Stochastic Processes

Topic 7

Random Process

nctuee09f

Summary

In this topic, I will discuss:

- Definition of Random Processes
- Poisson Counting Process
- Random Processes in LTI Systems
- Power Spectral Density
- Markov Processes

Notation

We will use the following notation rules, unless otherwise noted, to represent symbols during this course.

- Boldface upper case letter to represent **MATRIX**
- Boldface lower case letter to represent **vector**
- Superscript $(\cdot)^T$ and $(\cdot)^H$ to denote transpose and hermitian (conjugate transpose), respectively
- Upper case italic letter to represent RANDOM VARIABLE

7-1

Figure 1: Illustration of a random process.

1 Random Process

(1) **Definition (Random Process)**

Let $\varepsilon \in \Omega$ be an outcome of the sample space Ω . Let $X(t, \varepsilon)$ be a mapping of the sample space Ω into a space of **continuous time func**tions. This mapping is called a random process if at each fixed time the mapping is a random variable.

Example:

Consider

$$X(t,\varepsilon) = A \cdot \cos(\omega_0 t + \theta(\varepsilon))$$

where $\theta(\varepsilon)$ is a random variable. Then, $X(t,\varepsilon)$ is a random process.

A random process can be simply regarded as $\frac{a \ function \ of \ time}{a}$ with one or more random parameters in it.

Remarks:

— A *random process* is a 2-variable *function* that evolves in continuous time.

A *random sequence* is a 2-variable *function* that evolves in discrete time.

- For a fixed outcome ε , say ε_1 , $X(t, \varepsilon_1)$ is called a *sample function* and is a non-random (*deterministic*) function. That is, once we know what the outcome ε is, the sample function associated with that ε is also determined.
- For fixed t, say t_1 , $X(t_1)$ is a random variable.
- If we sample the random process at N times t_1, \dots, t_N , we form a random vector $\left[X(t_1), X(t_2), \dots, X(t_N)\right]^T$.

(2) A random process X(t) is statistically specified by its complete set of nth order probability distribution (or density) function

$$F_X\left(x_1, x_2, \cdots, x_n; t_1, t_2, \cdots, t_n\right)$$

for all x_1, x_2, \dots, x_n , and for all time $t_1 < t_2 < \dots < t_n$.

(3) The mean function, autocorrelation function, and autocovariance function are defined as: Mean function:

$$\mu_X(t) \triangleq E\left[X(t)\right] = \int_{-\infty}^{\infty} x f_X(x;t) dx,$$

Autocorrelation function: for all t_1 and t_2

Autocovariance function: for all t_1 and t_2

$$K_X[t_1, t_2] \triangleq E\Big[(X(t_1) - \mu_X(t_1)) (X(t_2) - \mu_X(t_2))^* \Big] \\ = R_{XX}(t_1, t_2) - \mu_X(t_1) \mu_X^*(t_2).$$

(4) **Definition (Independent Increments)**

A random process is said to have *independent increments* if the set of n random variables

$$X(t_1), X(t_2) - X(t_1), \cdots, X(t_n) - X(t_{n-1})$$

are jointly independent for $t_1 < t_2 < \cdots < t_n$ and for all n > 1.

Example: (Random Sinusoid Waveform) (p. 405)

Consider the random process

$$X(t) = A \cdot \sin(\omega_0 t + \Theta),$$

where A and Θ are independent random variables and Θ is uniformly distributed over $[-\pi, +\pi]$.

Example: (Asynchronous Binary Signaling)

We can model, in the absence of noise and interference, the continuous time received binary signal X(t) of a communication link by the asynchronous binary signaling (ABS) process

$$X(t) = \sum_{n} X_{n} \cdot w\left(\frac{t - D - nT}{T}\right),$$

where $X_n \in [-1, +1]$ equally likely, D is the unknown delay typically modeled as a uniform random variable in [-T/2, T/2), w(t) = u(t + 1/2) - u(t - 1/2)is the signal pulse shaping waveform, and T is the symbol duration.

(Exercise) (p. 407) What are the mean and autocorrelation function of X(t)?

Figure 2: A sample function of the Poisson counting process.

