
Stochastic Processes

Topic 7

Random Process

nctuee09f

Summary
In this topic, I will discuss:

• Definition of Random Processes

• Poisson Counting Process

• Random Processes in LTI Systems

• Power Spectral Density

• Markov Processes

Notation
We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

• Boldface upper case letter to represent MATRIX

• Boldface lower case letter to represent vector

• Superscript (·)T and (·)H to denote transpose and hermitian (conjugate
transpose), respectively

• Upper case italic letter to represent RANDOM VARIABLE
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Figure 1: Illustration of a random process.

1 Random Process

(1) Definition (Random Process)

Let ε ∈ Ω be an outcome of the sample space Ω. Let X(t, ε) be a map-
ping of the sample space Ω into a space of continuous time func-
tions. This mapping is called a random process if at each fixed time
the mapping is a random variable.

Example:

Consider
X(t, ε) = A · cos(ω0t + θ(ε))

where θ(ε) is a random variable. Then, X(t, ε) is a random process.

A random process can be simply regarded as a function of time

with one or more random parameters in it.
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Remarks:

— A random process is a 2-variable function that evolves in con-
tinuous time.

A random sequence is a 2-variable function that evolves in
discrete time.

— For a fixed outcome ε, say ε1, X(t, ε1) is called a sample func-
tion and is a non-random (deterministic) function. That is,
once we know what the outcome ε is, the sample function associ-
ated with that ε is also determined.

— For fixed t, say t1, X(t1) is a random variable.

— If we sample the random process at N times t1, · · · , tN , we form

a random vector
[
X(t1), X(t2), · · · , X(tN)

]T

.
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(2) A random process X(t) is statistically specified by its complete set of
nth order probability distribution (or density) function

FX

(
x1, x2, · · · , xn; t1, t2, · · · , tn

)

for all x1, x2, · · · , xn, and for all time t1 < t2 < · · · < tn.

(3) The mean function, autocorrelation function, and autocovariance func-
tion are defined as:
Mean function:

µX(t) , E
[
X(t)

]
=

∫ ∞

−∞
xfX(x; t)dx,

Autocorrelation function: for all t1 and t2

RX(t1, t2) , E
[
X(t1)X

∗(t2)
]

=

∫ ∞

−∞

∫ ∞

−∞
x1x

∗
2fX(x2, x2; t1, t2)dx1dx2,

Autocovariance function: for all t1 and t2

KX [t1, t2] , E
[(

X(t1)− µX(t1)
)(

X(t2)− µX(t2)
)∗]

= RXX(t1, t2)− µX(t1)µ
∗
X(t2).

(4) Definition (Independent Increments)

A random process is said to have independent increments if the set
of n random variables

X(t1), X(t2)−X(t1), · · · , X(tn)−X(tn−1)

are jointly independent for t1 < t2 < · · · < tn and for all n > 1.
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Example: (Random Sinusoid Waveform) (p. 405)

Consider the random process

X(t) = A · sin(ω0t + Θ),

where A and Θ are independent random variables and Θ is uniformly dis-
tributed over [−π, +π].

Example: (Asynchronous Binary Signaling)

We can model, in the absence of noise and interference, the continuous time
received binary signal X(t) of a communication link by the asynchronous
binary signaling (ABS) process

X(t) =
∑

n

Xn · w
(

t−D − nT

T

)
,

where Xn ∈ [−1, +1] equally likely, D is the unknown delay typically modeled
as a uniform random variable in [−T/2, T/2), w(t) = u(t + 1/2)− u(t− 1/2)
is the signal pulse shaping waveform, and T is the symbol duration.

(Exercise) (p. 407)
What are the mean and autocorrelation function of X(t)?
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Figure 2: A sample function of the Poisson counting process.

2 Poisson Counting Process

(1) Poisson counting process can be used to model

— Number of customers arriving at a bank during a time interval
(Management)

— Number of buses passing by a cross road (Traffic Control)

— Number of packets arriving at a buffer (Networking)

(2) In general, we can model the total number of “rare events” that
have occurred up to time t by

N(t) =
∞∑

n=1

u
(
t− T [n]

)
,

where u(t) is the unit step function and T [n] is the waiting time se-
quence, i.e.

