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Interference for Iinear Modulation

Like to study the behavior of AM and FM systems from single-tone interference

Assume a single tone interference: 4, cos| 27 ( f. + f;)t |

Interference 1in linear modulation
. y Ae Figure 3.22
l l Assumed received-signal spectrum.
Message: —cos (27 f,t) 2 2n ’
< 4, ‘
Interference: 4. cos 27z + £ )t
. [ f f } 1. f f. +fy T +x
= x,(t)=A,cos(27 f.t)+ 4 cos[27z fit+ f) t}+A cos(2z f, t)cos 27zft)

1. Coherent detection: linear detector
vo(t)=A,cos(27f,t)+ A cos(27 fit)

(interference 1s additive, not a big problem)

= A [1+am, (1) ]cos(2

2. Envelope detection: nonlinear detector

X, (t):Re{(Ac+Al-ej2ﬂfit+%Ame]2ﬂfmt+§Am€_J2”fmtj€j2”fct}
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‘ Interference for Linear Modulation

| 1 1 |
x (t)=Res| A + 4" +—4 e +—4 e > " >
2 2

C

Hard to analyze output of nonlinear detector = use phasor

1y Figure 3.23
P 2" Phasor diagrams illustrating interference.
n Su . . .
' S~ (a) Phasor diagram without interference.

(b) Phasor diagram with interference.
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Interference for Iinear Modulation

Analysis can be simplified by looking at different scenarios. First rewrite
X, (t) as
x, (1) = A, cos(2z f.t)+ 4, cos(27 [, t)cos (2x f.t) + A cos| 27 (f. + f, )t |
= A cos(2x f.t)+ A, cos(27 f,t)cos(27 f,t)
+ 4;| cos(27z f.t)cos (27 fit ) —sin (27 £t )sin (27 fit ) |
=| A, + A, cos(27f, 1)+ 4 cos(2x fit) |cos (27 £ )
— A sin (27 f,t)sin (27 ft)
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Interference for Iinear Modulation

Case (1): If 4, >> A (typical case)

x,(t)=[ A4, + 4, cos(2x [, 1)+ 4, cos (27 fit) |cos (27 £ )
Envelope of x, (1) = A4, + A4, cos (27 f,t)+ A4, cos(27 ft)
vp(t) =4, cos(27 f,t)+ A4 cos(2x fit) (after DC term is blocked)

Effective carrier frequency is f,

Same as coherent detector

Case (i1): If4 << 4,
x,(t) =4, cos(2z f.1)+ A, cos(2x f, 1) cos (27 f,t )+ 4, cos| 27 f. + f; )1 ]
= A cos| 2z (f.+ f,— f))t |+ A cos| 27 (f. + f;)t |+ A, cos (27 f,t)cos| 27 (f, + /- f;)1 ]
= 4, {cos[ 27 (f. + f;)t [eos(2z fit) +sin[ 27 (f, + £;)¢ ]sin (27 ft)]
+ 4, cos[ 27 (f. + f;)t ]+ A, cos (27 f,t){cos| 2z (f, + f; )t ]cos (27 /)
+sin[ 27 (f, + f;)t ]sin (27.£1)}
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Interference for Iinear Modulation

Case (i1): If 4, << 4, (cont)
x,(t)=| 4 + A4 cos(27 ft)+ 4, cos(2x [, t)cos (27 f;t) |cos| 27 (/. + £, )t

+[ A4, sin (27 ft)+ 4, cos (27 f,,t)sin (27 £t ) |sin| 27 (£ + £, )¢ ]

Since 4, << 4, last term 1s negligible, then
~| 4+ A4 cos(27 fit)+ 4, cos(2x f,t)cos (27 fit) |cos| 2z (f. + f; )1 |

Envelope of x, () = 4, + A, cos (27 fit )+ A,, cos (27 f,t ) cos (27 fit )
= vy, (t)= A4, cos(2xft)+ A4, cos(2z f,t)cos(2x f) (assming DC term blocked)

