
Stochastic Processes

Topic 6

Random Sequence

nctuee09f

Summary

Reading: Textbook sec. 6.1 ∼ sec. 6.7

In this topic, I will discuss:

– Random Sequence

– Stationarity

– Wide-sense Stationary (WSS) Random Sequence

– Linear Time Invariant (LTI) System

– WSS in LTI

– Power Spectral Density

– Markov Chain

– Convergence of Random Sequence

Notation We will use the following notation rules, unless otherwise
noted, to represent symbols during this course.

– Boldface upper case letter to represent MATRIX

– Boldface lower case letter to represent vector

– Superscript (·)T and (·)H to denote transpose and hermitian (con-
jugate transpose), respectively

– Upper case italic letter to represent RANDOM VARIABLE
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1 Random Sequence

(1) In plain words, we can view a random sequence as follows:

→ A mathematical formulation of a probabilistic experiment that
evolves in time

→ A random sequence can be considered as an evolution in time of
random variables

∗ The outcomes constitute a sequence of numerical values

∗ The outcomes are measured in countable time instants, e.g.
the time instants in the set T = {0, 1, 2, · · · } or T = {· · · ,−1, 0, 1, 2, · · · }.

(2) For example, a random sequence can be used to model

→ the sequence of daily prices of a stock

→ the sequence of hourly traffic loads at a node of a network

→ the sequence of radar measurement of the position of an airplane

→ the sequence of failure times of a machine

→ the sequence of received and periodically sampled signal in a com-
munication link

(3) Something of particular interests:

→ We tend to focus on the dependencies in the sequence. For ex-
ample, how do future prices of a stock depend on past values?

→ We are often interested in long-term averages, involving the
entire sequence of generated values. For example, what is the
fraction of time on average that a machine is idle?

→ We sometimes wish to characterize the likelihood or frequency of
certain boundary events.

For example:

∗ What is the probability that within a given hour all circuits
of some telephone system become simultaneously busy?

∗ What is the frequency with which some buffer in a computer
network overflows with data?
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Figure 1: The (i) filtering, (ii) smoothing, and (iii) prediction operations
for time-varying unknown parameters θn embedded in the random sequence
X[n] for all n.

(4) Things you may learn

— Formulation of several probabilistic discrete time models

— Filtering, smoothing, and prediction

— Examine the behaviors, e.g. convergence, of the filtering, smooth-
ing, and prediction operations shown in Fig. 2 as n →∞.

→ Filtering means that we estimate the parameter θn at the nth
time based upon the observations up to time n

→ Smoothing means we go back to modify previously estimated
parameter θi for i < n when the nth observation becomes
available

→ Prediction
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Figure 2: A mapping of a random sequence.

(4) Definition (Random Sequence)

Let ε ∈ Ω be an outcome of the sample space Ω. Let X[n, ε] be a map-
ping of the sample space Ω into a space of complex-valued sequence on
some index set Z. If for each fixed integer n ∈ Z, X[n, ε] is a random
variable, then X[n, ε] is a random sequence (also known as discrete-
time random process).
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Remarks:

(a) For a fixed outcome ε∗, the sample sequence X[n, ε∗] is a non-random
(deterministic) function. That is, once we know what the outcome ε∗

is, the sample sequence X[n, ε∗] associated with that ε is also deter-
mined.

(b) The randomness falls in that we cannot exactly know what the outcome
is at each time instant before the experiment is conducted.

(c) We often write X[n, ε] as X[n] for notational simplicity.

(d) Conceptually, random sequence can be considered as a sequence of
random variables, or more generally, a sequence of random vectors.
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Figure 3: Two realizations, i.e. sample sequences, of the Bernoulli ran-
dom sequence, one for ε = (HHTTHH · · · ) and the other for ε′ =
(HTHTTH · · · ).

Example: (Bernoulli Process)

Suppose X is a Bernoulli random variable modeling a success (E) or failure
(Ec) of an event E with X(E) = 1 and X(Ec) = 0. For example, by flipping
a coin, we can model X(H) = 1 and X(T ) = 0 with H being the outcome
of a head and T a tail.
The Bernoulli random sequence, or Bernoulli process, is defined as

X[n, ε] , X(εn),

where εn ∈ {H, T} is the outcome of the nth flip and ε = (ε1ε2 · · · εn · · · ) is
an outcome, consisting of an infinite length sequence of events, in the sample
space of the Bernoulli random sequence.

