Stochastic Processes

Topic 5

Fundamentals of Estimation

nctuee09f

Summary

In this topic, I will discuss:

- Fundamental Concept of Estimation
- Estimator Performance
- Sample Mean, Sample Variance and Gaussian Sample
- Interval Estimator
- T Random Variable
- Maximum Likelihood (ML) Estimation
- Least Squares Estimation
- Least Squares Using SVD
- Minimum Mean Squared Error (MMSE) Estimation
- Linear MMSE

Notation

We will use the following notation rules, unless otherwise noted, to represent symbols during this course.

- Boldface upper case letter to represent MATRIX
- Boldface lower case letter to represent **vector**
- Superscript $(\cdot)^T$ and $(\cdot)^H$ to denote transpose and hermitian (conjugate transpose), respectively
- Upper case italic letter to represent RANDOM VARIABLE

1 Estimation

Why Estimation?

- (1) The parameter itself is of interest, such as the distance of an aircraft from the base of a radar system
- (2) For the purpose of decision making Knowledge of the parameter describes the statistical property, i.e. pdf, of observed (or measured) data **y**, e.g.

$$y = H\theta + n$$
,

where knowledge of θ is essential to find the pdf of y.

What is an Estimator?

An estimator $\hat{\boldsymbol{\theta}}$ is a **function** $g(\mathbf{y})$ of the observation vector \mathbf{y} that estimates $\boldsymbol{\theta}$.

Example:

Let Y_1, \dots, Y_n be n observations with

$$y_i = \theta + \epsilon_i$$

where θ is the unknown parameter we want to estimate, and ϵ_i 's are measurement noises. A reasonable estimator for θ would be the sample mean

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

Mathematic Model

(1) Model Formulation

In determining good estimators, the first step would be to mathematically and properly **model** the whole system, explicitly establishing the **mathematical relation** between the desired **unknown quantities** and the **measured data**.

Example:

In the previous example, we have a model

$$Y_i = \theta + \epsilon_i$$

where θ is the unknown parameter we want to estimate, Y_i is the *i*th measured data and ϵ_i 's are measurement noises.

If the noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, the pdf of Y_i is given by

$$f_{Y_i}(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\theta)^2}{2\sigma^2}\right).$$

(2) Generally, the measured data \mathbf{y} can be a vector. In many applications, the measured data \mathbf{y} is modeled to be *linear* with respect to the unknown parameter (denoted by $\boldsymbol{\theta}$), and can be expressed by

$$y = H\theta + n$$
,

where \mathbf{H} is commonly referred to as the *observation matrix* or *system* matrix and \mathbf{n} is the measurement noise.

2 Estimator Performance

Questions asked to evaluate an estimator:

- 1. How close will $\hat{\theta}$ be to the real θ ?
- 2. Are there any better estimators?

Typical Performance Measures:

(1) Unbiased

An estimator $\hat{\theta}$ for the parameter θ is said to be **unbiased** if $E[\hat{\theta}] = \theta$.

(2) Consistent

Let $\hat{\theta}_n$ be an estimator computed from n samples. Then, $\hat{\theta}_n$ is said to be **consistent** if

$$\lim_{n \to \infty} P[|\hat{\theta}_n - \theta| > \varepsilon] = 0 \quad \text{for every} \quad \varepsilon > 0.$$
 (1)

(3) Minimum mean squared error

An estimator $\hat{\theta}$ is called a minimum mean square error (MMSE) estimator if

$$E[(\hat{\theta} - \theta)^2] \le E[(\hat{\theta}' - \theta)^2]$$

for any other estimator $\hat{\theta}'$.

Remarks:

(a) The condition in (1) is also known as *convergence in probabil-ity*.

In other words, $\hat{\theta}_n$ is consistent if it converges to θ in probability.

(b) How to check consistency of an unbiased estimator?

Chebyshev inequality states that for any arbitrary random variable X having mean E[X] and finite variance Var(X), we have

$$P[|X - E[X]| > k] \le \frac{\operatorname{Var}(X)}{k^2}$$
, for any $k > 0$.

See page 205 in textbook for a proof.

3 Sample Mean and Sample Variance

Let X_1, \dots, X_n be i.i.d. random variables with mean $E[X_i] = \mu$ and variance $Var(X_i) = \sigma^2$. The sample mean

$$\bar{X}_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i$$

is an unbiased and consistent estimator for the mean μ . And, the sample variance

$$S_n^2 \triangleq \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

is an unbiased and consistent estimator for the variance σ^2 .

(1) Unbiasedness of sample mean

It is clear to see

$$E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \mu.$$

(2) Consistency of sample mean

 \Rightarrow Use Chebyshev inequality

- (3) Unbiasedness of sample variance
- (4) Consistency of sample variance

This can be verified by examining whether $\lim_{n\to\infty} P[|S_n^2 - \sigma^2| > \varepsilon] = 0$. For that, we need to know the variance of the sample variance, which can be shown to be

$$Var(S_n^2) = \frac{1}{n} \left[m_4 - \frac{n-3}{n-1} \sigma^2 \right],$$

where $m_4 = E[(X_i - \mu)^4]$. It follows that, by inserting this result into the Chebyshev inequality,

$$\lim_{n \to \infty} P[|S_n^2 - \sigma^2| > \varepsilon] \le \lim_{n \to \infty} \frac{1}{n\varepsilon^2} \left[m_4 - \frac{n-3}{n-1} \sigma^2 \right] = 0.$$

Remarks:

- (1) The sample mean \bar{X}_n is uncorrelated with the sequence of deviation $X_i \bar{X}_n$ for $i = 1 \cdots n$.
- (2) When $X_1 \cdots X_n$ are i.i.d Gaussian sample, \bar{X}_n is "independent" with the sequence of deviation $X_i \bar{X}_n$ for $i = 1 \cdots n$, due to
 - (a) $\operatorname{Cov}(\bar{X}_n, X_i \bar{X}_n) = 0$, and
 - (b) \bar{X}_n and $X_i \bar{X}_n$ are jointly Gaussian.

4 Gaussian Sample

(1) Let X_1, \dots, X_n be i.i.d. Gaussian random variables. We have shown that the sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and the sequence of deviations $X_i - \bar{X}_n$, for $i = 1 \cdots n$ are independent.

We can deduce that, from the following theorem, \bar{X}_n and the sample variance $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ are independent.

