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Signal Model and Classifications

 Deterministic signals
 Completely specified function of time: predictable, no 

uncertainty.  E.g.

 Random/Stochastic signals
 Take on random values at any given time instant and 

characterized by pdf: not completely predictable, with 
uncertainty.  E.g. x(n) = value of a die shown when tossed at time 
index n

 If the signal is random, how do we describe (model) it?
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Signal Model and Classifications

 Periodic signal
 A signal x(t) is periodic iff there exists a constant T0, 

such that x(t + T0) = x(t), ∀t.  The smallest such T0 is 
called fundamental period or simply period

 Aperiodic signal
 Cannot find a finite T0 such that x(t + T0) = x(t), ∀t
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Signal Model and Classifications

 Phasor signal and spectra
 A special periodic function

 Why use this complex signal?
 Key part of modulation theory
 Construction signal for almost any signal
 Easy mathematical analysis for signal
 Phase carries time delay information
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Signal Model and Classifications

 More on phasor signal
 Information is contained in A and t (given a fixed f0 or ω0)
 The related real sinusoidal function

 In vector form graphically
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Signal Model and Classifications

 Frequency-domain representation
 Line spectra

Single-sided (SS) amplitude and phasor vs. double-sided (DS):

 ( )x t ( )x t
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Signal Model and Classifications

 Singular functions
( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )0 0

Unit impulse function:  
1. Definition

                                1

 0  0

:  
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3. Basic function for linearly constructing a time signal

                          

4. Some properties
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Signal Model and Classifications
( )

( )

( )
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5. What is  precisely?  Some intuitive ways of realizing it:

1lim ,  ,
E.g. 1               2

0,      otherwise
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⇒ d zero width in the limit as some
parameter goes to zero is a suitable representation
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Signal Model and Classifications

( )

( ) ( ) ( ) ( )

Unit step function:  
Definition
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Signal Classifications: Energy & Power

( )

( )

2

2

This classification will be needed for the later analysis of
deterministic and random signals

Energy:    lim

1Power:     lim
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Signal Classifications: Energy & Power
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Example 1:
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Signal Classifications: Energy & Power
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Example 2:
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Signal Classifications: Energy & Power
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Signal Classifications: Energy & Power

 If x(t) is periodic, then it is meaningless to find its energy, 
we only need to check its power

 Noise is often persistent and is often a power signal
 A realizable LTI system can be represented by a signal 

and mostly is an energy signal
 Power measure is useful for signal and noise analysis
 The energy and power classifications of signals are 

mutually exclusive, i.e. cannot be both at the same time.  
But a signal can be neither energy nor power signal
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Signals and Linear Systems

Hx(t) y(t)

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2 1 2

Linear and Time-Invariant (LTI) System

Linear System satisfies superposition principle:

Time-Invariant:  

y t H x t x t H x t H x t y t y t

y t H x t H x t y t

α α α α

τ τ

= + = + = +  

= ⇒ − = −      

H
x(t)

y(t)
delay

Hdelay

y(t-τ)

x(t-τ)
yτ(t)

=?
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LTI Examples

( ) ( )1) y t x tα=

( ) ( )2)  ,  where  is a constanty t x t c c= +
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Complete Characterization of LTI Systems

( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )

The unit impulse function is key to the characterization
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Convolution Example
( ) ( ) ( ) ( ) ( )

( )
,   for 1,  2

Find .
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Convolution Using Matrices and Vectors 
(Digression on DT convolution)

[ ]

Suppose 3 and 4 :
[0] [0] 0 0 0
[1] [1] [0] 0 0 [0]
[2] [2] [1] [0] 0 [1]
[3] 0 [2] [1] 0 [2]
[4] 0 0 [2] [1] [3]
[5] 0 0 0 [2]

h xL L
y h
y h h x
y h h h x
y h h h x
y h h x
y h

= =

   
               = ⇔ =                  
   

y Hx

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ]
( ) [ ] [ ] [ ]

Suppose we are only interested in a single output sample,
* ( ) ,

where
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1 1

T
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T
h

T
h

y n h n x n h k x n k n

h h h L

n x n x n x n L

= = − =

 = − 

 = − − + 

∑ h x

h

x




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BIBO Stability

 BIBO Stability
 If and only if every bounded input sequence produces a 

bounded output sequence.