Two realizations, also known as sample sequences, of the Bernoulli ran-
dom sequence are shown in Fig. 3, one for the event ε = (HHTTHH · · · )
and the other for the event ε′ = (HTHTTH · · · ).

It should be noted that the sample space in this example consists of infinite
outcomes, each with infinite length of events (ε1ε2 · · · εn · · · ). ¥
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2 Statistical Description

(1) A random sequence is statistically specified by its Nth order probability
distribution (or density) function

FX

(
xn, xn+1, · · · , xn+N−1; n, n + 1, · · · , n + N − 1

)

= P
[
X[n] ≤ xn, X[n + 1] ≤ xn+1, · · · , X[n + N − 1] ≤ xn+N−1

]

for all integers N ≥ 1, and for all time instants n, n+1, · · · , n+N − 1.

(2) The mean function, autocorrelation function, and autocovariance
function are defined as:

Mean function:

µX [n] , E
[
X[n]

]

=

∫ ∞

−∞
xfX(x; n)dx.

Autocorrelation function: for all k and l

RXX [k, l] , E
[
X[k]X∗[l]

]

=

∫ ∞

−∞

∫ ∞

−∞
xkx

∗
l fX(xk, xl; k, l)dxkdxl.

Autocovariance function: for all k and l

KXX [k, l] , E
[(

X[k]− µX [k]
)(

X[l]− µX [l]
)∗]

= RXX [k, l]− µX [k]µ∗X [l].
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3 Independent Increments

(1) Definition (Independent Increments)

A random sequence is said to have independent increments if for
all integers n1 < n2 < · · · < nN , the increments

X[n1], X[n2]−X[n1], · · · , X[nN ]−X[nN−1]

are jointly independent for N > 1.

(2) The running sum

S[n] ,
n∑

k=1

X[k]

of an independent random sequence X[n] is also a random sequence,
and has independent increments.

Example:
Let X[n] be the Bernoulli random sequence.

S[n] ,
n∑

k=1

X[k]

is the random sequence, commonly known as the Binomial counting
process, used to model the number of successes (occurrences)
of a certain event up to time n. The Binomial counting process has
independent increments.

Example:
Let X[n] be the Bernoulli random sequence. Define Y [n] , 2X[n]− 1.
Then,

W [n] ,
n∑

k=1

Y [k]

is the random walk sequence, which can be used to model the amount
of money a gambler wins up to the nth trial, where he earns one unit
with a win and gives one unit away with a lose. The random walk
sequence W [n] also has independent increments.
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(3) Let S[n] be a random sequence having independent increments. Its
Nth order joint pdf can be written as products of the pdf’s of its in-
crements.

Proof:
Let X1, X2, · · · , XN be the increments of the sequence S[1], S[2], · · · , S[N ].
That is,

X1 , S[1], X2 , S[2]− S[1], · · · , XN , S[N ]− S[N − 1].

Define x , [X1, X2, · · · , XN ]. We can obtain the joint pdf of

s , [S[1], S[2], · · · , S[N ]]

from the joint pdf of x using the concept of linear transformation, which
gives

fs(s1, s2, · · · , sN) =
1

|J|fx(x1, x2, · · · , xN)

∣∣∣∣
x1=s1,··· ,xN=sN−sN−1

= fX1(s1)fX2(s2 − s1) · · · fXN
(sN − sN−1)

= fS[1](s1)fS[2]−S[1](s2 − s1) · · · fS[N ]−S[N−1](sN − sN−1).

¥
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Example: (Waiting Time)
Consider the random sequence τ [n] consisting of i.i.d. exponential random
variables for all n with

fτ (t; n) = λe−λt, t ≥ 0.

Then, the running sum

T [n] ,
n∑

k=1

τ [k]

is the waiting time random sequence, which can be used to model the
waiting time to the nth occurrence of a certain event, e.g., the total amount
of time that the nth packet in a queue has to wait until being processed.

(a) What is the pdf of T [n]?

(b) What are the mean function and variance function of T [n]?

(c) What is the autocorrelation function?