(2) An important theorem

Let $\mathbf{y}_1, \dots, \mathbf{y}_n$ be independent random vectors. And, let $g_i(\mathbf{y}_i)$ be a function only of \mathbf{y}_i , $i = 1 \cdots n$. Then, the random variables $U_i \triangleq g_i(\mathbf{y}_i)$, $i = 1 \cdots n$, are mutually independent.

(a) Let's see how to apply this theorem to the above.

(b) Now we give a proof for a simple case that n=2, and $\mathbf{y}_1 \triangleq Y_1$ and $\mathbf{y}_2 \triangleq Y_2$ are both scalar random variables.

Define

$$U_1 \triangleq q_1(Y_1)$$
 and $U_2 \triangleq q_2(Y_2)$.

We can find the joint probability distribution of U_1 and U_2 given by

$$\begin{split} F_{U_1,U_2}(u_1,u_2) &= & P[U_1 \leq u_1, U_2 \leq u_2] \\ &= & P[g_1(Y_1) \leq u_1, g_2(Y_2) \leq u_2] \\ &= & P[Y_1 \in \mathsf{A}, Y_2 \in \mathsf{B}] \\ &= & P[Y_1 \in \mathsf{A}] \cdot P[Y_2 \in \mathsf{B}], \end{split}$$

where the last equality stands from the assumption of independence between Y_1 and Y_2 , and A and B are two sets satisfying $A = \{y_1 : g_1(y_1) \leq u_1\}$ and $B = \{y_2 : g_2(y_2) \leq u_2\}$, respectively. It follows the joint pdf

$$\begin{split} f_{U_1,U_2}(u_1,u_2) &= \frac{\partial^2}{\partial u_1 \partial u_2} F_{U_1,U_2}(u_1,u_2) \\ &= \left(\frac{\partial}{\partial u_1} P[Y_1 \in \mathsf{A}] \right) \cdot \left(\frac{\partial}{\partial u_2} P[Y_2 \in \mathsf{B}] \right) \\ &= f_{U_1}(u_1) f_{U_2}(u_2). \end{split}$$

- (3) The independence property between \bar{X}_n and S_n^2 when $X_1 \cdots X_n$ are i.i.d. Gaussian with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$ allows us to
 - (a) verify that $\frac{(n-1)S_n^2}{\sigma^2}$ is **chi-squared distributed** with n-1 degrees of freedom and,
 - (b) Find the pdf of

$$\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}$$

- \longrightarrow Student's T random variable
- Commonly used to specify $confidence\ interval$ of the estimator of μ

5 Confidence Interval

(1) For an interval estimator $[L(\mathbf{x}), U(\mathbf{x})]$ of a parameter θ based on the observation \mathbf{x} , we say that the confidence coefficient of this interval is $1 - \alpha$ if

$$P[\theta \in [L(\mathbf{x}), U(\mathbf{x})]] \ge 1 - \alpha,$$

or we say $[L(\mathbf{x}), U(\mathbf{x})]$ is a $(1 - \alpha) \times 100\%$ confidence interval if

$$P[L(\mathbf{x}) \le \theta \le U(\mathbf{x})] = 1 - \alpha.$$

Note: The random quantity here is the interval (based on the observation \mathbf{x}), not the parameter θ . That is, the probability statements $P[L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})]$ refers to \mathbf{x} , not θ . Specifically, to find the probability, we actually need to find

$$P[L(\mathbf{x}) \le \theta \le U(\mathbf{x})] = P[\mathbf{x} : L(\mathbf{x}) \le \theta \text{ and } \theta \le U(\mathbf{x})].$$

- (2) Confidence interval of the mean μ for two cases:
 - (a) Unknown mean, known variance Let X_1, \dots, X_n be i.i.d. Gaussian variables with unknown mean μ and known variance σ^2 . The sample mean is a Gaussian random variable with $\bar{X}_n \sim N(\mu, \sigma^2/n)$ and

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

We can specify an interval [-z, z] within which the normalized sample mean has a probability

$$P\left[-z \le \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right] = Q(-z) - Q(z) = 1 - 2Q(z),$$

where $Q(z)=\int_z^\infty \frac{1}{\sqrt{2\pi}}e^{-y^2/2}dy$ is the standard Q-function. With simple algebraic efforts, the above can be rewritten as

$$P\left[\bar{X}_n - \frac{\sigma z}{\sqrt{n}} \le \mu \le \bar{X}_n + \frac{\sigma z}{\sqrt{n}}\right] = 1 - 2Q(z). \tag{2}$$

This means the interval

$$[\bar{X}_n - \frac{\sigma z}{\sqrt{n}}, \bar{X}_n + \frac{\sigma z}{\sqrt{n}}]$$

contains μ with probability 1 - 2Q(z). By letting $\alpha = 2Q(z)$, we can find a corresponding $z_{\alpha/2}$ such that this interval is a $(1 - \alpha) \times 100\%$ confidence interval for μ .

(b) Unknown mean and unknown variance Let X_1, \dots, X_n be i.i.d. Gaussian variables with unknown mean μ and unknown variance σ^2 . The confidence interval now becomes

$$[\bar{X}_n - \frac{S_n z}{\sqrt{n}}, \bar{X}_n + \frac{S_n z}{\sqrt{n}}],$$

where the variance σ^2 is replaced by the sample variance S_n^2 . So, the probability of μ containing in this interval is

$$P\left[\bar{X}_n - \frac{S_n z}{\sqrt{n}} \le \mu \le \bar{X}_n + \frac{S_n z}{\sqrt{n}}\right] = P\left[-z \le \underbrace{\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}}_{\triangleq T} \le z\right].$$

The random variable involved in figuring out the above probability measure is

$$T \triangleq \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}.$$

We need to find the pdf of T in order to specify the interval. The random variable T is called Student's T random variable. With some rearrangement, we see

$$T = \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} = \frac{\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S_n^2}{\sigma^2} / (n-1)}},$$

where the numerator $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ is a standard normal random variable independent with $\frac{(n-1)S_n^2}{\sigma^2}$, which is a chi-squared random variable with n-1 degree of freedom, in the denominator.

Next, we will see the following 3 things:

- (1) What is chi-squared distribution?
- (2) How to justify $\frac{(n-1)S_n^2}{\sigma^2}$ is chi-squared distributed?
- (3) How to find the pdf of T?