2 Poisson Counting Process

- (1) **Poisson counting process** can be used to model
 - *Number* of customers arriving at a bank during a time interval (Management)
 - Number of buses passing by a cross road (Traffic Control)
 - *Number* of packets arriving at a buffer (Networking)
- (2) In general, we can model the total *number of "rare events"* that have occurred up to time t by

$$N(t) = \sum_{n=1}^{\infty} u(t - T[n]),$$

where u(t) is the unit step function and T[n] is the waiting time sequence, i.e.

$$T[n] = \sum_{i=1}^{n} \tau[i]$$

is the **waiting time** to the *n*th occurrence with $\tau[i]$ being exponentially distributed with rate λ , which we have seen previously.

The probability mass function of the Poisson counting process N(t) can be calculated by relating N(t) with T[n]. To be more specific,

$$P\Big[N(t) = n\Big] = P\Big[T[n] \le t, \ T[n+1] > t\Big].$$

The above probability mass function can be carried out as

$$P\Big[N(t) = n\Big] = P\Big[T[n] \le t, \ T[n+1] > t\Big]$$

$$= \int_0^\infty P\Big[T[n] \le t, \ T[n] + \tau[n+1] > t\Big|T[n] = \alpha\Big] \cdot f_T(\alpha; n) d\alpha$$

$$= \int_0^t P\Big[\tau[n+1] > t - \alpha\Big] \cdot f_T(\alpha; n) d\alpha$$

$$= \int_0^t \frac{\lambda e^{-\lambda\alpha} (\lambda\alpha)^{n-1}}{(n-1)!} \left(\int_{t-\alpha}^\infty \lambda e^{-\lambda\beta} d\beta\right) d\alpha$$

$$= \frac{(\lambda t)^n}{n!} e^{-\lambda t} u(t) \quad \text{for } t \ge 0, \quad n \ge 0,$$

which is the pmf of a Poisson random variable with mean λt .

Remarks:

— Poisson counting process has independent increments.

— For a time interval $(t_a, t_b]$, the increment $N(t_b) - N(t_a)$ has a pmf

$$P[N(t_b) - N(t_a) = n] = \frac{(\lambda(t_b - t_a))^n}{n!} e^{-\lambda(t_b - t_a)}.$$

— What is the autocorrelation function of N(t)? (p. 411)

Next, we will show the first 2 remarks:

Problem Formulation:

Let N(t) be a Poisson counting process with rate λ .

- (1) For any s > 0, show that the increment N(t + s) N(s), t > 0, is independent of N(u) with all $u \le s$.
- (2) Show that the increment N(t+s) N(s) in part (1) is also a Poisson process with rate λ .

Figure 3: The relation between τ' and T.

Figure 4: The illustration of the Poisson Counting Process N(t+s) - N(s) for $s \ge 0$.

Proof:

(1) Without loss of generality, we assume $T[n] \leq s < T[n+1]$.

Let $T \triangleq s - T[n]$. Knowing $\{N(u) : u \leq s\}$ is equivalent to knowing the event

$$A \triangleq \{\tau[1], \tau[2] \dots \tau[n], T \triangleq s - T[n]\}.$$

That is we know at what time points the Poisson process N(u) has a jump for $u \leq s$. Similarly, knowing $\{N(t+s) - N(s) : s \geq 0\}$ is equivalent to knowing the event

$$B \triangleq \{\tau' \triangleq T[n+1] - s, \tau[n+1], \tau[n+2] \ldots\}.$$

So, if we can show that T and τ' are independent, then we know event A and event B are statistically independent (based on knowing that $\tau[n]$ are independent random sequence). Fig. 1 and Fig. 2 might be helpful in understanding the above statement.

From Problem 7.8 of the textbook, we see that τ' is indeed independent of T and is exponentially distributed with parameter λ . Therefore, we can say $\{N(u) : u \leq s\}$ and $\{N(t+s) - N(s) : s \geq 0\}$ are statistically independent, proving that the Poisson counting process defined by

$$N(t) = \sum_{n=1}^{\infty} u(t - T[n])$$

has independent increments.

(2) Since τ' is also exponentially distributed with the same parameter as $\tau[n+1], \tau[n+2], \ldots$, we can see from Fig. 2, by moving the horizontal axis up *n* units and the vertical axis right *s* time units, that N(t+s) - N(s) is just another Poisson process with identical steering parameter λ .