( ) ( ) ( )

( ) ( )

( )

max max

max

System is BIBO iff 

y t x h t d

x t h d

h d
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BIBO Stability Examples

( ) ( )
( )

( )( ) ( ) ( )
[ ]( )

1) 

Given .  Then

                          

As ,   will be unbounded, therefore, the system is not BIBO stable

x

x

y t tx t

x t B

T x t tx t t x t t B

t T x n

=
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= ≤ =

→∞

( ) ( )
( )

( )( ) ( )
( ) ( )

2) ,  for 1

Given .  Then

                                      

The inequality is true because  is a compressed version of .  Therefore, the system
is BIBO stable

x

x

y t x t

x t B

T x t x t B

x t x t

α α

α

α

= >

<
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Causality

 A system is causal if current output does not 
depend on future input, or current input does not 
contribute to the output in the past

( ) ( ) ( ) ( ) ( )
( )

0

0,   for  0

y t h x t d h x t d

h t t

λ λ λ λ λ λ
∞ ∞

−∞
= − = −

⇒ = <

∫ ∫
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Eigenfunctions of LTI System

Consider

x(t) y(t)

( ) ( )Let ,  where .  What is ?
What is the relation to eigenvalues and eigenvectors?

jstx t Ae s j y tσ ω= = +

LTI, h(t)



DEE3334: Principles of  
Communication Systems 24

System Transmission Distortion and 
System Frequency Response
 Since almost any input x(t) can be represented by a linear 

combination of orthogonal sinusoidal basis functions 
ej2πft, we only need to inject Aej2πft to the system to 
characterize the system’s properties, and the eigenvalue

carries all the system information responding to Aej2πft

 In communication theory, transmission distortion is of 
primary concern in high-quality transmission of data.  
Hence, the proper representation for the transmission 
channel (remember, convolutive noise is troublesome)

( ) ( )2j fth t e dt H fπα
∞ −

−∞
= =∫
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3 Types of Distortion of a Channel

 Amplitude distortion
 Linear system but the amplitude response is not 

constant
 Phase distortion
 Phase (delay) distortion

 Linear system but the phase shift is not a linear function of 
frequency

 Nonlinear distortion
 Nonlinear system
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Fourier Series

( )

( )

( ) ( )
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00
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0

22
0

Complex exponential respresentation
                          

1                     

Sinusoidal respresentation
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Phasor representation:  

if  is real

            

            

                 2 cos 2  
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j nf t X j nf t X
n

n

n n
n

X X e

x t

X X e X e

x t X X e e

X X nf t X

π π

π

−

∞

∠

∠ − ∠
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Note:

• n = 1 term is called the fundamental

• n = 2, 3, … terms are called the 2nd, 
3rd , …harmonics, respectively
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Fourier Series

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
0

0 0 0
1
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1 1

0
0

Trigonometric respresentation

2 cos cos 2 sin sin 2  

                 cos 2 + sin 2 ,

where  2 cos ,   2 sin    or
2   cos 2

n n n
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n n n n n n
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=∫ ∫

( ) ( )0 0
1
2 cos 2n n

n
x t X X nf t Xπ

∞

=

= + +∠∑
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Properties of Fourier Series
( )

( ) ( )

( )

( ) ( ) ( )
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0
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1"DC" coefficient:   average value of 

1"AC" coefficients:  
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+
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=
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=
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∫
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∫
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1where  Re cos 2

1            Im sin 2

Hence
         Re Re ,   Im Im

             

n

t T

t

j X
n n n n

t T

n t

t T

n t

n n n n
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Properties of Fourier Series
( ) ( )
( ) ( )

( )
( )

( ) 0 02 2
0

Linearity:               ,   

                              

Time reversal:       

                              

Time & freq shifting:       ;   
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−

↔ ↔
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Multiplication:     ,   

                             