6 T Distribution

(1) Review of chi-squared distribution

If Z_1, \dots, Z_n are i.i.d. $\mathcal{N}(0,1)$ random variables, then

$$Y \triangleq \sum_{i=1}^{n} Z_i^2 \tag{3}$$

has the *chi-squared distribution* with *n* degrees of freedom, denoted by $Y \sim \chi_n^2$.

When n=1, we have $Y=Z_1^2$ and the pdf is

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$= \frac{\frac{1}{2} e^{\frac{-y}{2}} (\frac{1}{2} y)^{\frac{1}{2} - 1}}{\sqrt{\pi}} \sim \Gamma(\frac{1}{2}, \frac{1}{2}),$$

which is exactly the *Gamma* pdf with parameter $(\frac{1}{2}, \frac{1}{2})$. We can recall that the pdf of a Gamma random variable X with $X \sim \Gamma(n, \lambda)$ is

$$f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{n-1}}{\Gamma(n)}$$
 $x > 0$,

where $\Gamma(n) = \int_0^\infty e^{-u} u^{n-1} du$ with $\Gamma(n) = (n-1)!$, $\Gamma(\frac{n}{2}) = (\frac{n}{2} - 1)!$, and $\Gamma(1/2) = \sqrt{\pi}$.

- The chi-squared random variable in (3) is a summation of n independent Gamma random variables each with parameter $(\frac{1}{2}, \frac{1}{2})$.
- Use the fact that if $X_1 \sim \Gamma(n_1, \lambda)$ is independent with $X_2 \sim \Gamma(n_2, \lambda)$, then $X_1 + X_2 \sim \Gamma(n_1 + n_2, \lambda)$.

Thus,

$$Y \sim \Gamma\left(\underbrace{\frac{1}{2} + \dots + \frac{1}{2}}_{=n/2}, \frac{1}{2}\right)$$

$$f_Y(y) = \frac{\frac{1}{2}e^{\frac{-y}{2}}(\frac{1}{2}y)^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2})} \quad y > 0.$$

(2) The MGF for $Y \sim \chi_n^2$ is $M_Y(t) = (1-2t)^{\frac{-n}{2}}$. This can be shown by first finding the MGF of Z_i^2 in (3). And,

$$M_Y(t) = \left(M_{Z_i^2}(t)\right)^n.$$

7 Justifying $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$

(1) To find a confidence interval for the mean of i.i.d. Gaussian sample X_1, \dots, X_n with unknown variance, we need to know the distribution of $\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}}$, where \bar{X}_n is the sample mean and S_n is the sample variance. The random variable

$$\frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} = \frac{\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S_n^2}{\sigma^2} / (n-1)}} \stackrel{d}{=} \frac{U}{\sqrt{V / (n-1)}}$$

is called the Student's T random variable with n-1 degrees of freedom, where $U \sim \mathcal{N}(0,1)$ is independent with $V \sim \chi_{n-1}^2$.

(2) Now, we want to justify that $\frac{(n-1)S_n^2}{\sigma^2}$ is indeed chi-squared distributed with n-1 degrees of freedom. With some algebraic efforts, we have

$$\frac{(n-1)S_n^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}_n}{\sigma}\right)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} - \underbrace{(\bar{X}_n - \mu)}_{\triangleq \bar{Z}_n}\right)^2$$

$$= \sum_{i=1}^n (Z_i - \bar{Z}_n)^2$$

$$= \left(\sum_{i=1}^n Z_i^2\right) - \left(\sqrt{n}\bar{Z}_n\right)^2,$$

where $Z_i \triangleq \frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ and $\sqrt{n}\bar{Z}_n \triangleq \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ is also a standard Gaussian random variable. Rearranging the above yields

$$\frac{(n-1)S_n^2}{\sigma^2} + \underbrace{\left(\sqrt{n}\bar{Z}_n\right)^2}_{\sim \chi_1^2} = \underbrace{\left(\sum_{i=1}^n Z_i^2\right)}_{\sim \chi^2},$$

where the right hand side is by definition a chi-squared random variable with n degrees of freedom and has MGF equal to $(1-2t)^{\frac{-n}{2}}$. Also, we know that $(\sqrt{n}\bar{Z}_n)^2$ is a chi-squared random variable with 1 degree of freedom. With the fact that \bar{X}_n and S_n are statistically independent in Gaussian sample, we can conclude that the MGF of $V \triangleq \frac{(n-1)S_n^2}{\sigma^2}$ is

$$M_V(t) = (1 - 2t)^{-\frac{(n-1)}{2}},$$

suggesting that V is a chi-squared random variable with n-1 degrees of freedom.

8 T Distribution

The pdf of a Student's T random variable T_n with n degrees of freedom is given by (see also p. 231 in textbook)

$$f_{T_n}(t) = K_{st} \cdot \left(1 + \frac{t^2}{n}\right)^{-\frac{(n+1)}{2}},$$
 (4)

where $K_{st} = \frac{\Gamma((n+1)/2)}{\Gamma(n/2)\sqrt{n\pi}}$

(Derivation:)

 T_n by definition can be expressed by

$$T_n = \frac{U}{\sqrt{V/n}}$$
, where $U \sim N(0,1)$, $V \sim \chi_n^2$,

and U is independent with V. We can first write down the joint pdf for U and V as

$$f_{UV}(u,v) = f_{U}(u)f_{V}(v)$$

$$= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^{2}}\frac{1}{\Gamma(\frac{n}{2})}\left(\frac{1}{2}e^{-\frac{1}{2}v}\right)\left(\frac{1}{2}v\right)^{\frac{n}{2}-1}, \quad -\infty < u < \infty \quad 0 < v < \infty.$$
(5)

The idea to find the pdf of T_n is through the concept of linear transformation and through (5). Now, by introducing an auxiliary function S = V, we have

$$\begin{cases}
T_n = \frac{U}{\sqrt{V/n}} \\
S = V
\end{cases}$$

and its joint pdf can be found by means of

$$f_{T_n S}(t,s) = \frac{1}{|J|} f_{UV}(u,v) \Big|_{v=s,u=\sqrt{\frac{s}{n}}t},$$
 (6)

where

$$|\mathbf{J}| = \begin{vmatrix} \frac{\partial T_n}{\partial U} & \frac{\partial T_n}{\partial V} \\ \frac{\partial S}{\partial U} & \frac{\partial S}{\partial V} \end{vmatrix} = \begin{vmatrix} \sqrt{\frac{n}{V}} & \Delta \\ 0 & 1 \end{vmatrix} = \sqrt{\frac{n}{V}},$$

where Δ is something we don't care. And, our final goal can be achieved by evaluating

$$f_{T_n}(t) = \int_{-\infty}^{\infty} f_{T_n S}(t, s) ds.$$
 (7)