Remarks:

We can view Poisson counting process from the following two perspectives:

(i) The Poisson process defined by

$$N(t) = \sum_{n=1}^{\infty} u(t - T[n])$$

can lead us to the following results:

- -N(t) for a given t is a Poisson random variable.
- N(t) has independent increments.
- $N(t_2) N(t_1)$ for $t_2 > t_1$ also has a Poisson distribution.
- (ii) On the other hand, if we adopt another definition of the Poisson process as in Definition 7.2-2 of textbook, we can reach the result that the interarrival times are i.i.d. exponential random variables.

3 Classification of Random Processes

- (1) Let X(t) and Y(t) be two random processes.
 - (a) X(t) and Y(t) are **uncorrelated** if

$$E[X(t_1)Y^*(t_2)] = E[X(t_1)]E[Y^*(t_2)]$$

for all t_1 and t_2 .

(b) X(t) and Y(t) are **orthogonal** if

$$E[X(t_1)Y^*(t_2)] = 0$$

for all t_1 and t_2 .

(c) X(t) and Y(t) are *independent* if the *n*th order joint pdf of X(t) and Y(t) factors for all *n*.

(2) **Definition (Stationary)**

A random process X(t) is **stationary** if its *n*th order joint distribution (or pdf) is the same as that of X(t+T) for all *T* and for all order $n \ge 1$.

(3) Definition (Wide-Sense Stationary)

A random process X(t) is *wide-sense stationary (WSS)* if its mean function is a constant, and

$$R_{XX}(t_1, t_2) = R_{XX}(t_1 + \tau, t_2 + \tau).$$

Or equivalently and more oftenly used, the autocorrelation function of the WSS random process X(t) is written as

$$R_{XX}(\tau) = E[X(t+\tau)X^*(t)]$$

for all t and τ .

- (4) Properties of $R_{XX}(\tau)$ for WSS X(t):
 - (a) $|R_{XX}(\tau)| \leq R_X(0)$ for arbitrary τ .
 - (b) $|R_{XY}(\tau)|^2 \leq R_{XX}(0)R_{YY}(0)$ for WSS X(t) and Y(t).
 - (c) The sequence $R_{XX}(\tau)$ is complex-conjugate symmetric, i.e.

$$R_{XX}(\tau) = R^*_{XX}(-\tau).$$

(d) For all $N \ge 1$, all $t_1 < t_2 \ldots < t_N$ and all complex a_1, \cdots, a_N , we must have

$$\sum_{k=1}^{N} \sum_{l=1}^{N} a_k a_l^* R_{XX}(t_k - t_l) \ge 0.$$

4 Linear Systems

Consider the following bounded (stable) LTI system with an impulse response h(t). Suppose the input random process X(t) is WSS.

Then,

$$Y(t) = \int_{-\infty}^{\infty} h(\tau) X(t-\tau) d\tau$$

is also WSS. This can be seen by finding the mean and autocorrelation function of Y(t).

1. The mean function

$$\mu_Y(t) = \int_{-\infty}^{\infty} h(\tau) E[X(t-\tau)] d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) \mu_X d\tau$$
$$= \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau,$$

which is also a constant for a stable LTI system h(t).

2. We need the cross-correlation function $R_{YX}(t_1, t_2)$ in order to find the autocorrelation function $R_{YY}(t_1, t_2)$ of the output random process Y(t).

$$R_{YX}(t_1, t_2) = E[X(t_1)Y^*(t_2)]$$

=
$$\int_{-\infty}^{\infty} h(\alpha)E[X(t_1 - \alpha)X^*(t_2)] d\alpha$$

=
$$\int_{-\infty}^{\infty} h(\alpha)R_{XX}(t_1 - t_2 - \alpha)d\alpha$$

=
$$h(\tau) * R_{XX}(\tau) \quad (\tau \triangleq t_1 - t_2)$$

We can similarly proceed to find that

$$R_{YY}(t_1, t_2) = h^*(-\tau) * R_{YX}(\tau) = h^*(-\tau) * h(\tau) * R_{XX}(\tau).$$

We see that $R_{YY}(t_1, t_2)$ depends only on the difference $\tau = t_1 - t_2$ of t_1 and t_2 . Thus, we can conclude that Y(t) is WSS. In general, we write

$$R_{YY}(\tau) = E[Y(t+\tau)Y^{*}(t)] \\ = h^{*}(-\tau) * h(\tau) * R_{XX}(\tau)$$

for WSS X(t) and stable LTI system h(t).