Message is lost! Effective carrier frequency becomes f, + f, <
This is called threshold effect;

A, i
1a, 14, when the interference > a
A!i‘l &= 2 .
‘ A, ‘ ‘ threshold, message is lost
1 f f
0 fm fe 0 fr _fm fe f.- + fui .
Figure 3.24
(a) (b) Envelope detector output spectra. (a) A, > A,. (b)) A, < A
6
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Interference for Angle Modulation

Assume interference tone at f, + f,

Assume an unmodulated carrier + interference, input to discriminator:
x(t)=A4, cos(27zfct+ ¢(t))+ A cos[Z;z(fc + fl)t]
assuming ¢ () =0
= A cos(27 f,t)+ A cos(27x fit)cos (27 f,t)— A sin (27 fit )sin (27 f¢)
=| A, + 4 cos(27 1) |cos (27 fit) | 4 sin(27ft) |sin(27 /1)
= R(1)cos (27 fit +y (1)),

R(1)=\[ 4.+ dcos(2n£1)  +[ Asin(22 /)]

where + v (1) = tan” A sin(27 fit)
A, + A cos(27 fit)
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Interference for Angle Modulation

How does the interference behave after demodulation?
Case (1): If 4. >> A4,
R(t)~ A, + 4, cos(2z fit)

w(t)~tan™ (A,- sin(27rfl.t)] A4 sin (27 fi¢)

A

c

dw(t)

Assume ideal discriminator that extracts (t) »
t

For PM: y, (¢)=K,w(t)=K, j" sin (27 fit)

(&

| For FM: y, ()= 2 Ko a2z Pt

:KD%fi cos(27 fit)

(4

1 dy () lKi[Aisin(zﬁfit))

When f; is small, interference in FM is smaller than that in PM.
FM: Values of f, > W 1s removed by LPF
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‘ Interference for Angle Modulation

In summary, for 4, >> 4, the single tone ( f, + f;) interference at the demodulator output:

-

PM: K, ji sin (27 ft)

(4

FM: K, %f, cos(27 ft)

§ (&

Ai
A

[4

If they all have the same constants, then K, =K (PM) = K, —- (FM)

Amplitude of
output signal
due to interference /

| FM without No dependency on f,; for PM

deemphasis
Amplitude of // Msz 431
mphasis )

interference increases 7/ Amplitude of discriminator output due to
I i interf .
linearly with f; for FM . interference
| FM with
i deemphasis
I
|
15 W Interference

frequency offset f;
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Interference for Angle Modulation

Case (11): If 4 << A4, it 1s difficult to analyze. Can gain insight by looking at phasor

Again, an unmodulated carrier + interference, input to discriminator:

x(t)=4, cos(27zfct+¢(t))+Ai cos[27z(fc +f,.)t} R A
= x, (1) = Re{(AC + A,-ejz”ﬁ’)eﬂ”f"t} (assume ¢(¢) =0 for /<ll(t) 0(1) = wjt
(term inside parenthesis is phasor) unmodulated carrier) T
Carrier phase: reference =0 (a) ‘
Interference phase: () = 27 ft Phasor diagram for carrier plus single-tone
Resultant shase: . l interference. (a) Phasor diagram for general
esultant phase: (1) A&f). (b) Phasor diagram for &¢) = 0.
(1) 6(¢)=0
s~A0(t) (sinced, sind() and sin6(¢)~6(¢) for small 6(t))
z(Ac+Ai)l//(t) R(P)
4, 4
=yl o) = (1) Ails
C 1 C 1 w s _..-l.-. _____
: K. dy(t A A, (1)
SmceyD(t)zz—; dt( ), D(t):KDATIAf; (b)

c 1

DEE 3338: Principles of
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Interference for Angle Modulation