To be more specific, the result of carrying out (6) is

$$f_{T_n S}(t,s) = \sqrt{\frac{v}{n}} f_{UV}(u,v) \Big|_{v=s,u=\sqrt{\frac{s}{n}}t}$$

$$= \frac{1}{\sqrt{2\pi} \Gamma(\frac{n}{2}) 2^{\frac{n}{2}} n^{\frac{1}{2}}} e^{-\left(\frac{1}{2} + \frac{t^2}{2n}\right) s} s^{\frac{n+1}{2} - 1}.$$
(8)

It follows, by observing that (8) takes the form of Gamma distribution and change of variables, the result of (7) is (4).

Remarks:

(1) Let's go back to our initial intention to find a confidence interval of μ with unknown variance. The probability of μ containing in the interval $[\bar{X}_n - \frac{S_n z}{\sqrt{n}}, \bar{X}_n + \frac{S_n z}{\sqrt{n}}]$ is

$$P\left[\bar{X}_{n} - \frac{S_{n}z}{\sqrt{n}} \le \mu \le \bar{X}_{n} + \frac{S_{n}z}{\sqrt{n}}\right] = P\left[-z \le T_{n-1} \le z\right]$$

$$= F_{T_{n-1}}(z) - F_{T_{n-1}}(-z)$$

$$= 1 - 2F_{T_{n-1}}(-z),$$

where the last equality comes from the fact that T distribution is symmetric (c.f.(4)). When $\alpha=2F_{T_{n-1}}(-z)$ is specified, we can find a corresponding $z_{\alpha/2}$ such that the interval

$$\left[\bar{X}_n - \frac{S_n z}{\sqrt{n}}, \bar{X}_n + \frac{S_n z}{\sqrt{n}}\right]$$

is a $(1 - \alpha) \times 100\%$ confidence interval for μ .

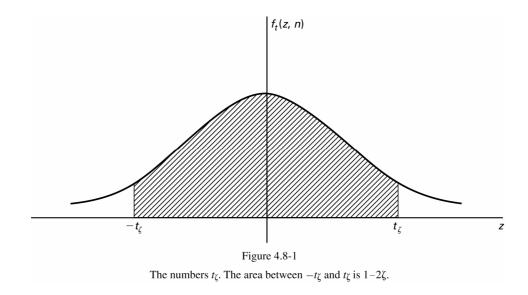


Figure 1: The pdf of T random variable.

- (2) T random variable also has a **bell shape** pdf symmetric with respect to the origin, but its bell is wider and shorter than standard normal. This implies, for a fixed confidence level $1-\alpha$, it is expected to have a wider (i.e. less precise) interval for μ when the variance is not known as compared to the case of known variance. This follows the intuition.
- (3) As the number of observations n increases, the sample variance gets closer to the true variance in the sense that sample variance is a consistent estimator. As a result, the interval estimator will become narrower with increasing n. The interval estimator, i.e. $[\bar{X}_n \frac{S_n z}{\sqrt{n}}, \bar{X}_n + \frac{S_n z}{\sqrt{n}}]$, with unknown variance will approach that with known variance, i.e. $[\bar{X}_n \frac{\sigma z}{\sqrt{n}}, \bar{X}_n + \frac{\sigma z}{\sqrt{n}}]$. In fact, T_n converges to standard normal in distribution when $n \to \infty$.

9 Maximum Likelihood Estimation

(1) (Likelihood Function)

Let $f_{\mathbf{x}}(\mathbf{x}; \theta)$ be the joint pdf or pmf of the sample $\mathbf{x} = [X_1, X_2, \dots, X_n]^T$. Then, given that $\mathbf{x} = \mathbf{x}^*$ is observed, the function of the unknown and **deterministic** parameter θ defined by

$$L(\theta|\mathbf{x}^*) \triangleq f_{\mathbf{x}}(\mathbf{x}^*;\theta)$$

is called the *likelihood function* of θ given $\mathbf{x} = \mathbf{x}^*$.

(2) The **maximum likelihood estimate** (MLE) of θ by observing a sample $\mathbf{x} = [X_1, X_2, \dots, X_n]^T$ is determined through

$$\hat{\theta}_{ML}(\mathbf{x}) = \arg \max_{\theta} L(\theta|\mathbf{x})$$
$$= \arg \max_{\theta} f_{\mathbf{x}}(\mathbf{x}; \theta)$$

Remarks:

- It should be noted that the parameter to be estimated in MMSE is modeled as random, while here the parameter to be estimated in MLE is non-random (deterministic).
- Obtaining an MLE involves (i) specifying the likelihood function, and (ii) finding the parameter value that maximizes the function.
- If the likelihood function is differentiable, possible candidates for the MLE are the values of $\theta_1, \dots, \theta_k$ for a certain k that solves

$$\frac{\partial}{\partial \theta_i} f_{\mathbf{x}}(\mathbf{x}; \theta) = 0, \quad i = 1 \cdots k.$$

Besides, we need to check the boundaries of the domain of θ as well.

- Points at which the first derivatives are 0 may be local or global *minima*, local or global *maxima*, or *inflection points*. Our job in obtaining MLE is to find a *global maximum*.
- In many cases, it is easier to work with the differentiation of the natural logarithm of $L(\theta|\mathbf{x})$, $\log L(\theta|\mathbf{x})$, known as the **log likelihood**. Finding a θ that maximizes the likelihood function is the same thing as finding a θ that maximizes the log likelihood, since the log function is strictly increasing in $(0, \infty)$.