(d) What is the Nth order joint pdf? (Use the independent increments
property)
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4 Stationarity

(1) Definition (Stationary Random Sequence)

A random sequence X[n] is stationary if for all N ≥ 1

FX

[
xn, xn+1, · · · , xn+N−1; n, n + 1, · · · , n + N − 1

]

= FX

[
xn+k, xn+1+k, · · · , xn+N−1+k; n + k, n + 1 + k, · · · , n + N − 1 + k

]

for all integer shift k and for all xn through xn+N−1.

Example:
The Bernoulli random sequence is stationary. But, the waiting time
random sequence is NOT.

(2) Definition (Wide-Sense Stationary)

A random sequence X[n] for n ∈ Z is wide-sense stationary (WSS)
if

(i) The mean function µX [n] is constant for all integers n,

µX [n] = µX [0], and

(ii) The correlation function is independent of any integer shift n.

RXX [k, l] = RXX [k + n, l + n], ∀k, l ∈ Z.

Example

Let X[n] be a sequence of zero mean uncorrelated random variables
with unit variance. Then, X[n] is WSS by checking RXX [k, l] = δ[k −
l] = RXX [k + n, l + n]. This random sequence is known as white pro-
cess.

(3) All stationary random sequences are wide-sense stationary.
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Remarks:

(1) The correlation function RXX [k, l] of a WSS random sequence X[n] can
be expressed in terms of the time shift k− l only, instead of specifying
two time instants k and l.

RXX [k, l] = RXX [k − l, 0] , RXX [k − l].

In particular, we write

RXX [m] , RXX [l + m, l]

to specify the correlation between two random variables in the random
sequence with m time units apart.

(2) Due to the shift-invariant property of WSS, the output random se-
quence of a linear time invariant (LTI) system to a WSS random se-
quence input is also WSS.
WSS→LTI→WSS.
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(3) Properties of RXX [m] for WSS X[n]:

(a) |RXX [m]| ≤ RXX [0] for arbitrary m.

(b) |RXY [m]|2 ≤ RXX [0]RY Y [0] for WSS X[n] and Y [n].

(c) The sequence RXX [m] is complex-conjugate symmetric, i.e.

RXX [m] = R∗
XX [−m].

(d) (Positive semidefinite) For all N ≥ 1 and all complex a1, · · · , aN ,
we must have

N∑
n=1

N∑

k=1

ana
∗
kRXX [n− k] ≥ 0.

Recall: (Page 254 in the text)

A square matrix R is positive semi-definite if for any vector a

aHRa ≥ 0.
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5 Linear Time Invariant System

(1) Definition of a system
A system is a mapping that transforms an arbitrary input sequence
into an output sequence.

(2) A system is linear if to a linear combination of inputs corresponds the
same linear combination of outputs. That is, suppose we know

x1[n] → L{} → L{x1[n]} and x2[n] → L{} → L{x2[n]}.

Then, the linear system with operator L{} guarantees

a1x1[n] + a2x2[n] → L{} → a1L{x1[n]}+ a2L{x2[n]}.

(3) The impulse response h[n] of a linear system is the output sequence
when the input is an impulse δ[n],

h[n] , L{δ[n]}.

For any input sequence x[n], we can write

x[n] =
∞∑

k=−∞
x[k]δ[n− k].

If the system is linear, then the output sequence y[n] is

y[n] = L{x[n]}

= L

{ ∞∑

k=−∞
x[k]δ[n− k]

}
=

∞∑

k=−∞
x[k]L{δ[n− k]}

=
∞∑

k=−∞
x[k]h[n, k],

where we define h[n, k] , L{δ[n − k]} as the output response at time
n to an impulse applied at time k.
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(4) A system is called time-invariant if shifting the input by k time units
results in shifting the output by k time unit. That is, suppose we know

x[n] → L{} → y[n]

with L{·} being a time-invariant operator. Then, the time-invariant
property tells us

x[n− k] → L{} → y[n− k].

So, for a linear time-invariant (LTI) system with impulse response h[n],
the output sequence is

y[n] =
∞∑

k=−∞
x[k]L{δ[n− k]}

=
∞∑

k=−∞
x[k]h[n− k]

= x[n] ∗ h[n],

which is the convolution between the input and the impulse response.
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(5) (Fourier Transform)
The Fourier transform, or more precisely the discrete-time Fourier
transform, for a sequence x[n] is defined by

X(ω) ,
∞∑

k=−∞
x[n]e−jωn for −π ≤ ω ≤ π.