Conjugation and Conjugate Symmetry
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↔ ↔
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 


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Properties of Fourier Series

( )

( )

( )
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Parseval's Theorem:
Power in time domain = power in frequency domain
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=
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=
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∑∫
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Fourier Series for Several Periodic Signals
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Example 1
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Half-rectified sine wave; period 2 /  
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0,               / 2 0
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n n n
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= 
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
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

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Example 1
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Example 2

( )
0

1
2

n

t nT
x t A

τ

τ

 − − 
= ∏ 

 
 

∑

Periodic 
extension shift ( )

11,   
2

0,      else

t
t

 ≤∏ = 


τ T0 T0+τ

A

1/2-1/2

1

t

t

( ) ( )

( )
( )
( )
( )

0 0
0

0 0

0 0

0 0 0 0
0

0 0 0

1sinc             (recall )

,                       sinc 0,
sinc ,   ,   >0 and sinc 0,

,   <0 and sinc 0,

j nf jn
n

n n

AX nf e t e
T T

nf nf
AX nf X nf nf nf
T

nf nf nf

π τ ω ττ τ δ τ

π τ τ
τ τ π τ π τ

π τ π τ

− −= − ↔

− >
⇒ = ∠ = − + <
− − <

+π and –π added to account for the fact 
that |sinc(nf0τ)| = -sinc(nf0τ) when 
sinc(nf0τ) < 0.  Choice of  + or – are 
arbitrary, as long as the phase function 
is odd
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Example 2

 Zero-crossings occur at 1/τ Hz
 τ decreases (increases), distance between zero-crossings increases 

(decreases)
 T0 decreases (increases), space between the spectra lines increases 

(decreases)

( ) 0
0

0

sinc j nf
n

AX nf e
T

π ττ τ −=
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Fourier Series and Fourier Transform

Fourier Series Fourier Transform
Good orthogonal basis functions for a periodic function
1. Intuitively, basis functions should also be periodic 
2. Intuitively, periods of the basis functions should be equal to 

the period or integer fractions of the target signal
3. Fourier found that sinusoidal functions are good and smooth 

functions to expand a periodic function

Good orthogonal basis functions for an aperiodic function
1. Already know sinusoidal functions are good choice
2. Sinusoidal components should not be in a 

“fundamental & harmonic” relationship
3. Aperiodic signals are mostly finite duration
4. Consider aperiodic function as a special case of 

periodic function with infinite period

Synthesis & analysis (reconstruction & projection) Synthesis & analysis (reconstruction & projection)

( )

( ) 0

0 0

0 0

Given period  with period 1/ ,
2 , it can be synthesized as

            

 is the spectra coefficient, spectra amplitude response
To synthesize, it must first analyze it and find 
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n

x t T f
f

x t X e
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ω π
=

=

≈∑

( )0 0
0

00

By orthogonality
1           

n

t T jn t
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X

X x t e dt
T
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( ) ( ) ( )

( ) ( ) ( )
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0

0

2

0

2

2

Given aperiod  with period 1/ ,
2 , it can be synthesized as

1lim
2

By orthogonality

         (FT/freq response of )

  

jnd t j t j ft
n fd n

j ft

t

j f

x t T df
d df

x t X e X e d X f e df

X f x t e dt x t

x t X f e

ω ω π

ωω

π

π

ω ω π

ω ω
π→

−

= →∞

= =

≈ = =

=

⇒ =

∑ ∫ ∫

∫
  (Inverse FT)t

f
df∫
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Fourier Series and Fourier Transform
Frequency components
1. Decompose a periodic signal into countable

frequency components
2. Has a fundamental frequency and many other 

harmonics

3. Discrete line spectral

Frequency components
1. Decompose an aperiodic signal into 

uncountable frequency components
2. No  fundamental frequency and contain all 

possible freqs

3. Continuous spectral density

Power Spectral Density Energy  Spectral Density

0 0

:   amplitude

:  phase of 

njn t j X jn t
n n

n

n n

X e X e e

X

X X

ω ω∠=

∠

( ) ( ) ( )2 2 ,j X fj ft j ftX f e X f e e

f

π π∠=

−∞ < < ∞

( )0 0

0

2

2 2

0

                  
and by Parseval's theorem

1

n

t T

nt
n

X

P x t dt X
T

+
= =∑∫

( )