When converting to frequency domain, we have

$$S_{YY}(\omega) = |H(\omega)|^2 \cdot S_{XX}(\omega),$$

where

$$S_{YY}(\omega) = \int_{-\infty}^{\infty} R_{YY}(\tau) e^{-j\omega\tau} d\tau$$

is the continuous time Fourier transform of $R_{YY}(\tau)$ and likewise for $H(\omega)$ as well as $S_{XX}(\omega)$.

 $S_{XX}(\omega)$ is also defined to be the power spectral density of the WSS random process X(t).

5 Power Spectral Density

This part is analogous to that described in topic 6 for random sequences. We begin with the definitions of power and energy signals according to the theory of signals and systems.

- (1) Deterministic signals can be classified into (i) power signals, and (ii) energy signals.
 - (i) For power signal, the power of a signal x(t) is defined by

$$\mathbf{P} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt.$$
(1)

(ii) For energy signal, the energy of a signal x(t) is defined by

$$\mathbf{E} \triangleq \int_{-\infty}^{\infty} |x(t)|^2 dt.$$

The Parseval's theorem states the following relation

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega, \qquad (2)$$

where the continuous time Fourier transform is defined by

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{j\omega t} dt,$$

and, by the definition of a density, we can take $|X(\omega)|^2$ as the *energy* spectral density.

(2) For a power signal x(t), its energy is infinity. We can define a truncated version of x(t) as

$$x_T(t) = \begin{cases} x(t) & -T \le t \le T \\ 0 & \text{otherwise,} \end{cases}$$

which has a finite energy

$$E = \int_{-\infty}^{\infty} |x_T(t)|^2 dt = \int_{-T}^{T} |x(t)|^2 dt \qquad (3)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_T(\omega)|^2 d\omega,$$

where the last equality comes from the Parseval's relation and $X_T(\omega)$ is the Fourier transform of $x_T(t)$.

By dividing equation (3) by 2T and taking the limit, we have

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{2T} |X_T(\omega)|^2 d\omega.$$

We can see from the above that the power spectral density of the signal x(t) is

$$PSD = \lim_{T \to \infty} \frac{1}{2T} |X_T(\omega)|^2,$$

under which the area is the signal power.

(3) For a random process X(t), the sample function $X(t, \varepsilon_i)$ for each outcome $\varepsilon_i \in \Omega$ is deterministic and can be plugged into the above relation. That is, the PSD for $X(t, \varepsilon_i)$ is

$$\lim_{T \to \infty} \frac{1}{2T} |X_T(\omega, \varepsilon_i)|^2,$$

where $X_T(\omega, \varepsilon_i)$ is the Fourier transform of the similarly truncated $X_T(t, \varepsilon_i)$.

By averaging all realizations of sample functions, we have the average power

$$P_{\text{ave}} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left[|X(t,\varepsilon_i)|^2\right]$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega,\varepsilon_i)|^2\right] d\omega$$

So, the power spectral density $S_{XX}(\omega)$ of the random process X(t) that bears more physical meanings is from the above

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega, \varepsilon_i)|^2 \right] \quad , \tag{4}$$

which is how equation (7.5-9b) in the textbook comes from. Next, we will show that the equation (4) is indeed the Fourier transform of the correlation function of $R_{XX}(\tau)$.