Example:

Let $X_1 \cdots X_n$ be i.i.d. $\mathcal{N}(\theta, \sigma^2)$ with σ^2 known. The likelihood function of θ given $\mathbf{x} = [X_1 = \mathbf{x}_1, X_2 = \mathbf{x}_2, \cdots, X_n = \mathbf{x}_n]$ is

$$\begin{split} \mathbf{L}(\boldsymbol{\theta}|\mathbf{x}) &= f_{\mathbf{x}}(\mathbf{x};\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{X_i}(\mathbf{x}_i;\boldsymbol{\theta}) \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\theta})^2\right). \end{split}$$

And, the log likelihood function is

$$\log L(\theta|\mathbf{x}) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(\mathbf{x_i} - \theta)^2.$$

After taking the derivative, we have

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \log \mathrm{L}(\theta|\mathsf{x}) = \frac{1}{\sigma^2} \sum_{i=1}^n (\mathsf{x}_i - \theta).$$

So, one possible candidate of MLE is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

We still need to check

- (i) whether or not θ is a maximum, and
- (ii) boundaries of θ .

 \Rightarrow

- (i) The second derivative $\frac{d^2}{d\theta^2} \log L(\theta|x) = -\frac{n}{\sigma^2} < 0$. So, $\hat{\theta}$ is indeed a maximum.
- (ii) Check boundaries $\theta \to \infty$ and $\theta \to -\infty$. It is straightforward to examine

$$\lim_{\theta \to \infty} L(\theta|\mathbf{x}) = \lim_{\theta \to -\infty} L(\theta|\mathbf{x}) = 0.$$

From (i) and (ii), we can conclude

$$\hat{\theta}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

which is the sample mean of $X_1 \cdots X_n$.

10 Properties of MLE

Maximum likelihood estimation is perhaps the most widely used technique to find an estimate of unknown deterministic parameters due to the following nice properties.

(1) MLE is **consistent**

$$\lim_{n \to \infty} P[|\hat{\theta}_{ML}(n) - \theta| > \varepsilon] = 0 \quad \forall \ \varepsilon > 0.$$

(2) MLE is asymptotically Gaussian

$$\hat{\theta}_{ML}(n) \sim \text{Gaussian} \quad \text{as } n \to \infty.$$

(3) MLE is asymptotically efficient The asymptotic efficiency says that as $n \to \infty$

$$E[|\hat{\theta}_{ML}(n) - \theta|^2] \le E[|\hat{\theta} - \theta|^2]$$

for any other estimators $\hat{\theta}$ of θ .

(4) MLE is *invariant*

Suppose we know $\hat{\theta}_{ML}$ and would like to find the MLE of $\tau = g(\theta)$ for any functions $g(\cdot)$. The invariant property says that

$$\hat{\tau}_{ML} = g(\hat{\theta}_{ML}).$$

11 MLE for Gaussian Linear Model

Consider the linear model

$$\mathbf{y} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w},$$

where **H** is a "known" $n \times p$ observation matrix and **w** is a noise vector of dimension $n \times 1$ with joint pdf $\mathcal{N}(0, \mathbf{K})$. Then, the maximum likelihood estimator for θ is given by

$$\hat{\boldsymbol{\theta}}_{ML} = \left(\mathbf{H}^T \mathbf{K}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{K}^{-1} \mathbf{y}. \tag{9}$$

Remarks:

- (1) Use the following facts to justify (9).
 - The derivative of the quadratic form $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ with respect to \mathbf{x} is

$$\frac{dq(\mathbf{x})}{d\mathbf{x}} = 2\mathbf{A}\mathbf{x}.$$

– Let **a** and **x** be two *n*-vectors. With $y = \mathbf{a}^T \mathbf{x}$, we have

$$\frac{dy}{d\mathbf{x}} = \mathbf{a}.$$

– Let \mathbf{x} , \mathbf{y} , and \mathbf{A} be two *n*-vectors and an $n \times n$ matrix, respectively. With $q = \mathbf{y}^T \mathbf{A} \mathbf{x}$, we have

$$\frac{dq}{d\mathbf{x}} = \mathbf{A}^T \mathbf{y}.$$

(2) When the noise vector \mathbf{w} has uncorrelated entries, the MLE becomes

$$\hat{\boldsymbol{\theta}}_{ML} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{y},$$

which is the *least-squares* estimator of θ .

- (3) The MLE in (9) is a Gaussian random vector. Furthermore, it is an unbiased as well as the most *efficient* estimator *within the class of linear estimators*.
 - An unbiased estimator $\hat{\theta}$ of a scalar deterministic parameter θ is said to be more *efficient* than any other unbiased estimator $\hat{\theta}'$ if

$$Var(\hat{\theta}) \leq Var(\hat{\theta}').$$

— An unbiased estimator $\hat{\boldsymbol{\theta}}$ of a vector deterministic parameter $\boldsymbol{\theta}$ is said to be more *efficient* than any other vector unbiased estimator $\hat{\boldsymbol{\theta}}'$ if

$$\mathbf{K}_{\hat{ heta}} \leq \mathbf{K}_{\hat{ heta}'}$$

where the inequality for the matrix means $\mathbf{K}_{\hat{\theta}} - \mathbf{K}_{\hat{\theta}'}$ is a **negative semi-definite** matrix (or, $\mathbf{K}_{\hat{\theta}'} - \mathbf{K}_{\hat{\theta}}$ is a **positive semi-definite** matrix), and $\mathbf{K}_{\hat{\theta}}$ and $\mathbf{K}_{\hat{\theta}'}$ are the covariance matrix of $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}'$, respectively.

12 Difference between MLE and MLD

The difference between maximum likelihood estimation (MLE) and maximum likelihood detection (MLD) can be explained by the fundamental differences between estimation and detection.

Detection

- \rightarrow Decide among a finite set of alternatives whether a phenomenon is present or not.
- \rightarrow Example

The receiver's task in a binary communication link is to decide whether the transmitter sends a 0 or a 1, which is a typical detection problem.

Estimation

- → Similarity to detection Find out an unknown parameter based on the observations.
- \rightarrow Difference

In estimation, the unknown parameters (may or may not be random) take value in a continuum of alternatives.

 \rightarrow Example

The receiver needs to estimate possible unknown phase ranging from $[-\pi, \pi]$ in order to do a better job in detection. We need to find out a value of the unknown phase in the continuous domain $[-\pi, \pi]$.