The inverse Fourier transform is

x[n] =
1

2π

∫ π

−π

X(ω)ejωndω.

(6) The Fourier transform of y[n] = x[n] ∗ h[n] is

Y (ω) = X(ω)H(ω).

Proof:

Y (ω) =
∑

n

y[n]e−jωn =
∑

n

(
x[n] ∗ h[n]

)
e−jωn

=
∑

n

∑

k

x[k]h[n− k]e−jωn

=
∑

n

∑

k

x[k]h[n− k]e−jω(n−k+k)

=
∑

k

x[k]e−jωk

(∑
n

h[n− k]e−jω(n−k)

)
= X(ω)H(ω).

¥
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6 Random Sequences in LTI Systems

(1) When the input X[n] to a linear system is a random sequence, the
output Y [n] = L{X[n]} is also a random sequence in the sense that for
each outcome ε ∈ Ω, the deterministic sample X[n, ε] is mapped to

Y [n, ε] = L{X[n, ε]}.

That is, overall, Y [n, ε] is yet another mapping from each outcome ε
of the sample space to a new sample sequence.

(2) We are usually interested in the behavior of random sequences in LTI
systems.
Consider the following bounded LTI system with an impulse response
h[n]. Suppose the input random sequence X[n] is WSS.

X[n] → h[n] → Y [n]

Questions:

→ What is the correlation function RY Y [k, l] of Y [n]?

→ Is Y [n] WSS?

To answer these questions, we need to figure out the cross-correlation
RXY [k, l] first.

RXY [k, l] = E[X[k]Y ∗[l]]

= E

[
X[k]

( ∞∑
n=−∞

h[n]X[l − n]
)∗]

=
∞∑

n=−∞
h∗[n]E

[
X[k]X∗[l − n]

]

=
∞∑

n=−∞
h∗[n]RXX [k − l + n].

It is obvious that RXY [k, l] depends on the relative shift k − l only,
instead of two separate k and l. We can write the correlation function
in a more compact form as

RXY [m] , RXY [k, l] = h∗[−m] ∗RXX [m],

where m , l −m.
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Then, the auto-correlation function of Y is

RY Y [k, l] = E[Y [k]Y ∗[l]]

= E

[( ∞∑
n=−∞

h[n]X[k − n]
)
Y ∗[l]

]

=
∞∑

n=−∞
h[n]RXY [k − l − n],

which also depends on the relative shift k−l only. It is therefore evident
that the correlation function of Y [n] is shift-invariant. A more compact
form for RY Y [k, l] is

RY Y [m] =
∞∑

n=−∞
h[n]RXY [m− n]

= h[m] ∗RXY [m]

= h[m] ∗ h∗[−m] ∗RXX [m].

This suggests that we can compute the correlation function of Y [n]
from the impulse response and the correlation function of the input
random sequence. Here, it would be easier to work the problem in the
frequency domain, giving

SY Y (ω) = H(ω)H∗(ω)SXX(ω)

= |H(ω)|2SXX(ω).

where SY Y (ω), H(ω), and SXX(ω) are the discrete-time Fourier trans-
form of RY Y [m], h[m], and RXX [m], respectively. The correlation func-
tion can be found by the inverse Fourier transform

RY Y [m] =
1

2π

∫ π

−π

SY Y (ω)ejωmdω. (1)

Remarks:

– The output random sequence Y [n] is WSS.

– SY Y (ω) and SXX(ω) are called the power spectral density (PSD)
of Y [n] and X[n], respectively. From the definition of a density,
we can say the average power of the random sequence X[n] is

Pave =
1

2π

∫ π

−π

SXX(ω)dω

= RXX [0]

= E[|X[n]|2].
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So, for a zero mean WSS random sequence, the average power
is its variance.
We see this statement very often in the literature.

– Question:
Why can we say the Fourier transform of RXX [m] is the PSD of
X[n]?

6-19



7 Power Spectral Density

(1) Deterministic signals can be classified into (i) power signals, and (ii)
energy signals.

(i) For power signal, the power of a signal x[n] is defined by

P , lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2. (2)

(ii) For energy signal, the energy of a signal x[n] is defined by

E ,
∞∑

n=−∞
|x[n]|2.