(2) 9(t) ~m, A <A, (< defined as slightly less) R(1) A
- - 9(2‘) = a)!'f
S=A,.sin(7r—0(t)) A{N

zAi(%—H(t)) Ac
(a)
~(4-A)w(t) (v(t)= tan(Ac iAl. ] ~ ) iA,. for small y (7))
(1) s A (7r — Q(t)) A (7r -2 ﬁ.t) Phasor diagram for carrier plus single-tone
f— ~ ~ =
v A. -4, A -4, A -4, interference. (a) Phasor diagram for general
Since v, (1) = % dy (1) o()=-K, 4 7 6(t). (c) Phasor diagram for 6(¢)~ 7 and
T dt Ac - A,' Ai < AC.
R(t) o
I 6(t) = wit
K
I
NZ0 A
(c)
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Interference for Angle Modulation

(3) O(t)=m, A4 >A. (< defined as slightly less) R(t) Qi
) ) 0(r) = wit
s=A;sin(7-6(1)) A,:)\Q
~ A - 9 t Ac S
(+-00)
~(4-A4)(7-y(r))
p A ( - 9( t)) Phasor diagram for carrier plus single-tone
=y (t)~ - A4 T—— 14 interference. (a) Phasor diagram for general
Al (n _C 27 11) - 6(t). (d) Phasor diagram for 6(¢) ~  and
=T- ey A>4,.
. K, dy (1) A4
S t)=—*% : =K — f,
e ()=~ > =Ko A -4, g | 2 (1) = at
Rmm
______ 0 A,
(d)

(T DEE 3338: Principles of
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‘ Demodulated Wavetorm for Angle
Modulation with Interference

NIV

w0 o) 0 . .
\ / Ap>> 4, Both are sinsusoidal
-0.15 -0.15
0 0.5 1 0 0.5 1
I 4
(&)
5 5
A
N\ i
t)=—-K .
0 () ’ Y yD() DAC_Affl
W ¥o
s A,- f Ac Negative spike in
x v vp(?) (negative when
To i | 1% t 1 f;>0)
(b) !
5 / 12
: vo(0) =Ky~
w(®) 0 yplt) 4 Al. > AC o T
. /. ~ Positive spike in y, ()
—r / (postive when f; > 0)
: 0 t 1 _40 t 1
(c)
Figure 4.30

Phase deviation and discriminator output due to interference. (a) Phase deviation and discriminator
output for A, = 0.1A_. (b) Phase deviation and discriminator output for A, = 0.9A4 . (c) Phase deviation
and discriminator output for A, = 1.14,.
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Interference for Angle Modulation

e Recall for FM, output of demodulator from a single-tone interferer at f, + f, 1s
Al'
4

[4

yp(t) =K, == f,cos(27 fit), hence amplitude of the interference grows linearly with f;

e When 4, < 4_, interference on FM for large f, can be reduced by using a LPF

deemphasis filter at output of FM discriminator

e 3dB frequency of filter usually less than message signal bandwidth W

e reduces interference at large f, so amplitude of output of modulator is constant at large f,
e Problem: at low freq, de-emphasis filter will distort the message (i.e. f, <W)

e can be avoided by using a highpass preemphasis filter

e transfer function equals reciprocal of the deemphasis filter

DEE 3338: Principles of
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‘ Interference for Angle Modulation

Amplitude of
output signal
due to interference /

FM without
| deemphasis
Amplitude of // P without Figure 4.31
. . eemphasis ) o
interference increases / Amplitude of discriminator output due to
. . interf :
linearly with f; . ierierenee
|
! FM with
i deemphasis
I
I
f W Interference
frequency offset f;
: De-emphasis
mit) Pre—e!nphasm M - iltor m(f)
filter —>| odulator v @ Discriminator HAf) = ] —
H,(f) )= g,p

Figure 4.32
Frequency modulation system with pre-emphasis and de-emphasis.

DEE 3338: Principles of
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Phase-ILocked Loop (PLL) and Feedback
Demodulators

Tracks the instantaneous angle
(phase and frequency) of the
input signal. Includes

o Phase detector (comparator)

= LOOp ﬁlter xA2) Phase eqlr) Loaop Loop Figure 3.45
. detector > filter > amplifier Phase-locked 10011
o Loop amplifier I —‘
o VCO (voltage-controlled W veo |- 0
. Demodulated output
oscillator) -
Basic operation
o Adjust the phase of the local
VCO output (e () to match
the iput (x,(7)) signal phase
"5f88%  DEE 3338: Principles of
Communication Systems 16




Phase D€t€CtOl‘ M e L0,

vCo

)
filter

amplifier

Figure 3.45

e {1

—‘ Phase-locked loop.