13 Least Squares

Consider the linear model

$$y = H\theta + w,$$

where **H** is a "known" $m \times n$ observation matrix, $\boldsymbol{\theta}$ is an $n \times 1$ unknown parameter which may or may not be random, and **w** is a noise vector. Then, the least-squares estimator for θ that minimizes the 2-norm

$$||\mathbf{y} - \mathbf{H}\boldsymbol{\theta}||^2 = (\mathbf{y} - \mathbf{H}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{H}\boldsymbol{\theta})$$

is given by

$$\hat{\boldsymbol{\theta}}_{LS} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}. \tag{10}$$

Remarks:

(1) Note that when \mathbf{H} is square and non-singular, the least-squares estimator is reduced to

$$\hat{\boldsymbol{\theta}}_{LS} = \mathbf{H}^{-1}\mathbf{v}.$$

- (2) The matrix $\mathbf{H}^{\dagger} \triangleq (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$ is called the pseudo-inverse of \mathbf{H} .
- (3) The matrix $\mathbf{H}^T\mathbf{H}$ must be non-singular for (10) to hold true, which requires \mathbf{H} being of full rank. In practice, we solve the least-squares problems using the following system of normal equations:

$$(\mathbf{H}^T\mathbf{H})\,\hat{\boldsymbol{\theta}}_{LS} = \mathbf{H}^T\mathbf{y}.$$

(4) Let $\tilde{\mathbf{y}} = \mathbf{y} - \mathbf{H}\hat{\boldsymbol{\theta}}_{LS}$. From the normal equations we will find

$$\mathbf{H}^T \tilde{\mathbf{y}} = \mathbf{0}.$$

This is known as the *orthogonality condition*.

(5) The minimum least-squares is found as

$$J_{min} = ||\mathbf{y} - \mathbf{H}\boldsymbol{\theta}_{LS}||^{2}$$
$$= \mathbf{y}^{T} \left(\mathbf{I} - \mathbf{H} \left(\mathbf{H}^{T} \mathbf{H} \right)^{-1} \mathbf{H}^{T} \right) \mathbf{y}$$

14 Geometric Interpretations

The least-squares problem for the linear model

$$y = H\theta + w$$

can be interpreted geometrically, from the concept of distance by matrix 2-norm.

- (1) The received signal $\mathbf{y} \in \mathbb{R}^m$. If the matrix $\mathbf{H} \in \mathbb{R}^{m \times n}$ for $m \geq n$ is full-rank, then the range space of \mathbf{H} is \mathbb{R}^n , which is a subspace of \mathbb{R}^m .
- (2) The LS estimate θ_{LS} is the vector that renders $\hat{\mathbf{s}} = \mathbf{H}\theta_{LS}$ the *orthogonal projection* of the vector \mathbf{y} onto the subspace spanned by the column vectors of \mathbf{H} , i.e. the range of \mathbf{H} . The orthogonal projection is given by

$$\hat{\mathbf{s}} = \underbrace{\mathbf{H} \left(\mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T}_{\triangleq \mathbf{P}} \cdot \mathbf{y},$$

where $\mathbf{P} = \mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$ is the projection matrix of any vector in \mathbb{R}^m , such as \mathbf{y} , onto the range of \mathbf{H} .

- a) Idempotent $\mathbf{P} = \mathbf{P}^2$
- b) Symmetric $\mathbf{P} = \mathbf{P}^T$
- c) $\mathbf{P}^{\perp} \triangleq \mathbf{I} \mathbf{P}$ is also a projection matrix. We have

$$J_{min} = ||\mathbf{P}^{\perp}\mathbf{y}||^2.$$

15 Least Squares Using SVD

The LS estimate can be computed in terms of the SVD of the matrix ${\bf H}$. More specifically, the SVD for ${\bf H}$ is

$$\mathbf{H} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{V}^H,$$

where **U** and **V** are $m \times m$ and $n \times n$ unitary matrices, respectively, and

$$\mathbf{D} = egin{bmatrix} oldsymbol{\Sigma}_r & \mathbf{0} \ \hline \mathbf{0} & \mathbf{0} \end{bmatrix},$$

with $rank(\mathbf{H}) = r$. Then, we have the least-square estimate given by

$$\hat{oldsymbol{ heta}}_{LS} = \mathbf{V} \left[egin{array}{c|c} \mathbf{\Sigma}_r^{-1} & \mathbf{0} \ \hline \mathbf{0} & \mathbf{0} \end{array}
ight] \mathbf{U}^H \cdot \mathbf{y}.$$

16 Minimum Mean-Squared Error (MMSE) Estimation

(1) Orthogonality Principle

For random vectors \mathbf{x} and \mathbf{y} with *arbitrary* distributions, the orthogonality principle states that $\mathbf{x} - E[\mathbf{x}|\mathbf{y}]$ is orthogonal to $k(\mathbf{y})$ for any function $k(\cdot)$.

Recall that orthogonality between random vectors $\mathbf{x} - E[\mathbf{x}|\mathbf{y}]$ and $k(\mathbf{y})$ means

 $E\left[\left(\mathbf{x} - E[\mathbf{x}|\mathbf{y}]\right) \cdot k^{T}(\mathbf{y})\right] = \mathbf{0}$

with all the vectors, including the zero vector, having proper dimensions. We can see this by carrying out

$$E\left[\left(\mathbf{x} - E[\mathbf{x}|\mathbf{y}]\right) \cdot k^{T}(\mathbf{y})\right] = E\left[\mathbf{x}k^{T}(\mathbf{y})\right] - E\left[E\left[\mathbf{x}|\mathbf{y}\right]k^{T}(\mathbf{y})\right]$$
$$= E\left[\mathbf{x}k^{T}(\mathbf{y})\right] - E\left[E\left[\mathbf{x}k^{T}(\mathbf{y})|\mathbf{y}\right]\right]$$
$$= E\left[\mathbf{x}k^{T}(\mathbf{y})\right] - E\left[\mathbf{x}k^{T}(\mathbf{y})\right]$$
$$= \mathbf{0}.$$

We can consider $E[\mathbf{x}|\mathbf{y}]$ as the orthogonal projection of \mathbf{x} onto the space spanned by all the functions of \mathbf{y} .

(2) Fundamental Theorem

Suppose we want to estimate an unknown random vector \mathbf{x} based on the observation vector \mathbf{y} through a rule $g(\mathbf{y})$. The estimator that minimizes $E[||\mathbf{x} - g(\mathbf{y})||^2]$ is called the minimum mean squared error (MMSE) estimator, and is given by

$$g_{mmse}(\mathbf{y}) = \arg\min_{g(\mathbf{y})} E[||\mathbf{x} - g(\mathbf{y})||^2] = E[\mathbf{x}|\mathbf{y}]$$
(11)

Proof:

We will show the fundamental theorem by means of 2 different approaches, one with the orthogonality principle and the other with direct manipulations of the cost function $E[||\mathbf{x} - g(\mathbf{y})||^2]$.

