint density of w is given by

fu(w) = - exp (~]wlP?)

(5) If x ~ CN(0,Ky) and Ky is invertible (non-singular), then the joint
density of x is

fx(x) = m exp (—x7Kx 'x)

where K, = E[(x — my)(x — m,)] is the covariance matrix of x [1,

App. A], [2, Chap 4].

3-6



3 A Simple Detection Problem

Suppose we want to transmit binary data thorough a communication link,
where we use sy and s; to represent 0 and 1, respectively. The receiver
receives

X =8+ n,

where n ~ N(0,021,) is the additive white Gaussian noise. The task of the
receiver is to decide between the following two hypotheses:

Hy: x=sp+n

Hy: x=81+n.

The maximum likelihood principle gives the following rule:

fx(X’SO) 2%2 fX(X’51>7

where fx(x|sg) and fx(x|s1) are the likelihood functions of x associated with
s and sy, respectively.
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Carrying out the above likelihood function, the decision rule is

exp (= gz x50l 30) ) Zexp (5531 ).

20’2 Hy

With some straightforward manipulations, we have

which is the so called “distance rule.” With further algebraic efforts, it
can be obtained that the receiver actually needs to conduct the following

operation
- a1 2 2
s =s) 2 5 {[Jof | = [Js]

to decide between Hy and H;.

Hi
Z
Ho

X — 8 X — 81

)

What is the probability of error decision?
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