( ) ( )

2

2 2

               

and by Parseval's theorem

t f

X f

E x t dt X f df= =∫ ∫
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Continuous-Time Fourier Transform 
(CTFT) (Pictorial Depiction)
 Main idea: Decomposing a signal into its sinusoidal 

components

 A specific case of projection of vectors.
 Sinusoidal/exponential functions (of different ω’s) form the basis 

vectors. 
 Signal to be decomposed is the vector

0j te

1j te

2j te

( )0X ( )1X

( )2X

  

1 1 2 2 3 3
analysis analysis analysis

synthesis synthesis synthesis

Recall the projection matrix: .

If  is orthonormal(rewrite as ), then
                                  

H

H

i
H H H

=

= + +

vvP
v v

v q
a q q a q q a q q a
  

( ) ( )

( ) ( )

2

2

Analysis:  

Synthesis: 

j ft

t

j ft

f

X f x t e dt

x t X f e df

π

π

−=

=

∫
∫
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Symmetry Properties

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

*

*

For real aperiodic : ,  or ,  

For real aperiodic : ,  or ,  
n n n n n nx t X X X X X X

x t X f X f X f X f X f X f
− − −= = ∠ = −∠

= − = − ∠ = −∠ −

( )

( )

( )

0

0

0

0

0

0

20

/ 2 2

/ 2

/ 22

/ 2

22 / 2 2 / 2

Example 2.8:

Given .  Find the CTFT.

         

         
2

         
2

         

j ft

t

t j ft

t

tj ft

t

j ftj f j f

t tx t A

t tX f A e dt

A e dt

A e
j f
A e e e

j f

π

τ π

τ

τπ

τ

ππ τ π τ

τ

τ

π

π

−

+ −

−

+−

−

−−

− = ∏ 
 

− = ∏ 
 

=

 = −  

= −

∫

∫

( )

( ) ( )

0

0

2

2

sin

sin
         sinc                (sinc ( ) )

j ft

j ft

A f
e

f
x

A f e x
x

π

π

τ π τ
π τ

π
τ τ

π

−

−

=

= 
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Fourier Transform of Singular Functions

( )  is not an energy signal, hence doesn't satisfy Dirichlet
(pronounced dir ric clay) conditions, i.e. signal must be
bounded, must be absolutely integrable, ...
However, its FT can be obtained by formal

tδ

( ) ( )

( ) ( )0 02 2
0 0

 definition

                                    1,     1    

                  ,         

FT FT

FT FT
j ft j f t

t t

A t t Ae Ae A f fπ π

δ δ

δ δ−

→ →

− → → −
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Example
( )

( )

( )


( )

( )

0

0

0

0 0

0 0

0

2
0

  sifting
property

2
0 0

2 2
0

2 2
0 0

0 0

Find CTFT of  

                          

n

j nf t
n

n n

j nf t
n T

j nf t j nf t
n

n n

j nf t j nf t

n n

n

t nT

t nT X e

X f t e dt f

x t X e f e

F f e f F e

f f nf

π

π

π π

π π

δ

δ

δ

δ

−

−

− =

= =

= =

   =   
   

= −

∑

∑ ∑

∫

∑ ∑

∑ ∑

∑
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Fourier Transform of Periodic Signals 
(Signals that are not energy signals)

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

Given a periodic     

Why?