I. (From orthogonality principle)

$$E[||\mathbf{x} - g(\mathbf{y})||^{2}] = E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}] + E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})||^{2}]$$

$$= E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}]||^{2}] + E[||E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})||^{2}]$$

$$+ \underbrace{E[(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])(E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y}))^{T}]}_{(A)}$$

$$+ \underbrace{E[(E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y}))(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])^{T}]}_{(B)}.$$

Since $E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})$ is a function only of the vector \mathbf{y} , we know that according to the orthogonality principle, (A) and (B) in the above are zero vectors. Therefore, we have the mean squared error (MSE)

$$E[||\mathbf{x} - g(\mathbf{y})||^2] = E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}]||^2] + E[||E[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})||^2].$$

Our goal is to find a rule g(y) that minimizes the above mean squared error. It is evident that

$$g_{mmse}(\mathbf{y}) = E[\mathbf{x}|\mathbf{y}]$$

satisfies the minimum MSE criterion, and the resulting MSE is

MSE =
$$E[||\mathbf{x} - g_{mmse}(\mathbf{y})||^{2}]$$

= $E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}]||^{2}]$
= $E[\operatorname{tr}((\mathbf{x} - E[\mathbf{x}|\mathbf{y}])^{T}(\mathbf{x} - E[\mathbf{x}|\mathbf{y}]))]$
= $E[\operatorname{tr}((\mathbf{x} - E[\mathbf{x}|\mathbf{y}])(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])^{T})]$
= $\operatorname{tr}(E[(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])^{T}])$
= $\operatorname{tr}(E[E[(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])(\mathbf{x} - E[\mathbf{x}|\mathbf{y}])^{T}|\mathbf{y}]])$
= $\operatorname{tr}(E[K_{\mathbf{x}|\mathbf{y}}]).$

II. Another way to show the fundamental theorem of estimation theory is by direct manipulations of the MSE as follows:

$$E[||\mathbf{x} - g(\mathbf{y})||^{2}] = \int \int ||\mathbf{x} - g(\mathbf{y})||^{2} f_{\mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

$$= \int \int ||\mathbf{x} - g(\mathbf{y})||^{2} f_{\mathbf{x}|\mathbf{y}}(\mathbf{x}|\mathbf{y}) f_{\mathbf{y}}(\mathbf{y}) d\mathbf{x} d\mathbf{y}$$

$$= \int \underbrace{\left(\int ||\mathbf{x} - g(\mathbf{y})||^{2} f_{\mathbf{x}|\mathbf{y}}(\mathbf{x}|\mathbf{y}) d\mathbf{x}\right)}_{=E[||\mathbf{x} - g(\mathbf{y})||^{2}|\mathbf{y}]} f_{\mathbf{y}}(\mathbf{y}) d\mathbf{y}$$

$$= \int E[||\mathbf{x} - g(\mathbf{y})||^{2}|\mathbf{y}] f_{\mathbf{y}}(\mathbf{y}) d\mathbf{y}.$$

Since the joint pdf $f_{\mathbf{y}}(\mathbf{y})$ is everywhere non-negative, minimizing the MSE $E[||\mathbf{x} - g(\mathbf{y})||^2]$ by choosing a proper $g(\mathbf{y})$ is equivalent to minimizing the conditional MSE $E[||\mathbf{x} - g(\mathbf{y})||^2|\mathbf{y}]$ with the same $g(\mathbf{y})$, i.e.,

$$\arg\min_{g(\mathbf{y})} E[||\mathbf{x} - g(\mathbf{y})||^2] = \arg\min_{g(\mathbf{y})} E[||\mathbf{x} - g(\mathbf{y})||^2|\mathbf{y}].$$

So, we can turn our focus to the conditional MSE. Carrying out the conditional MSE yields

$$E[||\mathbf{x} - g(\mathbf{y})||^{2}|\mathbf{y}]$$

$$= E[(\mathbf{x} - g(\mathbf{y}))^{T}(\mathbf{x} - g(\mathbf{y}))|\mathbf{y}]$$

$$= E[\mathbf{x}^{T}\mathbf{x}|\mathbf{y}] - E[g(\mathbf{y})^{T}\mathbf{x}|\mathbf{y}] - E[\mathbf{x}^{T}g(\mathbf{y})|\mathbf{y}] + E[g(\mathbf{y})^{T}g(\mathbf{y})|\mathbf{y}]$$

$$= E[\mathbf{x}^{T}\mathbf{x}|\mathbf{y}] - g(\mathbf{y})^{T}E[\mathbf{x}|\mathbf{y}] - E[\mathbf{x}^{T}|\mathbf{y}]g(\mathbf{y}) + g(\mathbf{y})^{T}g(\mathbf{y}).$$

With further inspection, we find that the above result is in a quadratic form with respect to g(y). It follows that

$$E[||\mathbf{x} - g(\mathbf{y})||^{2}|\mathbf{y}]$$

$$= \left(g(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]\right)^{T} \left(g(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]\right) + E[||\mathbf{x}||^{2}|\mathbf{y}] - ||E[\mathbf{x}|\mathbf{y}]||^{2}.$$

The conditional MSE, and therefore the objective MSE, is minimized when

$$q_{mmse}(\mathbf{y}) = E[\mathbf{x}|\mathbf{y}].$$

5-29

Remarks:

- (1) Although the MMSE estimator has a simple form $E[\mathbf{x}|\mathbf{y}]$, finding it requires the knowledge of conditional pdf $f_{\mathbf{x}|\mathbf{y}}(\mathbf{x}|\mathbf{y})$, which is often difficult to obtain.
- (2) When \mathbf{x} and \mathbf{y} are jointly Gaussian, the estimator that minimizes the MSE is

$$E[\mathbf{x}|\mathbf{y}] = \mathbf{m_x} + \mathbf{K_{xy}}\mathbf{K_y}^{-1}(\mathbf{y} - \mathbf{m_y}),$$
 where $\mathbf{m_x} = E[\mathbf{x}]$, $\mathbf{m_y} = E[\mathbf{y}]$, $\mathbf{K_{xy}} = E[(\mathbf{x} - \mathbf{m_x})(\mathbf{y} - \mathbf{m_y})^{\mathbf{T}}]$, and $\mathbf{K_y} = E[(\mathbf{y} - \mathbf{m_y})(\mathbf{y} - \mathbf{m_y})^{\mathbf{T}}]$. And, the MSE is given by
$$\mathrm{MSE} = \mathrm{tr}\left(\mathbf{K_x} - \mathbf{K_{xy}}\mathbf{K_y}^{-1}\mathbf{K_{yx}}\right).$$

17 Linear MMSE

(1) Why linear MMSE?