T [n] =
n∑

i=1

τ [i]

is the waiting time to the nth occurrence with τ [i] being exponen-
tially distributed with rate λ, which we have seen previously.

The probability mass function of the Poisson counting process N(t) can
be calculated by relating N(t) with T [n]. To be more specific,

P
[
N(t) = n

]
= P

[
T [n] ≤ t, T [n + 1] > t

]
.
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The above probability mass function can be carried out as

P
[
N(t) = n

]
= P

[
T [n] ≤ t, T [n + 1] > t

]

=

∫ ∞

0

P
[
T [n] ≤ t, T [n] + τ [n + 1] > t

∣∣∣T [n] = α
]
· fT (α; n)dα

=

∫ t

0

P
[
τ [n + 1] > t− α

]
· fT (α; n)dα

=

∫ t

0

λe−λα(λα)n−1

(n− 1)!

(∫ ∞

t−α

λe−λβdβ

)
dα

=
(λt)n

n!
e−λtu(t) for t ≥ 0, n ≥ 0,

which is the pmf of a Poisson random variable with mean λt.

Remarks:

— Poisson counting process has independent increments.

— For a time interval (ta, tb], the increment N(tb)−N(ta) has a pmf

P [N(tb)−N(ta) = n] =
(λ(tb − ta))

n

n!
e−λ(tb−ta).

— What is the autocorrelation function of N(t)? (p. 411)

Next, we will show the first 2 remarks:

Problem Formulation:
Let N(t) be a Poisson counting process with rate λ.

(1) For any s > 0, show that the increment N(t + s) − N(s), t > 0, is
independent of N(u) with all u ≤ s.

(2) Show that the increment N(t + s)−N(s) in part (1) is also a Poisson
process with rate λ.
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Figure 4: The illustration of the Poisson Counting Process N(t+ s)−N(s)
for s ≥ 0.

Proof:

(1) Without loss of generality, we assume T [n] ≤ s < T [n + 1].

Let T , s − T [n]. Knowing {N(u) : u ≤ s} is equivalent to knowing
the event

A , {τ [1], τ [2] . . . τ [n], T , s− T [n]}.
That is we know at what time points the Poisson process N(u) has
a jump for u ≤ s. Similarly, knowing {N(t + s) − N(s) : s ≥ 0} is
equivalent to knowing the event

B , {τ ′ , T [n + 1]− s, τ [n + 1], τ [n + 2] . . .}.

So, if we can show that T and τ ′ are independent, then we know event
A and event B are statistically independent (based on knowing that
τ [n] are independent random sequence). Fig. 1 and Fig. 2 might be
helpful in understanding the above statement.
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From Problem 7.8 of the textbook, we see that τ ′ is indeed independent
of T and is exponentially distributed with parameter λ. Therefore, we
can say {N(u) : u ≤ s} and {N(t + s)−N(s) : s ≥ 0} are statistically
independent, proving that the Poisson counting process defined by

N(t) =
∞∑

n=1

u(t− T [n])

has independent increments.

(2) Since τ ′ is also exponentially distributed with the same parameter as
τ [n + 1], τ [n + 2], . . ., we can see from Fig. 2, by moving the horizontal
axis up n units and the vertical axis right s time units, that N(t+ s)−
N(s) is just another Poisson process with identical steering parameter
λ.

Remarks:
We can view Poisson counting process from the following two perspectives:

(i) The Poisson process defined by

N(t) =
∞∑

n=1

u(t− T [n])

can lead us to the following results:

– N(t) for a given t is a Poisson random variable.

– N(t) has independent increments.

– N(t2)−N(t1) for t2 > t1 also has a Poisson distribution.

(ii) On the other hand, if we adopt another definition of the Poisson process
as in Definition 7.2-2 of textbook, we can reach the result that the inter-
arrival times are i.i.d. exponential random variables.
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3 Classification of Random Processes

(1) Let X(t) and Y (t) be two random processes.

(a) X(t) and Y (t) are uncorrelated if

E[X(t1)Y
∗(t2)] = E[X(t1)]E[Y ∗(t2)]

for all t1 and t2.

(b) X(t) and Y (t) are orthogonal if

E[X(t1)Y
∗(t2)] = 0

for all t1 and t2.

(c) X(t) and Y (t) are independent if the nth order joint pdf of X(t)
and Y (t) factors for all n.