Input: x,(t)= A, cos| 27 fi1+ (1) ]
VCO output: e, ()= A, sin| 2z f.t+6(1)]
matches

Goal: 6(¢t) — ¢(¢)

I Demodulated output

o

= Developing a relationship between 6(¢) (output) and ¢(¢) (input)

is equivalent to knowing the relationship between ¢, () and x, (¢)

Phase detector output: e, (¢)= g(¢(t) — 6’(2‘)),

g () 1s a characteristic function of the phase detector

(1) ideal - saw-tooth: K, (¢(t)—6’(t))
— ACAde

(2) sin(+): e, (¢) Tsinw(t)—é’(t)]

DEE 3338: Principles of
Communication Systems
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4

g ; A1) Phase eal) Loep Loop Figure 3.45
CO detector o filter T | amplifier —‘ Phase-locked loop.

() (1}
vCO

] Demodulated output

Output of phase detector is filtered, amplified, and applied to VCO.

VCO: a frequency modulator - the frequency deviation of its output,

do(t
(1) , 1s proportional to the VCO 1nput, 1.e.
do(t
dg ):Kvev(t) rad/s, K,: VCO constant

= 0(t)=K,[ ¢,(a)da

e () —»| VCO —> ¢ (t)=4,sin[27f1+0(1)]

DEE 3338: Principles of
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I , I I A1) Phase eal) Loep Loop Figure 3.45
detector o filter T | amplifier —‘ Phase-locked loop.

4

() (1}
vCO -t

] Demodulated output

-

One of the I/O relationships inside PLL: E, (s)=F(s)E,(s),
F(s): transfer function of loop filter

e (a)=]"e (1) f(a-2)dA

=K,[ e, (a)da
Assuming ¢, (1) = L2254 sin[ ¢(1)-0(1)] = A2 siny (1)
N)=K,[ e, (a)da=K,[ ["e,(1)f(a-2)dAde
_AARR, [ [“sin[y (2)] f (—2)dAde

_K” sin[w (1) ] f (e~ 2)dAde

sﬁ' DEE 3338: Principles of
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PLL

) Phase e 1) Loop Loop Figure 3.45
detector filter "1 amplifier [ | Phase-locked loop.

eyl e (n
vCO
I Demodulated output

=K, [ [“sin[w(2)]f(e-2)dide
So, 1fphase error v (¢ )— gb(z‘)—@(t) is small, then

K” f(a—-A)dida

1.e. PLL becomes a linear feedback system.

If 6?(1‘) ~ ¢(t) = dilgt) R dilgt)

1.e. VCO freq deviation is a good estimate of the input freq deviation.

Recall FM: x, (t)= 4, cos| 2z f.t + 27z_rm(a)da

_ 40 i
do(t)
oc m (t)
dt
DEE 3338: Principles of
Communication Systems 20



Summary ot PLIL.

Linear PLL model
=K, [ [“sin[y (2)]f (a-2)dide
If O(t) ng(t :>sin[l// t ]zt//(t)

Nonlinear PLL model
K” sin[y (1) ] f(a-1)dAda

=K [ ["w(2)f(a-2)drda

__________________ :

! i
o+ . 1 €qt) Looy
—_— sin () - ~AAK, - P o) + 1 Loop

o llas [ = >

E 4 filter ——»@——» 3 A A K, > filter

I as A-

S N Phase detector Phase detector

a(r)
W1k foa - Amplifier
K, [{()dt |- Loop
Demodulated output amplifier
Figure 3.46 Demodulated output
Nonlinear PLL model. >
Figure 3.47

Linear PLL model.