The Parseval’s theorem states the following relation

∞∑
n=−∞

|x[n]|2 =
∞∑

n=−∞
x[n]x∗[n]

=
∞∑

n=−∞
x[n]

(
1

2π

∫ π

−π

X(ω)ejωmdω

)∗

=
1

2π

∫ π

−π

X∗(ω)

( ∞∑
n=−∞

x[n]e−jωm

)
dω

=
1

2π

∫ π

−π

|X(ω)|2dω, (3)

where, by the definition of a density, we can take |X(ω)|2 as the energy
spectral density.

(2) For a power signal x[n], its energy is infinity. We can define a truncated
version of x[n] as

xT [n] =

{
x[n] −N ≤ n ≤ N
0 otherwise,

which has a finite energy

E =
∞∑

n=−∞
|xT [n]|2 =

N∑
n=−N

|x[n]|2 (4)

=
1

2π

∫ π

−π

|XT (ω)|2dω,
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where the last equality comes from the Parseval’s relation and XT (ω)
is the Fourier transform of xT [n].

By dividing equation (4) by 2N + 1 and taking the limit, we have

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2

=
1

2π

∫ π

−π

lim
N→∞

1

2N + 1
|XT (ω)|2dω.

We can see from the above that the power spectral density of the signal
x[n] is

PSD = lim
N→∞

1

2N + 1
|XT (ω)|2.

(3) For random sequence x[n], the sample sequence X[n, εi] for each out-
come εi ∈ Ω is deterministic and can be plugged into the above relation.
That is, the PSD for X[n, εi] is

lim
N→∞

1

2N + 1
|XT (ω, εi)|2,

where XT (ω, εi) is the Fourier transform of the similarly truncated
XT [n, εi].

By averaging all realizations of sample sequences, we have the average
power

Pave = lim
N→∞

1

2N + 1

N∑
n=−N

E
[|X[n, εi]|2

]

=
1

2π

∫ π

−π

lim
N→∞

1

2N + 1
E

[|XT (ω, εi)|2
]
dω.

So, the power spectral density SXX(ω) of the random sequence X[n]
that bears more physical meanings is from the above

SXX(ω) = limN→∞ 1
2N+1

E [|XT (ω, εi)|2] . (5)

Next, we will show that the equation (5) is indeed the Fourier trans-
form of the correlation function of RXX [m].
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(4) (Wiener-Khinchine Theorem)
The PSD

SXX(ω) = lim
N→∞

1

2N + 1
E

[|XT (ω, εi)|2
]
,

if it exists, of a random sequence X[n] is the Fourier transform of
RXX [m].
Proof:

1

2N + 1
E

[|XT (ω, εi)|2
]

=
1

2N + 1

N∑

k=−N

N∑

l=−N

RXX [k − l]e−jω(k−l)

=
2N∑

m=−2N

RXX [m]

(
1− |m|

2N + 1

)
e−jωm

Then, it follows, by taking the limit of the above,

SXX(ω) = lim
N→∞

1

2N + 1
E

[|XT (ω, εi)|2
]

= lim
N→∞

2N∑
m=−2N

RXX [m]

(
1− |m|

2N + 1

)
e−jωm

=
∞∑

m=−∞
RXX [m]e−jωm.

¥

(4) Properties of PSD SXX(ω):

– SXX(ω) is real.

– SXX(ω) is an even function if X[n] is real.

– SXX(ω) ≥ 0 for all ω.
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8 Autoregressive Moving Average (ARMA)

Model

(1) What is ARMA model?

— A model used to describe time-varying phenomena, e.g. channel
fading, with correlation at different time instants

— Linear constant coefficient difference equation model having the
form [p. 364 in textbook]

X[n] =
M∑

k=1

ckX[n− k] +
L∑

k=0

dkW [n− k],

where W [n] is the input independent random sequence with zero
mean and unit variance, and X[n] is the output sequence.

⇒ X[n] is used to model a time-varying parameter that evolves
from X[m] with m ≤ n and perturbed by noise W [m] with m =
n− L, . . . , n.

— When L = 0, the model is called autoregressive (AR) model.

X[n] =
M∑

k=1

ckX[n− k] + d0W [n]

— When M = 0, the linear equation is

X[n] =
L∑

k=0

dkW [n− k],

and is called moving average.
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(2) Can use the concept of system to view ARMA.

