
Stochastic Processes

Topic 9

Prediction and Kalman Filtering

nctuee09f

Reading:

• Textbook Sec. 9.2.

Summary

In this topic, I will discuss:

• Review of Conditional Expectation and MMSE

• Linear State Variable Model

• MMSE Prediction

• Kalman Filter

Notation

We will use the following notation rules, unless otherwise noted, to represent
symbols during this course.

• Boldface upper case letter to represent MATRIX

• Boldface lower case letter to represent vector

• Superscript (·)T and (·)H to denote transpose and hermitian (conjugate
transpose), respectively

• Upper case italic letter to represent RANDOM VARIABLE
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1 Prediction

(1) Review:

(a) MMSE: (topic 5) We want to estimate a random vector x based
on observation y using the minimum mean-squared error criterion.
The answer is

ĝmmse(y) = arg min
g(y)

E
[∣∣∣∣x− g(y)

∣∣∣∣2
]

= E[x|y]

, x̂mmse

(b) LMMSE: (topic 5) We want the rule g(y) to be constrained by
g(y) = A · y + b. We know

x̂lmmse = mx + KxyKy
−1

(
y −my

)
.

(c) Recall from HW 2, the extra problem.

Let x, y and z be collectively jointly Gaussian random vectors.

— If y and z are statistically independent, then

E[x|y, z] = E[x|y] + E[x|z]−mx,

where mx = E[x].

— If y and z are not necessarily statistically independent, then

E[x|y, z] = E[x|y, z̃]

= E[x|y] + E[x|z̃]−mx,

where z̃ = z− E[z|y].
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(2) Basic state variable model [1]

— The state variable model is often used to study a time-varying
(dynamic) phenomena embedded in observations or measurements,
e.g. time-varying channels appeared in the received signals of a
wireless link.

— The model is characterized by a state vector x[k] and a mea-
surement vector z[k].

State vector:

x[k + 1] = A[k + 1, k] · x[k] + B[k + 1, k] ·w[k] + C[k + 1, k] · u[k]

Measurement vector:

z[k + 1] = H[k + 1] · x[k + 1] + v[k + 1].

— w[k] is used to model

⇒ disturbance forces acting on the system

⇒ errors in modeling the system

⇒ probabilistic behavior of the state vector x[k]

— v[k] is used to model errors/noise in the measurement

— Example in a wireless communication link

In wireless communications, a time-varying channel vector pro-
cess x[k + 1] at time instant tk+1 is often described by the state
vector to specify it’s dynamic evolution from its previous state
x[k] at time instant tk. At the receiver, the received signal
z[k + 1] is corrupted by noise v[k + 1] and affected by the channel
vector x[k + 1].

The other factors in the wireless link such as channel coding or
desired and mostly unknown transmitted signal are incorporated
in the system matrix H[k + 1]. So, typically, the channel vector
x[k + 1] and the system matrix H[k + 1] are both unknown to the
receiver. However, in the following development, we will assume
that we have the knowledge of the system matrix H[k + 1].

We will employ the basic state variable model to establish the MMSE
predictor and the Kalman filter in the next part.
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Assumptions made to the model here

The model is repeated here for convenience.

State vector:

x[k + 1] = A[k + 1, k] · x[k] + B[k + 1, k] ·w[k] + C[k + 1, k] · u[k]

Measurement vector:

z[k + 1] = H[k + 1] · x[k + 1] + v[k + 1].

— u[k] is a known input. The matrices A[k + 1, k], B[k + 1, k], and
C[k + 1, k] are also known.

(In general, they may not be available)

— w[k] and v[k] are mutually uncorrelated jointly Gaussian white
noise sequence with

E[w[i]wH [j]] = Q[i] · δij and E[v[i]vH [j]] = R[i] · δij.

— The initial state vector x[0] is a Gaussian vector (all components
are jointly Gaussian) with known mean mx[0] and covariance ma-
trix Kx[0].

— The matrix R[i] is positive definite. (inverse exists)

— x[0] is statistically independent with w[k] and v[k].

Note:
When x[0], w[k] and v[k] are jointly Gaussian, then z[k], k = 1, 2, . . .
are also jointly Gaussian.
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(4) Prediction

— Problem Formulation

At time instant tk, we have the measured data vector y[k] =[
zT [k], . . . , zT [1]

]T
available. We want to predict the random

vector x[k + 1] that is about to occur at time tk+1 based on y[k]
using MMSE criterion.

Solution
From lectures in topic 5, we know the solution is

x̂[k + 1|k] , E
[
x[k + 1] | y[k]

]
.

Based on the state vector in the state variable model and the
assumptions made in the above, the predictor can be written as

x̂[k + 1|k] = A[k + 1, k] · x̂[k|k] + C[k + 1, k] · u[k],

where
x̂[k|k] , E

[
x[k] | y[k]

]

is the filtering result at time tk. At this point, we are not able
to proceed until we know what the filtering result x̂[k|k] is in the
next section. It is clear here that the prediction and filtering
are closely related.