(2) Definition (Stationary)

A random process X(t) is stationary if its nth order joint distribution
(or pdf) is the same as that of X(t+T ) for all T and for all order n ≥ 1.

(3) Definition (Wide-Sense Stationary)

A random process X(t) is wide-sense stationary (WSS) if its mean
function is a constant, and

RXX(t1, t2) = RXX(t1 + τ, t2 + τ).

Or equivalently and more oftenly used, the autocorrelation function of
the WSS random process X(t) is written as

RXX(τ) = E[X(t + τ)X∗(t)]

for all t and τ .

(4) Properties of RXX(τ) for WSS X(t):

(a) |RXX(τ)| ≤ RX(0) for arbitrary τ .

(b) |RXY (τ)|2 ≤ RXX(0)RY Y (0) for WSS X(t) and Y (t).

(c) The sequence RXX(τ) is complex-conjugate symmetric, i.e.

RXX(τ) = R∗
XX(−τ).

(d) For all N ≥ 1, all t1 < t2 . . . < tN and all complex a1, · · · , aN , we
must have

N∑

k=1

N∑

l=1

aka
∗
l RXX(tk − tl) ≥ 0.
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4 Linear Systems

Consider the following bounded (stable) LTI system with an impulse response
h(t). Suppose the input random process X(t) is WSS.

X(t) → h(t) → Y (t)

Then,

Y (t) =

∫ ∞

−∞
h(τ)X(t− τ)dτ

is also WSS. This can be seen by finding the mean and autocorrelation func-
tion of Y (t).

1. The mean function

µY (t) =

∫ ∞

−∞
h(τ)E[X(t− τ)]dτ

=

∫ ∞

−∞
h(τ)µXdτ

= µX

∫ ∞

−∞
h(τ)dτ,

which is also a constant for a stable LTI system h(t).

2. We need the cross-correlation function RY X(t1, t2) in order to find the
autocorrelation function RY Y (t1, t2) of the output random process Y (t).

RY X(t1, t2) = E[X(t1)Y
∗(t2)]

=

∫ ∞

−∞
h(α)E [X(t1 − α)X∗(t2)] dα

=

∫ ∞

−∞
h(α)RXX(t1 − t2 − α)dα

= h(τ) ∗RXX(τ) (τ , t1 − t2)

We can similarly proceed to find that

RY Y (t1, t2) = h∗(−τ) ∗RY X(τ) = h∗(−τ) ∗ h(τ) ∗RXX(τ).

We see that RY Y (t1, t2) depends only on the difference τ = t1 − t2 of t1 and
t2. Thus, we can conclude that Y (t) is WSS. In general, we write

RY Y (τ) = E[Y (t + τ)Y ∗(t)]

= h∗(−τ) ∗ h(τ) ∗RXX(τ)
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for WSS X(t) and stable LTI system h(t).

When converting to frequency domain, we have

SY Y (ω) = |H(ω)|2 · SXX(ω),

where

SY Y (ω) =

∫ ∞

−∞
RY Y (τ)e−jωτdτ

is the continuous time Fourier transform of RY Y (τ) and likewise for H(ω) as
well as SXX(ω).

SXX(ω) is also defined to be the power spectral density of the WSS random
process X(t).
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5 Power Spectral Density

This part is analogous to that described in topic 6 for random sequences.
We begin with the definitions of power and energy signals according to the
theory of signals and systems.

(1) Deterministic signals can be classified into (i) power signals, and (ii)
energy signals.
(i) For power signal, the power of a signal x(t) is defined by

P , lim
T→∞

1

2T

∫ T

−T

|x(t)|2dt. (1)

(ii) For energy signal, the energy of a signal x(t) is defined by

E ,
∫ ∞

−∞
|x(t)|2dt.

The Parseval’s theorem states the following relation

∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞

−∞
|X(ω)|2dω, (2)

where the continuous time Fourier transform is defined by

X(ω) =

∫ ∞

−∞
x(t)ejωtdt,

and, by the definition of a density, we can take |X(ω)|2 as the energy
spectral density.

