
Stochastic Processes

Topic 3

More on Joint Gaussian Density
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Summary
In this lecture, I will discuss:

• Conditional Jointly Gaussian Density

• Complex Gaussian Random Vector

• A Simple Detection Problem

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

• Boldface upper case letter to represent MATRIX

• Boldface lower case letter to represent vector

• Superscript (·)T and (·)H to denote transpose and hermitian (conjugate
transpose), respectively

• Upper case italic letter to represent RANDOM VARIABLE
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1 Conditional Joint Gaussian Density

Consider a jointly Gaussian random vector [xT yT ]T with x ∼ N (mx,Kx)
and y ∼ N (my,Ky). Then, the conditional density fx|y(x|y) also follows a
joint Gaussian density with

x|y ∼ N
(

mx + KxyKy
−1(y −my), Kx −KxyKy

−1Kyx

)
,

where Kxy = E
[
(x−mx)(y −my)H

]
and Kyx = KH

xy

Proof

(1) Using fx|y(x|y) = fx,y(x,y)

fy(y)
.

(Tedious process and not obvious. See Gallager’s note.)

(2) As an alternative approach, we first find the matrix A such that the
random vector

z = (x−mx)−A(y −my)

is independent with y. It is clear that z is a linear combination of
x and y, and therefore is also a Gaussian random vector (i.e.
all components of z are jointly Gaussian) with mean vector zero and
covariance matrix Kx −KxyK

−1
y Kyx.

The idea here is to express x by two terms, one independent with y
and the other solely dependent on y. That is

x = z + x− z

By doing so, the conditional random vector x|y can also be expressed
in two terms, one is constant due to the conditioning on y and the
other, i.e. the random vector z, is the only random term contained in
x|y. Hence, we know x|y is also a Gaussian random vector with mean
vector

E[x|y] = E
[
z
∣∣∣y

]
+ E

[(
x− z

)∣∣∣y
]

= E
[
z
]

+ E
[(

mx + A(y −my)
)∣∣∣y

]

= mx + KxyKy
−1(y −my),

and covariance matrix

Cov(x|y) = Cov(z) = Kx −KxyK
−1
y Kyx.
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Remarks:

— The conditional mean vector E[x|y] is also a Gaussian random vector
(all components are jointly Gaussian) depending on y only.

— The variance of each element in x is reduced due to the observation of
y.

=⇒ Observation of y gives us additional information about x, thus
reducing the variance of it.

— It will be shown in later lectures that the minimum mean-square
error (MMSE) estimate of x based on the observation y is given by

x̂MMSE = E[x|y],

which is generally a nonlinear function of y.

When x and y are jointly Gaussian, the MMSE estimate is linear in
y.
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2 Complex Gaussian Vector

(1) A complex Gaussian vector x = xr + jxi is a random vector whose
real part xr and imaginary part xi are collectively jointly Gaussian.

— The joint pdf of an n-dimensional complex random vector x =
xr + jxi is defined to be the joint pdf of the 2n-dimensional real
random vector [xT

r ,xT
i ]T .

— A complex Gaussian vector is completely specified by the mean
mx = E[x], the covariance matrix

Kx = E[(x−mx)(x−mx)
H ],

and the pseudo-covariance matrix

Jx = E[(x−mx)(x−mx)
T ]

of the complex vector x.

(2) In applications of wireless communications, we are almost exclusively
interested in complex random vectors that have the circular symme-
try property:

x is circularly symmetric if ejθx has the same distribution as x for any θ

— For a circularly symmetric complex random vector x, its mean
vector is a zero vector and its pseudo-covariance matrix is a zero
matrix.

— A circularly symmetric complex Gaussian random vector
x is completely specified by its covariance matrix and is denoted
as x ∼ CN (0,Kx).
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(3) A complex Gaussian random variable X = Xr + jXi with i.i.d. zero
mean Gaussian real and imaginary components is circular symmetric.

— The statistics of X are fully specified by the variance σ2 = E[|X|2],
and is denoted as X ∼ CN (0, σ2).

— We can represent X in polar form X = ||X||ejΘ, where the phase
Θ is uniform over [0, 2π] and independent of the magnitude ||X|| =
(X2

r + X2
i )

1/2
, which has a density given by

f||X||(r) =
r

σ2
exp

(−r2

2σ2

)
, r ≥ 0

and is known as a Rayleigh random variable.

See Example 3.3-9 (p. 150) in textbook for a derivation of the
Rayleigh density, and Example 3.3-10 (p. 151) for the Rician den-
sity.
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(4) A collection of n i.i.d. CN (0, 1) random variables forms a standard
circularly symmetric Gaussian random vector w and is denoted by
CN (0, I). The joint density of w is given by

fw(w) =
1

πn
exp

(−||w||2) .

(5) If x ∼ CN (0,Kx) and Kx is invertible (non-singular), then the joint
density of x is

fx(x) = 1
πndet(Kx)

exp
(−xHKx

−1x
)

where Kx = E[(x−mx)(x−mx)
H ] is the covariance matrix of x [1,

App. A], [2, Chap 4].
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3 A Simple Detection Problem

Suppose we want to transmit binary data thorough a communication link,
where we use s0 and s1 to represent 0 and 1, respectively. The receiver
receives

x = s + n,

where n ∼ N (0, σ2In) is the additive white Gaussian noise. The task of the
receiver is to decide between the following two hypotheses:

H0 : x = s0 + n

H1 : x = s1 + n.

The maximum likelihood principle gives the following rule:

fx(x|s0) ≷H0
H1

fx(x|s1),

where fx(x|s0) and fx(x|s1) are the likelihood functions of x associated with
s0 and s1, respectively.
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Carrying out the above likelihood function, the decision rule is

exp

(
− 1

2σ2
(x− s0)

T (x− s0)

)
H0

≷
H1

exp

(
− 1

2σ2
(x− s1)

T (x− s1)

)
.

With some straightforward manipulations, we have

∣∣∣
∣∣∣x− s0

∣∣∣
∣∣∣
H1

≷
H0

∣∣∣
∣∣∣x− s1

∣∣∣
∣∣∣,

which is the so called “distance rule.” With further algebraic efforts, it
can be obtained that the receiver actually needs to conduct the following
operation

xT (s0 − s1) ≷H0
H1

1

2

(∣∣∣
∣∣∣s0

∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣s1

∣∣∣
∣∣∣
2
)

to decide between H0 and H1.

What is the probability of error decision?
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