It is often desirable to find an MMSE estimator constrained to be a linear function of the observations, due to reasons such as easier implementations of linear systems and, as mentioned, difficulties in finding $E[\mathbf{x}|\mathbf{y}]$.

(2) Problem Formulation

Suppose now \mathbf{x} and \mathbf{y} are not necessarily jointly Gaussian random vectors, and we know $\mathbf{m_x}$, $\mathbf{m_y}$, $\mathbf{K_{xy}}$, and $\mathbf{K_y}$. In this case, the estimator that takes the form

$$g(\mathbf{y}) = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$$

and minimizes the MSE at the same time is given by

$$g_{lmmse}(\mathbf{y}) = \mathbf{m_x} + \mathbf{K_{xy}} \mathbf{K_y}^{-1} (\mathbf{y} - \mathbf{m_y}) \triangleq L[\mathbf{x}|\mathbf{y}]$$

Proof:

We start with proving

$$E\left[\left(\mathbf{x} - L[\mathbf{x}|\mathbf{y}]\right) \cdot \left(\mathbf{A}\mathbf{y} + \mathbf{b}\right)^{T}\right] = \mathbf{0},\tag{12}$$

for all matrices \mathbf{A} and vectors \mathbf{b} , which is an extension of the orthogonality principle to the case of LMMSE. This can be easily shown by

$$E\left[\begin{pmatrix} \mathbf{x} - L[\mathbf{x}|\mathbf{y}] \end{pmatrix} \cdot (\mathbf{A}\mathbf{x} + \mathbf{b})^{T}\right]$$

$$= E\left[\begin{pmatrix} \mathbf{x} - \mathbf{m}_{\mathbf{x}} - \mathbf{K}_{\mathbf{x}\mathbf{y}} \mathbf{K}_{\mathbf{y}}^{-1} (\mathbf{y} - \mathbf{m}_{\mathbf{y}}) \end{bmatrix} \cdot (\mathbf{A}(\mathbf{y} - \mathbf{m}_{\mathbf{y}}) + \mathbf{b}')^{T}\right]$$

$$= \mathbf{K}_{\mathbf{x}\mathbf{y}} \mathbf{A}^{T} - \mathbf{K}_{\mathbf{x}\mathbf{y}} \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{K}_{\mathbf{y}} \mathbf{A}^{T}$$

$$= \mathbf{0},$$

where $\mathbf{b}' = \mathbf{Am_y} + \mathbf{b}$. The above extended orthogonality principle says that $L[\mathbf{x}|\mathbf{y}]$ is the orthogonal projection of \mathbf{x} onto the space spanned by any *linear* functions of \mathbf{y} .

Next, with a similar procedure to what we've done in proving the general MMSE, we have

$$E[||\mathbf{x} - g(\mathbf{y})||^{2}] = E[||\mathbf{x} - L[\mathbf{x}|\mathbf{y}] + L[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})||^{2}]$$

$$= E[||\mathbf{x} - L[\mathbf{x}|\mathbf{y}]||^{2}] + E[||L[\mathbf{x}|\mathbf{y}] - g(\mathbf{y})||^{2}]$$

$$+ \underbrace{E[(\mathbf{x} - L[\mathbf{x}|\mathbf{y}])(L[\mathbf{x}|\mathbf{y}] - g(\mathbf{y}))^{T}]}_{(A)}$$

$$+ \underbrace{E[(L[\mathbf{x}|\mathbf{y}] - g(\mathbf{y}))(\mathbf{x} - L[\mathbf{x}|\mathbf{y}])^{T}]}_{(B)},$$

where (A) and (B) are zero vectors according to (12). We then can assure that

$$g_{lmmse}(\mathbf{y}) = L[\mathbf{x}|\mathbf{y}] = \mathbf{m_x} + \mathbf{K_{xy}K_y}^{-1}(\mathbf{y} - \mathbf{m_y}).$$

Remark:

The MSE of LMMSE is generally larger than that of MMSE, since

$$E[||\mathbf{x} - L[\mathbf{x}|\mathbf{y}]||^{2}] = E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}] + E[\mathbf{x}|\mathbf{y}] - L[\mathbf{x}|\mathbf{y}]||^{2}]$$

$$= E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}]||^{2}] + E[||L[\mathbf{x}|\mathbf{y}] - E[\mathbf{x}|\mathbf{y}]||^{2}]$$

$$\geq E[||\mathbf{x} - E[\mathbf{x}|\mathbf{y}]||^{2}],$$

with the equality holds when ${\bf x}$ and ${\bf y}$ are jointly Gaussian random vectors.

Example:

Suppose we want to estimate X from the observation of

$$Y = X + Z$$

where $X \sim \mathcal{N}(0, \sigma_X^2)$ is independent $Z \sim \mathcal{N}(0, \sigma_Z^2)$. We know the MMSE estimate of X is

$$\hat{X}_{mmse} = E[X|Y].$$

Since X and Y are jointly Gaussian (by showing aX + bY is a Gaussian random variable for any a and b), we have

$$\hat{X}_{mmse} = E[X|Y] = m_X + \mathbf{K}_{XY} \mathbf{K}_Y^{-1} (Y - m_Y)$$
$$= \mathbf{K}_{XY} \mathbf{K}_Y^{-1} Y = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_Z^2} Y.$$

Also, by symmetry, we can obtain $\hat{Z}_{mmse} = \frac{\sigma_Z^2}{\sigma_X^2 + \sigma_Z^2} Y$, giving

$$\hat{X}_{mmse} + \hat{Z}_{mmse} = Y.$$

This indicates that the estimation splits the observation between signal and noise according to their variances (i.e, average power or energy). Intuitively, when $E[X^2] > E[Z^2]$, we want to attribute the major part of Y to X, and the math tells us it is so indeed.