Divide analysis into 2 parts:
 Tracking Mode using linear model (steady-state response)

» Acquisition Mode using nonlinear model (transient response)

9’ DEE 3338: Principles of
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PLL Tracking Mode: Linear Model

CD(;)__ Wis) Loop | Laoop
- C)_ ™ gaink, filter F(s)
Bs)

Linear PLL model |— VO -
0(0)=K.] ['[#(1)-0(1))f (a=R)drda pvcstatowp

igure 3.

Linear PLL model in the frequency domain.

:Ktj.t[qﬁ(a)—e(a)}*f(a)da o
F(s)

& 0(s) =K, [@(5)-0(s)]

(assuming zero initial cond.)
s

A ®(S) _ KtF(S)
CD(S) S +KtF(S)
transfer function relating phase error to input phase:
_¥(s)_@(s)-0(s)

TS e

— transfer function for PLL: H (s)

ZI_H(S): S+KfF(S)

5‘9 DEE 3338: Principles of
/ Communication Systems




P = N
,/% A

j)
Sy

PLL Tracking Mode: Linear Model

(n-1)! )Q(sm)’“

To study the steady-state error (response), assume input ¢(t) has the general form
¢(t)=nRt* +27n f,t+6,, t >0

_27R 27 I N 0,

3 2 ?
S S S

R : frequency ramp (Hz/s), f, : frequency step.

dol(t
Also, the freq. deviation: LA) =Rt+f,, t>0

2 dt

<:><D(s)

DEE 3338: Principles of
Communication Systems
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PLL Tracking Mode: Linear Model

Steady-state error (response) can be obtained using final value theorm

(lmx(e) = lims¥ (s)),
=y, 2limy (1) =lims¥ (s) =lims| O(s)G(s) ]

s—0 s—0

Consider different loop filter

_ lims _27T3R + 27TZfA n @_ G(s) transfer function F(s).
LS S S Generates
i i o st
:hnols 27T3R+2772fA +& { s 15t order PLL
R ’ s Ls+KF(s) o 27 order PLL

e 31d order PLL

Table 3.4 Loop Filter Transfer Functions

PLL order Loop filter transfer function, F(s)
1 1
2 l+a/s=(s+a)/s
3 1+a/s+b/s* = (s> +as+b)/s?

DEE 3338: Principles of
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PLL Tracking Mode: Linear Model

Note 3" order F(s)= i(S2 +as + b) is the most general filter

2

0%}

Ifa=b=0= F(S)

1 (1" order F (s))

%(52 +as):l(s+a) (2" order F(s))

Ifa#0,b=0= F(s)
S S

3
s s
)= s+K,F(s) S +K s> +K,as+Kb

y,, =lims¥(s)= limS[CD (S)G(S)]

Since 3" order F(s): G(s

s—0 s—0
. [2zR 2 0, |
=lims 72 ﬂzfA + 2 G(S)
s—0 i Ky S S_
. [2zR 2 i 3
=lims 7[3 - ﬂzfA+@ 5 2S
520 | s s || s"+Ks"+K,as+Kb
_ S(00S2 +27zfAs+27zR)
=lim

0 §° + K s° + K .as+ Kb

@ DEE 3338: Principles of
/ Communication Systems
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15t order PLL Tracking Mode: Linear
Model (F(s) = 1)

Case 1: I order PLL (F (s)=1)

2 0(s) _ KF(s)
H)25 s) s+K,F(s)

— Kl

Cs+K

lim K,e “u(t)=5(¢)

K,—w®
= For large gain, G(t) ~ ¢(t)
Note:

PLL serves as a demodulator for angle-modulated signal
do(r)
dt
PM: Integrate VCO input to obtain demodulated output

FM: VCO input is proportional to , 1.€. the freq deviation of the PLL input signal

¢ DEE 3338: Principles of
zm # Communication Systems
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15t order PLL Tracking Mode: Linear
Model (F(s) = 1)

General form of input to PLL
¢(t)=7RE +27 fot+6,, >0
:272'R+27Z'fA +ﬂ,

3 2

<:><D(s)

s s s
R : frequency ramp (Hz/s),/ f, : frequency step.

