## Homework #4

## Written: Not Due Programming: Dec. 5, 2019

## Please show all work in order to get full credit.

**Optional Problems**: #6.6, 6.13, 6.17(a), 6.18, 6.26, 6.34

## **Matlab Problems:**

- M1) Using the message signal  $m(t) = 3\sin \pi t + 2\cos 2\pi t + \sin 4\pi t$ , a PM signal  $x_c(t) = 3\cos (100\pi t + \beta m(t))$  is generated.
- (a) Plot m(t) and  $x_c(t)$  for  $\beta = 0.5$ , 5 and 15.
- (b) Plot the spectrum of m(t) and  $x_c(t)$  for  $\beta = 0.5, 5$ , and 15.
- M2) Using the same m(t) in M1, a FM signal  $x_c(t) = 3\cos\left(100\pi t + 2\pi f_d \int_{\alpha} m(\alpha)d\alpha\right)$  is generated.
- (a) Plot m(t) and  $x_c(t)$  for  $f_d = 0.5, 5$ , and 15.
- (b) Plot the spectrum of m(t) and  $x_c(t)$  for  $f_d=0.5, 5$ , and 15.
- M3) Assume

$$x_t(t) = A_c \cos(150\pi t) + A_i \cos(150\pi t + 30\pi t),$$

with  $A_c = 100$ , is sent into an ideal discriminator. Plot the instantaneous phase deviation  $\psi(t)$  and the output  $y_D(t)$  of the ideal discriminator for

- (a)  $A_i = 0.1 A_c$ .
- (b)  $A_i = 0.95 A_c$ .
- (c)  $A_i = 1.15A_c$ .