Define ,  ,  i.e.   one period of 

*

From convolution theorem

        

                 

sjn t
n n s

n n

s
n

s s
n n

s
n

x t X e X f X f nf

x t p t nT n p t x t

x t t nT p t p t nT

X f F t nT P f

ω δ

δ

δ

= ↔ = −

= − ∀ =

 = − = −  

 = − 
 

∑ ∑

∑

∑ ∑

∑
( ) ( )

( ) ( )                 

s s
n

s s s
n

f f nf P f

f P nf f nf

δ

δ

= −

= −

∑

∑
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Poisson Sum Formula

( )
( ){ } ( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

1

2

1

1

2

Taking the inverse CTFT of 

                   

            

  

       

                   

  

s

s

s
n

s s s
n

s s s

j nf t

n n

j nf t

s

s

n

s

s s
n

n

X f

F X f x t p t nT

F f P nf f nf

f P nf F f nf

f P

p t nT f P nf

nf

e

e π

π

δ

δ

−

−

−

= = −

 = − 
 

 = − 
 

=

− =⇒

∑

∑

∑

∑ ∑

∑

∑

 (Poisson sum formula)

Sampling of 
CTFT coeff. at nfs
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Example

( ) ( )

( )

( ) ( )

( )


( )

0

0

0

0 0

0

2
0

  sifting
property

2
0

2

0

2
0

Given .  Find its CTFT.

Since  is periodic, it can be
represented by its CTFS coefficients

n

j nf t
n

n n

j nf t
n T

j nf j nft
n

n

t

n

x t t nT

x t

x t t nT X e

X f t e dt f

x t X e f e

π

π

π π

δ

δ

δ −

= −

= − =

= =

⇒ = =

∑

∑ ∑

∫

∑ ∑

( ) ( ) ( )

( ) ( )
( )

( ) 0

0

0

2
0

2
0

0 0

0 0

2
0 0

Using the Poisson sum formula

 is the CTFT of , but sampled at .  

From above, 1.

which agrees with the result of the CTFS.

j nf t

n n

j nf t j nf t

nn

x t t nT f P nf e

P nf t nf

t

f P n f ef e π

π

π

δ

δ

δ

= − =

↔

⇒ =

∑ ∑

∑∑
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Time-Average Correlation of Energy 
Signal (Deterministic Signals)

( ) ( ){ } ( ) ( ){ } ( ){ } ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

( )

( ){ } ( ) ( )
( )

( )( ) ( )

( ) ( )

1 1 * 1 1 *

 real *
2 2 2 *

2

*

       * lim

Note:
Assuming  is real because

Energy:   0

T

TT

xt
j f j ft j ft

t t

F G f F X f X f F X f F X f

x x x x d x x d

x

F x x e d x t e d x t e d X f

E x d

λ

ττ
π τ π π

τ

λ

φ τ

τ τ λ λ τ λ λ λ τ λ

τ

τ τ τ τ τ

φ λ λ

− − − −

−→∞

=−
− −

= =

= − = + = +

− = − = = =

= =

∫ ∫

∫ ∫ ∫

∫


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Time-Average Correlation of Power Signal 
(Deterministic Signals)

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ){ }

0

*

*

0

2*

,

1lim  ,   for aperiodic signal
2        1 ,           for periodic signal

0 , ,   

Power Spectral Density:        (Wiener-Khinchine theor

T

TT

T

f

R x t x t

x t x t dt
T

x t x t dt
T

R x t x t x t S f df

S f F R

τ τ

τ

τ

τ

−→∞

+

 += 
 +


= =

=

∫

∫

∫





( ) ( ){ } ( )2
0

em)

For periodic power signal

n
n

S f F R X f nfτ δ= = −∑
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Interpretation of Time-Average 
Correlation
 φ(τ) and R(τ) measure the similarity between the 

signal at time t and t+τ
 G(f) and S(f) represent the signal energy or power 

per unit frequency at frequency f
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Properties of Time-Average Correlation

 R(0) = power = <|x(t)|2> ≥ R(τ), ∀τ , max{R(τ)} = 
R(0)

 R(τ) is even for real signals:  R(-τ) = <x(t),x(t-τ)>  
= R(τ)

 If x(t) does not contain a period component, then

 If x(t) is periodic with period T0, then R(τ) is 
periodic in τ with the same period

 S(f) = F{R(τ)} ≥ 0, ∀f

( ) ( ) 2
lim R x t
τ

τ
→∞

=
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Time-Average Crosscorrelation

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

*

*

*

Crosscorrelation of two power signals
, ,

1        lim  
2

Crosscorrelation of two energy signals

        

 
Remarks:
               

               

T

TT

xy t

xy yx

R x t y t x t y t

x t y t dt
T

x t y t dt

R R

τ τ τ

τ

φ τ τ

τ τ

φ

−→∞

+ = −

= +

= +

= −

∫

∫



( ) ( )*
xy yxτ φ τ= −
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I/O Relationships of LTI Systems for 
Time-Average Correlation 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

*

2

1. *

2. * *

3. 