Steady-state phase error:

Recall ©(s)=K,¥(s) F(s)

S
1 0 6
=0O(s)=K¥(s)- fO(s)=—"=W(s)=—"
()= K9 (5)" (5)=2 =¥ (5) =
K 1
:>®(s)=S+KtCD(s)=K}P( ); v =£1_r)13S\P(S)
~lim %~
20 5+ K
Communication Syeems .




‘ Summary of Steady-State Errors

Table 3.5 Steady-State Errors

—

| 6020 ' 60% 0 60 0

| f=0 I L#0 f#0
PLL order R=0 | R=0 R+0
1(a=0,b=0) Yoo 27h /K, oo
2(a%0, b= 0) o 0 2mR/K,
3(a#0, b#0) I o I 0 0

:l' —_— —_— —_—

DEE 3338: Principles of
Communication Systems
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15t order PLL Tracking Mode: Linear
Model Example

Let m(t)= Au(t), so thatx, (¢)= 4, cos[Zﬂft+k AJ a’a}

What is the demodulatd output using a 1* order PLL?

Recall thatH(s) = 2?; = KtK .
s) s+K,

Let the input to PLL be u(¢) (recall L {u (t)} =1/5):

I da<:>CI) ) Ak,

General form of input to PLL
M) =rRt’ +21f,t+06,, t>0

2R 272'f
() a42
. (S) Ak, K, < ®(s)= s’ s s’
2 g4 K R : frequency ramp (Hz/s),
10 (l‘) i fre\quency step.
Recall O(1 J. a)da = — = Ke, (1)

epe%  DEE 3338: Principles of
f Communication Systems 29




15t order PLL Tracking Mode: Linear
Model Example

Akf K, _Akf K

t

s s+K, K, s(s+K))

@EV(S)ZKLV@(S):];

v

K K,
C=s——t=l =L C=(s+K)——" ——1
s(s+K,)| s(s+K,)| X, Unfortunately, K, cannot be made
L (s) Ak, [ 1 1 j arbitrarily big without increasing
’ the bandwidth of H ()= K,
s+K

t

Fort>>1/K, andk, =K, e, (1) = Au(t)=m(t). Note that the transient time
is set by the total loop gain K, and &, /K, is simply an amplitude scaling of the

demodulated output.

DEE 3338: Principles of
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15t order PLL Tracking Mode: Linear
Model Example

Steady-state phase error

Vs :P_{I(}S_(D(S)_@(S)]
Ak, Ak
=lims| —--—7 K}
>0 s s° s+K,
Ak
=lims ;( > ﬂ
201 57 (s+K,
:Akf
K

t

Communication Systems

/% 12; DEE 3338: Principles of
&,




‘ Summary of Steady-State Errors

Table 3.5 Steady-State Errors //

4_.—_—__r
89+ 0 | 600 69 % 0
f=0 | fa#0 l f%0
PLL order R=0 ) R=0 R+0
|
1(a=0,b=0) 0 27rfA/K,’(I oo
2 (a0, b = 0) 0 o 27R/K,
3(a#0, b#0) 0 I o I 0
=7___

DEE 3338: Principles of
Communication Systems
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Summary of 1% order PLL

Ak
e Nonzero steady state error y_ oc 7f 2z f, =4k, = f, #0)

t

e The complete system loop gain parameter 1s

K, = % A AK K.

(discussion above assumed u =1)

System loop gain is a function of the amplitude of the input signal.

K
e K, also controls the BW of the system H (s) —

s+K,

K. 1s the 3dB point
e A large K, 1s impractical
(a) Hardware design
(b) Noise increases due to the wide bandwidth

Solution: 2™ order PLL

DEE 3338: Principles of
Communication Systems
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4 order PLL Tracking Mode: Linear

Model

Loop filter: F(s)= i : a
Recall@ =K, [CD @(s)}@
=K, [@(s)-0(s) |5

~ 0(s ){1 VK S+a:|=KtS+a(D(S)

2

s s
s+a

,0(s) K K, (s+a)

Hs)= =

- (S) CI)(S) 1+ KS+Cl S+KtS+Kta

s’
Also, G(s) = ¥ (s) =1-H(s)= s’
CD(S) s’+Kas+Ka

DEE 3338: Principles of
Communication Systems
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In terms of fundamental parameters: natural

frequency and damping factor
v (s) s?

