Source Coding Homework #3 (H.-M. Hang, Oct. 2011)

Note that the full score of this homework assignment is 200 points (not 100 points).

- [40%] (1) Huffman code: For an alphabet $A = \{a_1, a_2, a_3, a_4\}$ with probabilities $P(a_1)=0.1$, $P(a_2)=0.3$, $P(a_3)=0.25$, $P(a_4)=0.35$, find the following Huffman codes. ((Sayood, pbm5, p.78))
 - [15%] (1.a) The Huffman Code A designed using the classnotes procedure (the first procedure in the textbook).
 - [15%] (1.b) The Huffman Code B designed using the minimum variance procedure in the textbook. (In the minimum variance procedure, at each step, the combined symbol (letter) is put as high in the list as possible.)
 - [10%] (1.c) Calculate the average bits of using (1.a) and (1.b) codes applied to this source. Compute the variances of the length of codewords in each case. Comment on the differences.
- [40%] (2) Error in Huffman Coding: We will explore the error effect on two equivalent Huffman codes. ((Sayood, pbm10, p.79))

Huffman Code A			
Symbol	Prob.	Codeword	
a_2	0.4	1	
a_1	0.2	01	
a_3	0.2	000	
a_4	0.1	0010	
a_5	0.1	0011	

Huffman Code B				
Symbol	Prob.	Codeword		
a_1	0.2	10		
a_2	0.4	00		
a_3	0.2	11		
a_4	0.1	010		
a_5	0.1	011		

. . ..

[10%] (2.a) Use Code A to encode the following sequence

```
a_2 a_1 a_3 a_2 a_1 a_2
```

Suppose there was an error in the channel and <u>the first bit</u> was received incorrectly ("1" \rightarrow "0"; "0" \rightarrow "1"). Decode the received binary sequence. How many characters are decoded in error before the first correctly decoded character?

[10%] (2.b) Repeat (2.a) using Code B.

[20%] (2.c) Repeat (2.a) and (2.b) with the error in the third bit.

[30%] (3) Arithmetic code: Given a number *a* in the interval [0,1) with an *n*-bit binary representation $[b_1 b_2 \dots b_n]$, show that for any other number *b* to have a binary repre-

sentation with $[b_1 \ b_2 \ \dots \ b_n]$ as the prefix, *b* must lie in the interval $\left[a, a + \frac{1}{2^n}\right]$.

((Sayood, pbm1, p.114))

[40%] (4) Arithmetic code: For the probability model below, decode a sequence of length 6 with the tag 0.63215699. ((Sayood, pbm6, p.115))

Symbol	Probability
a_1	0.2
a_2	0.3
a_3	0.5

[50%] (5) LZW code: A sequence is encoded using the LZW algorithm and the initial dictionary is given below.

Index	Codeword (Codebook entry)
1	a
2	ß
3	h
4	i
5	S
6	t

The output of the LZW encoder is as follows. Decode this sequence. ((Sayood, pbm4, p.139))

6 3 4 5 2 3 1 6 2 9 11 16 12 14

DUE (in class): November 3, 2011