4. 

yx xx xx

yy xx

yx xx

yy xx

R h R h R d

R h h R

S f H f S f

S f H f S f

λ
τ τ τ λ τ λ λ

τ τ τ τ

= = −

= −

=

=

∫
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Periodic Sampling

C/Dxc(t) x[n]

Ideal continuous-to-discrete-time (C/D) converter

Continuous-time signal: xc(t)

Discrete-time signal: x[n] = xc(nT), -∞ < n < ∞, T: sampling period

In theory, we break the C/D operation in two steps:

1. Ideal sampling using “analog delta function (Dirac delta function)”

• Can be modeled by equations

2. Conversion from impulse train to discrete-time sequence

• Only a concept, no mathematical model

Conversion from 
impulse train to 

discrete-time 
sequence

xc(t) x[n] = xc(nT)
xs(t)

s(t)

In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D operation.  
This circuitry is one piece; it cannot be split up into two steps
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Note: DTFT

( ) [ ]

[ ] ( )

Analysis:  

1Synthesis: 
2

j j n

n

j j n

X e x n e

x n X e e d

ω ω

π ω ω

ω π
ω

π

−

=−

=

=

∑

∫

Signal analysis/projection and reconstruction concept identical to 
that of CTFT, but with some peculiarity concerning DT signals 

(more when you learn DSP)

We shall use Ω = 2πF to denote analog normalized frequency, 
and 

ω = 2πf to denote “digital” normalized frequency
(F = previous f, and f here is now “digital frequency”)
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Ideal Sampling – Time Domain
Samplingxc(t) xs(t)

( ) ( )

( )
( )

:  impulse train (continuous-time signal)
                         ,   : sampling period

: 

: 

                  

n

c

s

s t t nT T

x t

x t

δ= −∑
Ideal sampling signal

Continuous - time signal

Sampled (continuous - time) signal

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

       

                                 

                                 

s c c
n

c
n

c
n

x t x t s t x t t nT

x t t nT

x nT t nT

δ

δ

δ

= = −

= −

= −

∑

∑

∑
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Ideal Sampling – Frequency Domain

Remark:  :   analog frequency (radians/sec)
                :   discrete (normalized) frequency (radians/sample)

       ;   ,   
T T T

ω
ω π ππ ω π

Ω

Ω = − < ≤ − < Ω <

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2Note that            ,    where 

:  Ideal sampling (all in analog domain)
1 1                                           

2

                        

s s
k

ss c c
k

X j

s t S j k
T T

X j S j X j k
T

π πδ

δ
π

↔ Ω = Ω− Ω Ω =

= Ω ∗ Ω = Ω ∗ Ω− ΩΩ

∑

∑

Step 1

( ) ( )



( )( )
sifting property

1                               

                                                                   (*)1

c

c

s
k

s
k

X j

X j k
T

k
T

δ= Ω ∗ Ω− Ω

Ω− Ω= ∑

∑
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Step 1 (contd)

( ) ( )

( ) ( ) ( )

( ) ( )

The sampled signal spectrum is the sum of shifted copies of the original.
: In analog domain 

1 * ,   can also be expressed as:
2

                                          s

s

j t
s

Remark x t y

X j

t

X j Y j X j

x t e
π

− ΩΩ

⇔ Ω Ω Ω

= ( ) ( )

( ) ( )

( )

                                                      

                                                                                       

j t
c

nt t

j t
c t

n
j nT

c
n

dt x nT t nT e dt

x nT t nT e

x nT e

dt

δ

δ

−

Ω

Ω

Ω

−

−

= −

= −

=∑

∑∫ ∫

∑ ∫

( )
( ) [ ] ( )