(D s“+2los+o o,

== / =\ K.a
Solvmg for the physical parameters

_a)n_ﬁ_f;a —
_26;_ - , K =4nlf,

¢ : damping factor

: natural frequency

34



d order PLL Tracking Mode: Linear
MOdel EXample Similar to previous example,

we let input to PLL be m (7)) =u(t)
27Nf

2
S

Recall ¢ 27Z'Afj da S d)( )

(for some reason, your text changes from f, to Af)

Assuming small Af to ensure linear model 1s valid.

. ‘P(S) s?
Since =— >
O(s) s*+20w,s+o,
2 2
= ¥(s)= g B (s) =g Y

s*+2lw s+ ) s’+2los+w s
B Aw

s’ +2lw,s+w;

For ¢ <1, inverse transforming:
__ N - e ! [sin(27zfn J1- g"ztﬂu (¢)
JiN1=¢

As t — 0, y(t)— 0. Hence steady state error becomes 0.

e A% DEE 3338: Principles of
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‘ Summary of Steady-State Errors

Table 3.5 Steady-State Errors //

e I 00#0:; 6% 0
f=0 : fizo | f%0
PLL order R=0 ) R=0 R+#0
i
1(a=0,b=0) 0 27rfAél(,l o0
2 (a0, b = 0) 0 L 27R/K,
3(a#0, b#0) 0 I o I 0
=7___

DEE 3338: Principles of
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15t PLL. Acquisition Mode: 15t PLL (Loop
Filter)

Easy for analysis: let F(s)=1< f()=5(t)
Recall 0(t) =K, [ [“sin[ $(4)-0(4)] f (¢~ 2)dde

= 0(1)=K, [ sin[ () -0(at) |dex

do(t ,
:#th sin| ¢(¢)-0(1) ]
Let m(¢t)=u(t), for FM: digt)=27zfAm(t)=27zfA, forz>0

w(t)=¢(1)-0(t)=0(t)=¢(t)-w(t) (phase error)

do(t) _ dg(1) dy (1) ot _dl//_(t):Aw_dt//_(t)
dt dt dt R/

dt
dy (1) .\ do(t) _dy(t)

=Ado=— . = +K,sin| ¢(¢)-0(1)] /\Am& /

Graphical representation (analysis): Phase-plane plot

=

dyddr Figure 3.49
Phase-plane plot.

Initial: zero phase and frequency errors (point B) Aes _g!’_'i’*'_‘}:,__

Step message applies and see trajectory

DEE 3338: Principles of
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15t PLLL Acquisition Mode: 15t PLL (Loop
Filter)

dy (1)
dt

=Aw—K,siny (t)

~
~

. o dy(t)
Point B (when the step is applied): t Aw

dy (t
Observation: % >0if (t) > 0 since dt always >0, hence, we can start at point B

w () increases — siny (¢) increases

dy (t dy (t ,
— m decreases — m becomes negative
dt dt
dl// (t) — O VAN Oil'lt A dyidr Figure 3.49
dt p Phase-plane plot.
—————————— —Aw + K,
N
/\ BAw
2 v
— wﬂb\/
Aw - K, ===
DEE 3338: Principles of
38
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15t PLL. Acquisition Mode: 15t PLL (Loop
Filter)

dy (t) :
=Aw—K smy (t
dt siny (1)
Again, since dt>0, if dy / dt < 0 = dy <0, hence, we can start at point C
dy (t
@ C: I{Tt()zAa)—K, (v(t)=7/2)
d
l/;’t( ) <0 — () decreases — siny (t) decreases
dy (t dy (t
—> W( ) Increases — W( ) becomes positive
dt dt
= Point A is a locally stable point e b pane plo.
—————————— —Aw + K,
/\QA /y]
Aw_g’-‘i’___b__v,_\&/
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15t PLL. Acquisition Mode: 15t PLL (Loop
Filter)