(4) (Wiener-Khinchine Theorem)

The PSD, if it exists, of a random process X(t) is the Fourier transform of $R_{XX}(\tau)$. That is

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega, \varepsilon_i)|^2 \right]$$

and $R_{XX}(\tau)$ are continuous time Fourier transform pair. *Proof:*

$$\frac{1}{2T}E\left[|X_{T}(\omega,\varepsilon_{i})|^{2}\right] = \frac{1}{2T}\int_{-T}^{T}\int_{-T}^{T}R_{XX}(t_{1}-t_{2})e^{-j\omega(t_{1}-t_{2})}dt_{1}dt_{2}$$
$$= \int_{-2T}^{2T}R_{XX}(\tau)\left(1-\frac{|\tau|}{2T}\right)e^{-j\omega\tau}d\tau.$$

Then, it follows, by taking the limit of the above,

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega, \varepsilon_i)|^2 \right]$$

=
$$\lim_{T \to \infty} \int_{-2T}^{2T} R_{XX}(\tau) \left(1 - \frac{|\tau|}{2T} \right) e^{-j\omega\tau} d\tau$$

=
$$\int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau.$$

(5) Properties of PSD $S_{XX}(\omega)$:

- $-S_{XX}(\omega)$ is real.
- $-S_{XX}(\omega)$ is an even function if X(t) is real.
- $-S_{XX}(\omega) \geq 0$ for all ω .

6 Markov Processes

(1) **Definition (Markov Property)**

— If the pdf of a continuous-valued random process X(t) has the property

$$f_X\left(x_n \middle| x_{n-1}, x_{n-2}, \cdots, x_1; t_n, \dots, t_1\right) = f_X\left(x_n \middle| x_{n-1}; t_n, t_{n-1}\right)$$

for all x_1, \dots, x_n and all $t_n > t_{n-1} \dots > t_1$ with n > 0, then we say X(t) is a continuous-valued **Markov process**.

— If the pmf of a discrete-valued random process X(t) has the property

$$P_X\left(x_n | x_{n-1}, x_{n-2}, \cdots, x_1; t_n, \dots, t_1\right) = P_X\left(x_n | x_{n-1}; t_n, t_{n-1}\right)$$

for all x_1, \dots, x_n and all $t_n > t_{n-1} \dots > t_1$ with n > 0, then we say X(t) is a **discrete-valued** Markov process, or a **Markov chain** if X(t) takes on a set of finite or countable discrete values.

(2) Any independent increment process is Markov.

Figure 5: State transition diagram for an M/M/1 queue.

(3) M/M/1 Queue

M/M/1 queue is the simplest model in **Queueing Theory**. The first two M's respectively stands for Markovian and Memoryless. The memoryless property means the exponential distribution is involved in the M/M/1 queue. The 1 stands for that there is one server (processer) in the queueing system. Summarizing, an M/M/1 queue has

- Poisson arrivals (or equivalently, exponential inter-arrival time)
- Exponential service time
- Single server
- An infinite length buffer

Let's see a specific example.

The number N(t) of packets in an infinite size buffer can be modeled by an M/M/1 queue. The waiting time W_n for the *n*th packet in the queue can be described by

$$W_n = \max\left\{0, W_{n-1} + \tau_s[n-1] - \tau[n]\right\},\$$

where

 $\tau_s[n-1]$: service time to process the (n-1)th packet in the buffer $\tau[n]$: inter-arrival time between the (n-1)th and *n*th packet

The inter-arrival time $\tau[n]$ and the service time $\tau_s[n]$ are statistically independent and follow exponential distributions with parameters λ_n and μ_n , respectively. The number N(t) of packets in the M/M/1 queue at any time t can be visualized by a Markov chain state transition diagram as shown in Fig. 5. What are the state probabilities $P[N(t) = j] \triangleq P_j$ in the *steady state*?

We begin with the *transition probability*

$$P[N(t + \Delta t) = j | N(t) = i],$$

by which we aim at finding

$$P[N(t + \Delta t) = j] = \sum_{i} P[N(t + \Delta t) = j | N(t) = i] \cdot P[N(t) = i].$$
(5)

The transition probabilities are nonzero only when i = j - 1, j and j + 1 during small amount of time increase Δt .

$$P\left[N(t + \Delta t) = j | N(t) = j - 1\right] = P\left[0 < \tau[j] \le \Delta t \text{ and } \tau_s[j - 1] > \Delta t\right]$$
$$P\left[N(t + \Delta t) = j | N(t) = j + 1\right] = P\left[0 < \tau_s[j + 1] \le \Delta t \text{ and } \tau[j + 1] > \Delta t\right]$$
$$P\left[N(t + \Delta t) = j | N(t) = j\right] = P\left[\tau[j] > \Delta t \text{ and } \tau_s[j] > \Delta t\right].$$

