Homework #2

1

Written: Not Due Programming: Due Nov. 14, 2019

Optional Problems: #2.73, 2.75, 3.4 (no need to determine a = 0.3), 3.14, 3.22

2.72

Consider the signal

$$x(t) = 2W\operatorname{sinc}(2Wt)\cos(2\pi f_0 t), \quad f_0 > W.$$

- a) Obtain the spectrum of $x_n(t) = x(t) + j\hat{x}(t)$.
- b) Obtain the spectrum of the complex envelope $\tilde{x}(t)$, where the complex envelope is defined in (2.294).
- c) Find the complex envelope $\widetilde{x}(t)$.

3.10

An AM modulator has output

$$x_c(t) = 30\cos(2\pi 200t) + 4\cos(2\pi 180t) + 4\cos(2\pi 220t).$$

Determine the modulation index and the efficiency.

Matlab Problems:

Please put your code and/or documentation into a directory using the format:

student ID number first name last name

as the directory name. Zip up the whole directory and send it to your instructor.

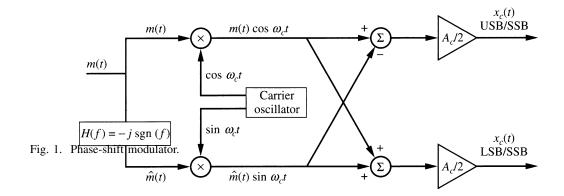
M1) DSB Modulation and Demodulation

Based on the original signal $m(t) = 2\cos 2\pi t + \cos 6\pi t$, we generate a DSB AM signal $x_c(t)$, which is expressed as

$$x_c(t) = [A_c + m(t)] \cos 200\pi t.$$

At the receiver, assume $x_c(t)$ is received without distortion and is multiplied by $2\cos(200\pi t + \theta)$ to get

$$d(t) = 2\cos(200\pi t + \theta) \cdot x_c(t).$$


- (a) Plot m(t) and $x_c(t)$ for $A_c = 0, 3$, and 6.
- (b) Plot the spectrum of m(t) and $x_c(t)$ for $A_c = 0, 3$, and 6.
- (c) Assume d(t) passes through a lowpass filter, which is defined as

$$h = \text{gaussian2D('gaussian', [1 13], 3)}$$

using Matlab and the gaussian2D function which will be supplied with the assignment. Plot the demodulated signal and spectrum for $\theta = 0$ and $\theta = \frac{\pi}{4}$.

M2) SSB Modulation

Implement the phase-shift modulation in Figure 1. Plot the magnitude of the upper and lower sideband signals vs. analog frequency, i.e. $|X_{U,SB}(F)|$ and $|X_{L,SB}(F)|$, with F denoting analog frequency. Assume a sampling frequency of $F_s = 1000$ Hz and N = 1000 (the number of FFT points).