W [n] → h[n] → X[n]

If the model is stable, we have the PSD of the output sequence

SXX(ω) = |H(ω)|2SWW (ω)

=

∣∣∣∑L
k=0 dke

−jωk
∣∣∣
2

∣∣∣1−∑M
k=0 cke−jωk

∣∣∣
2

(3) Consider the problem of generating a random sequence with a speci-
fied PSD or correlation function. (Used in computer simulation) See
textbook p. 355 and example 6.4-5 and 6.4-6.
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9 Markov Random Sequence

(1) Definition (Markov Property)
If the pdf or pmf of a random sequence X[n] has the property

fX

(
xn+1

∣∣∣xn, xn−1, · · · , x0

)
= fX

(
xn+1

∣∣∣xn

)

for all x0, · · · , xn, xn+1 with n ≥ 0, then we say X[n] is a Markov
random sequence.

Example:
Consider the Binomial random sequence

S[n] =
n∑

k=1

X[k]

with X[n] being the Bernoulli random sequence. The Binomial random
sequence is Markov since S[n] directly depends on S[n − 1], from the
recursive relation

S[n] = S[n− 1] + X[n].

Remarks:

— If the random sequence X[n] is Markov, the above relation can be
generalized to

fX

(
xn+k

∣∣∣xn, xn−1, · · · , x0

)
= fX

(
xn+k

∣∣∣xn

)

for all positive integer k.

— The Markov property allows us to specify a random sequence more
efficiently.

We can find the Nth order joint pdf for a Markov random sequence
X[n] using

fX

(
x0, · · · , xN−1

)
= fX(x0)

N−1∏

k=1

fX(xk|xk−1).
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We can see this from

fX

(
x0, · · · , xN−1

)
= fX

(
xN−1

∣∣∣x0, · · · , xN−2

)

︸ ︷︷ ︸
fX(xN−1|xN−2)

·fX

(
x0, · · · , xN−2

)

= fX (xN−1|xN−2) fX (xN−2|xN−3 · · · x0) fX

(
x0, · · · , xN−3

)

= · · ·
= fX (xN−1|xN−2) fX (xN−2|xN−3) · · · fX (x1|x0) fX(x0),

which is based on repeated use of conditioning and on the Markov
property.

– The discrete-valued Markov random sequence is called Markov
chain.

(2) Definition (Markov Chain)

A discrete-time Markov chain is a random sequence X[n] whose Nth
order conditional pmfs satisfy

PX

[
x[n]

∣∣∣x[n− 1], · · · , x[n−N ]

]
= PX

[
x[n]

∣∣∣x[n− 1]

]

for all n, and all integers N > 1. The value of X[n] at time n is called
the state at time n.

(3) We are particularly interested in the applications of Markov chains
which have a finite state space, i.e. X[n] takes on a finite set of values,
typically integer.

A state transition diagram can represent the transition probability ma-
trix. Such a diagram shows the states, and the probabilities are repre-
sented by numbers on arrows between states.

Example:
Consider the Binomial counting process S[n] =

∑n
k=1 X[k]. In each

step, S[n] can either stay the same or increase by one. The state tran-
sition matrix is given by

P =




1− p p 0 0 · · ·
0 1− p p 0 · · ·
0 0 1− p p · · ·
·· · · · · · ·


 .
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Example:
Suppose X[n] is a finite state Markov chain taking on values from
{1, 2, · · · ,M}. The probability that X[n] is in state j at time n is

PX [X[n] = j] =
M∑
i=1

PX

[
X[n] = j

∣∣∣X[n− 1] = i

]

︸ ︷︷ ︸
,pij

PX

[
X[n− 1] = i

]
.

Writing it in a matrix representation, we have

pT [n] = pT [n− 1] ·Pn (6)

where

p[n] ,
[
PX [X[n] = 1], · · · , PX [X[n] = M ]

]T

and the (i, j)th component of the matrix Pn is

Pn(i, j) = PX

[
X[n] = j

∣∣∣X[n− 1] = i

]
= pij.

The matrix Pn is referred to as the state transition matrix (or
transition probability matrix). If Pn does not change over time,
that is Pn does not depend on the time instant n, we say X[n] is a
homogeneous Markov chain.