(2) For a power signal x(t), its energy is infinity. We can define a truncated
version of x(t) as

xT (t) =

{
x(t) − T ≤ t ≤ T
0 otherwise,

which has a finite energy

E =

∫ ∞

−∞
|xT (t)|2dt =

∫ T

−T

|x(t)|2dt (3)

=
1

2π

∫ ∞

−∞
|XT (ω)|2dω,

where the last equality comes from the Parseval’s relation and XT (ω)
is the Fourier transform of xT (t).
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By dividing equation (3) by 2T and taking the limit, we have

P = lim
T→∞

1

2T

∫ T

−T

|x(t)|2dt

=
1

2π

∫ ∞

−∞
lim

T→∞
1

2T
|XT (ω)|2dω.

We can see from the above that the power spectral density of the signal
x(t) is

PSD = lim
T→∞

1

2T
|XT (ω)|2,

under which the area is the signal power.

(3) For a random process X(t), the sample function X(t, εi) for each out-
come εi ∈ Ω is deterministic and can be plugged into the above relation.
That is, the PSD for X(t, εi) is

lim
T→∞

1

2T
|XT (ω, εi)|2,

where XT (ω, εi) is the Fourier transform of the similarly truncated
XT (t, εi).

By averaging all realizations of sample functions, we have the average
power

Pave = lim
T→∞

1

2T

∫ T

−T

E
[|X(t, εi)|2

]

=
1

2π

∫ ∞

−∞
lim

T→∞
1

2T
E

[|XT (ω, εi)|2
]
dω.

So, the power spectral density SXX(ω) of the random process X(t) that
bears more physical meanings is from the above

SXX(ω) = limT→∞ 1
2T

E [|XT (ω, εi)|2] , (4)

which is how equation (7.5-9b) in the textbook comes from. Next, we
will show that the equation (4) is indeed the Fourier transform of the
correlation function of RXX(τ).
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(4) (Wiener-Khinchine Theorem)

The PSD, if it exists, of a random process X(t) is the Fourier transform
of RXX(τ). That is

SXX(ω) = lim
T→∞

1

2T
E

[|XT (ω, εi)|2
]

and RXX(τ) are continuous time Fourier transform pair.
Proof:

1

2T
E

[|XT (ω, εi)|2
]

=
1

2T

∫ T

−T

∫ T

−T

RXX(t1 − t2)e
−jω(t1−t2)dt1dt2

=

∫ 2T

−2T

RXX(τ)

(
1− |τ |

2T

)
e−jωτdτ.

Then, it follows, by taking the limit of the above,

SXX(ω) = lim
T→∞

1

2T
E

[|XT (ω, εi)|2
]

= lim
T→∞

∫ 2T

−2T

RXX(τ)

(
1− |τ |

2T

)
e−jωτdτ

=

∫ ∞

−∞
RXX(τ)e−jωτdτ.

¥

(5) Properties of PSD SXX(ω):

– SXX(ω) is real.

– SXX(ω) is an even function if X(t) is real.

– SXX(ω) ≥ 0 for all ω.
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6 Markov Processes

(1) Definition (Markov Property)

— If the pdf of a continuous-valued random process X(t) has the
property

fX

(
xn

∣∣∣xn−1, xn−2, · · · , x1; tn, . . . , t1

)
= fX

(
xn

∣∣∣xn−1; tn, tn−1

)

for all x1, · · · , xn and all tn > tn−1 · · · > t1 with n > 0, then we
say X(t) is a continuous-valued Markov process.

— If the pmf of a discrete-valued random process X(t) has the prop-
erty

PX

(
xn

∣∣∣xn−1, xn−2, · · · , x1; tn, . . . , t1

)
= PX

(
xn

∣∣∣xn−1; tn, tn−1

)

for all x1, · · · , xn and all tn > tn−1 · · · > t1 with n > 0, then we say
X(t) is a discrete-valued Markov process, or a Markov chain
if X(t) takes on a set of finite or countable discrete values.

(2) Any independent increment process is Markov.

7-16



Figure 5: State transition diagram for an M/M/1 queue.

(3) M/M/1 Queue

M/M/1 queue is the simplest model in Queueing Theory. The first
two M’s respectively stands for Markovian and Memoryless. The mem-
oryless property means the exponential distribution is involved in the
M/M/1 queue. The 1 stands for that there is one server (processer) in
the queueing system. Summarizing, an M/M/1 queue has

— Poisson arrivals (or equivalently, exponential inter-arrival time)

— Exponential service time

— Single server

— An infinite length buffer

Let’s see a specific example.