    (**)

We also express  as:

                                                         (***)

j

j n

n

j jwn
c

n
X e x n

e

T e

X

x n e

ω

ωω − −= =∑∑
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Step 2: Analog to Sequence (Analog to 
Discrete-Time)

( ) ( )
( ) ( ) ( )

Comparing (**) and (***), we see that  is equivalent to  if ,  so that

                                                         

Finally, from (*) we have

                 

j j T
s

j j
s

T
X j X

X e X e T

e X e

ω

ω

ω

ω ω
Ω

=Ω

= Ω

=Ω =

( )
( ) ( )

[ ] ( )

( )

                                        

No mathematical model.  The spectrum of ,   has the same spectrum as

 and ,  respectively.

 is a frequency-scaled 

2

v

1

s s

j T

j
c

k

j

x t X j

x n X e

X e

kX e X j
T T T

ω

ω ω π

Ω

  = −    
Ω

∑

( )

( ) ( )

( ) ( )( )

( )

ersion of 

                                                                  

1Since    ,  thus

                                           

.

1                      

j

T

c

c

j

j

k

T

s

X j X e

X e X j

X

e X j
T

T

j

X k

ω

ω

ω

Ω

Ω

=
Ω =

Ω

=

= Ω− Ω∑

( ) [ ]: In time domain,  and  are two very different signals but have similar spectra in frequency domain.

2
k

s

k
T T

Remark x t x n

ω π  −    
∑
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Aliasing

 Two cases
 No aliasing: Ωs > 2 ΩN
 Aliasing: Ωs < 2 ΩN, where ΩN is the highest nonzero frequency 

component of Xc(jΩ).
 After sampling, the replicas of  overlap (in frequency domain). That is, the 

higher frequency components of  overlap with the lower frequency 
components of .  

⇒ 
t t 

xc(t) xs(t) 

T 

⇓ ⇓ 
Xc(jΩ) 

Ω 
ΩN 
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FT FT 
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Nyquist Sampling Theorem

 Let x(t) be a bandlimited signal with Xc(jΩ)=0 for |Ω| ≥
ΩN. (i.e., no components at frequencies greater than ΩN)  
Then xc(t) is uniquely determined by its samples 
x[n]=xc(nT), for n=0, ±1, ±2, …, if Ωs = 2π/T ≥ 2ΩN.  
(Nyquist, Shannon) 
 Nyquist frequency = ΩN, the bandwidth of signal 
 Nyquist rate = 2ΩN, the minimum sampling rate without 

distortion.  (In some books, Nyquist frequency = Nyquist rate.)
 Undersampling: Ωs < 2ΩN

 Oversampling: Ωs > 2ΩN
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Reconstruction of Bandlimited Signals

 Perfect reconstruction
 Recovers the original continuous-time signal without distortion, 

e.g. ideal lowpass (bandpass) filter

 Based on frequency-domain analysis, if we can “clip” one 
copy of the original spectrum, Xc(jΩ), without distortion, 
we can achieve perfect reconstruction.  For example, ideal 
lowpass filter, hr(t), can be used as a reconstruction filter

 Note that xs(t) is an analog signal

Conversion 
from seqence 

to impulse 
train

x[n]
xs(t) Reconstruction 

filter
xr(t)
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Signal Reconstruction Derivation
( ) sampling ( ) ( ) ( ) sequence conversion [ ]

[ ] impulse conversion ( ) [ ] ( ) reconstruction ( )

                    ( ) ( ) ( ) [ ] ( ) ( )

    

c s
n

s r
n

r s r r
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x t x t x nT t nT x n
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               [ ] ( ) ( ) [ ] ( )

Taking the Fourier transform of ,  we have

                  ( ) [ ] ( ) ( ) [ ]
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j Tn j Tn
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= Ω = Ω = Ω Ω
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Ideal Lowpass Reconstruction Filter

( ) ( )

( ) [ ]

( )

( )

sin
Given:  ( )     

0

sin
Then:  

r r
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T T T t T
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Ω
π/T-π/T
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