9-5



— Error covariance matrix

The prediction error is defined by

x̃[k + 1|k] , x[k + 1]− x̂[k + 1|k].

Again from the state vector model, it immediately follows that

x̃[k + 1|k] = A[k + 1, k] · x̃[k|k] + B[k + 1, k] ·w[k].

It’s easy to show that the prediction error has zero mean. Then,
the prediction error covariance matrix is

P[k + 1|k] = E
[
x̃[k + 1|k]x̃H [k + 1|k]

]
(1)

= A[k + 1, k]P[k|k]AH [k + 1, k] + B[k + 1, k]Q[k]BH [k + 1, k],

where P[k|k] is the error covariance matrix of the filtering error
x̃[k|k].

Remark:

Note that x̂[0|0] and P[0|0] initialize the single-stage prediction and its
error covariance matrix, respectively. They both are

x̂[0|0] = E[x[0]|no measurement] = E[x[0]] = mx[0],

P[0|0] = E
[
x̃[0|0]x̃H [0|0]

]
= Kx[0].
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(5) Innovations Process

Now consider the predictor ẑ[k+1|k] of the measurement vector z[k+1].
We know ẑ[k + 1|k] = E

[
z[k + 1]|y[k]

]
.

The difference between the new observation z[k + 1] and the predictor
ẑ[k + 1|k] is often referred to as the innovations process, denoted by

z̃[k + 1|k] , z[k + 1]− ẑ[k + 1|k].

Remarks:

— The innovations process z̃[k + 1|k] and the measurement vector
z[k +1] are causally invertible. That is, we can compute one from
the other using physically realizable filter.

— From the measurement vector model, we know

ẑ[k + 1|k] = H[k + 1]x̂[k + 1|k] (2)

z̃[k + 1|k] = H[k + 1]x̃[k + 1|k] + v[k + 1]. (3)

— The innovations process is a zero mean Gaussian white noise se-
quence with covariance matrix

E[z̃[k + 1|k]z̃H [k + 1|k]] = H[k + 1]P[k + 1|k]HH [k + 1] + R[k + 1].

⇒ Justify that why the innovations process is white!!

— Why introducing innovations process?

The innovations process and z[k + 1] are physically equiva-
lent in the sense that one can be computed from the other using
physically realizable transformations. The appealing property of
being mutually orthogonal (or mutually independent in the jointly
Gaussian scenario) makes the algebraic derivations of Kalman fil-
ter more manageable by the use of innovations process rather than
the newly observed data z[k + 1]. The “innovations” provided by
z̃[i + 1|i] promise exactly identical information that the newly
measured z[k + 1] data can offer.
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2 Kalman Filter

(1) In words, Kalman filter is a recursive MMSE state estimator,
which uses all of the measurements up to and including the one made
at current time instant.

(2) (Problem Formulation)
We want to estimate x[k+1] based on the stacked measurement vector

y[k + 1] =
[
zT [k + 1], zT [k], . . . , zT [1]

]T
.

We know the solution is

x̂[k + 1|k + 1] = E[x[k + 1]|y[k + 1]].

However, as time grows, the computation involved increases as well.
Based on the state variable model, we intend to develop a recursive
form of the MMSE estimate.

(3) Here are the results:

— The recursive mean squared estimator x̂[k + 1|k + 1] of x[k + 1]
takes the form of prediction and correction as [1]

x̂[k + 1|k + 1] = x̂[k + 1|k]︸ ︷︷ ︸
prediction

+

Kalman Gain Matrix︷ ︸︸ ︷
G[k + 1]

Innovations︷ ︸︸ ︷
z̃[k + 1|k]︸ ︷︷ ︸

correction

for k = 1, 2, . . . where x̂[0|0] = mx[0] and z̃[k + 1|k] = z[k + 1] −
ẑ[k + 1|k] is the innovations process.

— G[k + 1] is called the Kalman gain matrix.
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— The Kalman gain matrix can be carried out by

G[k+1] = P[k+1|k]HH [k+1]·
(
H[k+1]P[k+1|k]HH [k+1]+R[k+1]

)−1

,

where P[k + 1|k] is as in (1) and

P[k + 1|k + 1]

=
(
I−G[k + 1]H[k + 1]

)
·P[k + 1|k] ·

(
I−G[k + 1]H[k + 1]

)H

+ G[k + 1]R[k + 1]GH [k + 1]

=
(
I−G[k + 1]H[k + 1]

)
·P[k + 1|k]

— The procedure of the Kalman filtering is illustrated in Fig. 1.

]0|0[P ]0|1[P

]1[G

]1|1[x̂

]0|1[~z ]0|1[x̂

]0|0[x̂

]1|1[P ]0|1[P M L
Figure 1: The procedure of the Kalman filtering.
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Example: Example 9.2-2 in the textbook on page 583.

Consider the Gauss-Markov signal model

X[n] = 0.9X[n− 1] + W [n], n ≥ 0,

with means equal to zero and σ2
W = 0.19. Assume X[−1] = 0. The

scalar measurement is

Y [n] = X[n] + V [n], n ≥ 0,

with σ2
V = 1.
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