The number N(t) of packets in an infinite size buffer can be modeled
by an M/M/1 queue. The waiting time Wn for the nth packet in the
queue can be described by

Wn = max
{

0,Wn−1 + τs[n− 1]− τ [n]
}

,

where

τs[n− 1] : service time to process the (n− 1)th packet in the buffer

τ [n] : inter-arrival time between the (n− 1)th and nth packet

The inter-arrival time τ [n] and the service time τs[n] are statistically
independent and follow exponential distributions with parameters λn

and µn, respectively. The number N(t) of packets in the M/M/1 queue
at any time t can be visualized by a Markov chain state transition di-
agram as shown in Fig. 5.
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What are the state probabilities P [N(t) = j] , Pj in the steady state?

We begin with the transition probability

P [N(t +4t) = j|N(t) = i],

by which we aim at finding

P [N(t +4t) = j] =
∑

i

P [N(t +4t) = j|N(t) = i] · P [N(t) = i]. (5)

The transition probabilities are nonzero only when i = j−1, j and j+1
during small amount of time increase 4t.

P
[
N(t +4t) = j

∣∣N(t) = j − 1
]

= P
[
0 < τ [j] ≤ 4t and τs[j − 1] > 4t

]

P
[
N(t +4t) = j

∣∣N(t) = j + 1
]

= P
[
0 < τs[j + 1] ≤ 4t and τ [j + 1] > 4t

]

P
[
N(t +4t) = j

∣∣N(t) = j
]

= P
[
τ [j] > 4t and τs[j] > 4t

]
.

By carrying out the above, we reach

P [N(t +4t) = j|N(t) = j − 1] = (1− e−λ4t)e−µ4t = λ4t + o(4t)

P [N(t +4t) = j|N(t) = j + 1] = (1− e−µ4t)e−λ4t = µ4t + o(4t)

P [N(t +4t) = j|N(t) = j] = e−(λ+µ)4t = 1− (λ + µ)4t + o(4t),

where o(t) satisfies lim4t→0
o(t)
4t

= 0. Writing equation (5) in a matrix
form for all j and i, we have

p(t +4t) = B · p(t) + o(t), (6)

where p(t) =
[
P [N(t) = 0], · · · , P [N(t) = j], · · · ]T

and

B =




1− λ4t µ4t 0 · · ·
λ4t 1− (λ + µ)4t µ4t 0 · · ·

0 λ4t 1− (λ + µ)4t µ4t 0
...

...
...

...
...


 .
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Rearranging equation (6), we get

dp(t)

dt
= A · p(t),

where

A =




−λ µ 0 · · ·
λ − (λ + µ) µ 0 · · ·
0 λ − (λ + µ) µ 0
...

...
...

...
...


 .

In the steady state, the derivative is a zero vector dP(t)/dt = 0, giving

A · p = 0.

Therefore, with
∑∞

j=1 Pj = 1, we have the steady-state state probabil-
ities

Pj = ρj(1− ρ),

where ρ = λ/µ and we have assumed ρ < 1 for convergence.
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Figure 6: Contour of a wide-sense periodic process.

7 Cyclostationary Process

(1) Periodic

A random process X(t) is wide-sense periodic if there is a T > 0
such that

µX(t) = µX(t + T )

and
KXX(t1, t2) = KXX(t1 + T, t2) = KXX(t1, t2 + T )

for all t, t1, and t2.

Example:
The random process

X(t) =
∞∑

k=1

Ak exp

(
j
2πkt

T

)

with Ak being random variables are wide-sense periodic.
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Figure 7: Contour of a wide-sense cyclostationary process.

(2) Cyclostationary

A random process X(t) is wide-sense cyclostationary if there exists
a positive value T such that

µX(t) = µX(t + T )

and
KXX(t1, t2) = KXX(t1 + T, t2 + T )

for all t, t1, and t2.

Example:
The binary phase-shift keying (BPSK) random process

X(t) =
∞∑

k=−∞
cos

(
2πf(t− kT ) + θ[k]

)
p(t− kT ),

with

θ[k] =

{
π/2 p = 1/2
−π/2 p = 1/2

and p(t) = u(t)− u(t− T ), is wide-sense cyclostationary.
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