By carrying out the above, we reach

$$\begin{split} P[N(t + \Delta t) &= j | N(t) = j - 1] = (1 - e^{-\lambda \Delta t}) e^{-\mu \Delta t} = \lambda \Delta t + o(\Delta t) \\ P[N(t + \Delta t) &= j | N(t) = j + 1] = (1 - e^{-\mu \Delta t}) e^{-\lambda \Delta t} = \mu \Delta t + o(\Delta t) \\ P[N(t + \Delta t) &= j | N(t) = j] = e^{-(\lambda + \mu) \Delta t} = 1 - (\lambda + \mu) \Delta t + o(\Delta t), \end{split}$$

where o(t) satisfies $\lim_{\Delta t\to 0} \frac{o(t)}{\Delta t} = 0$. Writing equation (5) in a matrix form for all j and i, we have

$$\mathbf{p}(t + \Delta t) = \mathbf{B} \cdot \mathbf{p}(t) + \mathbf{o}(t), \tag{6}$$

where $\mathbf{p}(t) = \left[P[N(t) = 0], \cdots, P[N(t) = j], \cdots\right]^T$ and

$$\mathbf{B} = \begin{bmatrix} 1 - \lambda \triangle t & \mu \triangle t & 0 & \cdots \\ \lambda \triangle t & 1 - (\lambda + \mu) \triangle t & \mu \triangle t & 0 & \cdots \\ 0 & \lambda \triangle t & 1 - (\lambda + \mu) \triangle t & \mu \triangle t & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

Rearranging equation (6), we get

$$\frac{d\mathbf{p}(t)}{dt} = \mathbf{A} \cdot \mathbf{p}(t),$$

where

$$\mathbf{A} = \begin{bmatrix} -\lambda & \mu & 0 & \cdots \\ \lambda & -(\lambda+\mu) & \mu & 0 & \cdots \\ 0 & \lambda & -(\lambda+\mu) & \mu & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

In the steady state, the derivative is a zero vector $d\mathbf{P}(t)/dt = \mathbf{0}$, giving

$$\mathbf{A} \cdot \mathbf{p} = \mathbf{0}.$$

Therefore, with $\sum_{j=1}^{\infty} P_j = 1$, we have the steady-state state probabilities

$$P_j = \rho^j (1 - \rho),$$

where $\rho=\lambda/\mu$ and we have assumed $\rho<1$ for convergence.

Possible contours of the covariance function of a wide-sense (WS) periodic random process.

Figure 6: Contour of a wide-sense periodic process.

7 Cyclostationary Process

(1) **Periodic**

A random process X(t) is **wide-sense periodic** if there is a T > 0 such that

$$\mu_X(t) = \mu_X(t+T)$$

and

$$K_{XX}(t_1, t_2) = K_{XX}(t_1 + T, t_2) = K_{XX}(t_1, t_2 + T)$$

for all t, t_1 , and t_2 .

Example:

The random process

$$X(t) = \sum_{k=1}^{\infty} A_k \exp\left(j\frac{2\pi kt}{T}\right)$$

with A_k being random variables are wide-sense periodic.

Possible contour plot of covariance function of WS cyclostationary random process.

Figure 7: Contour of a wide-sense cyclostationary process.

(2) Cyclostationary

A random process X(t) is **wide-sense cyclostationary** if there exists a positive value T such that

$$\mu_X(t) = \mu_X(t+T)$$

and

$$K_{XX}(t_1, t_2) = K_{XX}(t_1 + T, t_2 + T)$$

for all t, t_1 , and t_2 .

Example:

The binary phase-shift keying (BPSK) random process

$$X(t) = \sum_{k=-\infty}^{\infty} \cos\left(2\pi f(t-kT) + \theta[k]\right) p(t-kT),$$

with

$$\theta[k] = \begin{cases} \pi/2 & p = 1/2 \\ -\pi/2 & p = 1/2 \end{cases}$$

and p(t) = u(t) - u(t - T), is wide-sense cyclostationary.