(4) For a homogeneous Markov chain X[n], the state probability at time n
can be given by

pT [n] = pT [0] ·Pn,

which requires the knowledge of initial state probability p[0]. If the
matrix P is symmetric, we can resort to eigenvalue decomposition to
find Pn efficiently. Otherwise, we may need to solve the difference
equation (See p. 370 in textbook)

pT [n] = pT [n− 1] ·P.

(5) The finite dimensional distributions of X[n] can be completely specified
by the initial distribution p[0] and the transition matrix P.

PX

[
x[n] = xn, X[n− 1] = xn−1, · · · , X[0] = x0

]

= PX

[
X[n] = xn|X[n− 1] = xn−1

]
· · ·PX

[
X[1] = x1|X[0] = x0

]

×P

[
X[0] = x0

]
.
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10 Convergence

We have seen that a random sequence is actually a sequence of functions
(random variables).

Thus, before plunging into the convergence concepts of random sequences,
we need to review the basic definitions of the convergence of a sequence of
numbers and a sequence of functions.

(1) Definition (Convergence of A Sequence of Numbers)

A sequence of complex numbers xn converges to the complex number x
if given an ε > 0, there exists an integer n0 such that for n > n0, we
have

|xn − x| < ε.

Notationally, we can write

lim
n→∞

xn = x (or xn → x as n →∞).

(2) Definition (Convergence of A Sequence of Functions)

The sequence of functions fn(x) converges to the function f(x) if the
sequence of complex numbers fn(x0) converges to f(x0) for each x0.
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11 Convergence of Random Sequences

(1) Definition (Almost-Sure Convergence)

The random sequence X[n] converges almost surely to the random
variable X if the sequence X[n, ε] converges X[ε] for all ε ∈ Ω except
possibly on a set of probability 0.

Example:
Consider a sample space Ω = [0, 1], the closed interval between 0 and
1. Assume that each sample point ε ∈ Ω has a uniform distribution.
Then, the random sequence

X[n, ε] = exp
(−n2(ε− n)

)

converges to X = 0 almost surely.

(2) Definition (Mean-square Convergence)
A random sequence X[n] converges in the mean-square sense to the
random variable X if

E
[|X[n]−X|2] = 0

as n →∞.

Remarks:
The convergence in mean square sense has the physical concept of
power.

(3) Definition (Convergence in Probability)
A random sequence X[n] converges in probability to the random vari-
able X if for every ε > 0,

lim
n→∞

P [|X[n]−X| > ε] = 0.

Remarks:

— Convergence in mean square sense implies the convergence in
probability. This can be shown by the Chebyshev inequality.

— Convergence almost surely implies convergence in probability.
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Example:
(Difference between a.s. convergence and convergence in prob.)
Let the sample space be the closed interval Ω = [0, 1] with the uniform
probability distribution. Define the sequence as follows:

X[1, s] = s + I[0,1](s), (group 1)

X[2, s] = s + I[0,1/2](s), X[3, s] = s + I[1/2,1](s), (group 2)

X[4, s] = s + I[0,1/3](s), X[5, s] = s + I[1/3,2/3](s), X[6, s] = s + I[2/3,1](s),

X[7, s] = s + I[0,1/4](s), X[8, s] = s + I[1/4,2/4](s), · · ·
...

Define a random variable X as X(s) = s.

— Considering any sample sequence generated by picking a sample
point s in Ω, say s = 3/8. It is clear that X[n] does not converges
to X with probability one, since, for any sample point, there al-
ways exists one or two jumps in each group as n grows to a very
large number. So, we do not see the concept of convergence of a
regular (deterministic) sequence for every sample sequence.

— The random sequence X[n] does converges in probability. We have
to examine the probability measure

P
[
|X[n]−X| > α

]

for any α > 0 as n approaches infinity.

Let n be the time instant located at the kth point of the lth group.
Mathematically,

n = 1 + 2 + . . . + (l − 1) + k =
l(l − 1)

2
+ k.

With this, we know

X[n] = s + I[ k−1
l

, k
l
](s), yielding

X[n]−X = I[ k−1
l

, k
l
](s).

It follows that

P [|X[n]−X| > α] =





0, if s /∈ [k−1
l

, k
l
] for any α > 0;

0, if s ∈ [k−1
l

, k
l
] for α > s;

1/l, if s ∈ [k−1
l

, k
l
] for 0 < α < s .

As n →∞, we see the above probability goes to zero.
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