Phase-plane plot.
dV/ t N s — Aw + K,
dt( ):A“)_Krsm‘/’(f) /—\BM /
W

Remarks: w7

1) Steady-state error:

: : dy (t
In this case, point A, J =0 (no frequency error)
dt K, =27(50)
Ast— o, y(t)=y, #0 (phase error exists) Af =12, 24, 48, 55 Hz
2) LOCk range: 120 / ll:’ll?al-::fpiig plot of first-order
PLL for several initial

frequency errors.

If the system is to converges to Point A, then

Aw<K,. So K, is the lock range for the 1" order 2

dy (1
pLL. 1aw> K. YY) Capo Kk >0, The

dt
phase-plane plot does not intersect
dy (¢
m =0 axis.
dt

sﬁ DEE 3338: Principles of
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20d order PLL: Transient and SS Responses

Remarks:

- 2nd order PLL has lock range = oo but has cycle-slipping

- cycle-slipping: the steady-state phase error is multiple of 27 rad
-E.g.

No cycle-slipping for Af =20 Hz

SS phase error = 27 for Af =35 Hz (slipped one cycle)

80 80
. 70} 70
SS phase error = 67 for Af =40 Hz (slipped 3 cycles)  «} enf
T sl & 50
. 3 401 2 -
SS phase error = 87 for Af =45 Hz (slipped 4 cycles) z g sl
o 20 o 20f-
- Q 8]
g 1o g 1o
Figure 3.51 0 ‘ ’
Phase-plane plot for second-order O O
PLL o Time o Time
(@) (b)
80—
80— 80
= 70| 70l
Af=40Hz 80— a0l
o= / & so g 50
“ Af=45Hz Z 401 g 40
z ERE E 3ot
5 40 o 20— o 20
5 g 1o Y 1op
Z 0 0
=
220 L B I R B R
g ip o
= Time Time
() {d)
0
Figure 3.52
voltage-controlled oscillator frequency for four values of input frequency step. (a) VCO frequency for
=20 L I Af = 20Hz. (b) YCO frequency for &f = 35 Hz. (¢) VCO frequency for Af = 40 Hz. (d) VCO frequency

0 2 4 6r 8 10 for Af = 45 Hz.
Phase error, radians
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Analog Pulse Modulation

Samples from uniform sampling can have different
representation

o A sampled value can have 1-to-1 correspondence to some
attribute of a pulse
If attribute changes continuously = analog pulse modulation

If attribute also takes on a certain value from a set of allowable
values = digital pulse modulation

Three attributes can be used
o amplitude, width/duration, or position

PAM — pulse amplitude (related to AM)
PDM/PWM — pulse duration (related to angle mod)
PPM — pulse position (related to angle mod)

9’ DEE 3338: Principles of
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‘ Analog Pulse Modulation

ST TN
Analog

. t
signal /

(Samples) -| -‘

PAM signal J

| E—

PPM
signal

0 T,

5

o, oT,

5

Figure 3.25
Illustration of PAM, PWM, and PPM.
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PAM

Amplitude of each pulse corresponds to the value of the message signal m(¢) (at the
leading edge of the pulse)

Different from sampling in previous chapter, PAM's sampling pulse has finite width
e can be generated using holding circuit

e Impulse and frequency response of holding circuit:

t——1

< H(f)=rsinc(fr)e’™".
T

It transforms the impulse function samples my (¢) =Y m(nT,)5(t—nT,)

t—(nT; + zfj
to PAM waveform m,(t)=> m(nT,)TI
- T

DEE 3338: Principles of
Communication Systems
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PAM

h(t)
. 1
mg (1) Input PAM output
—_— h(t) i ;
0 4
(a) (b)
[H(OI
(H()
E .
2t -/t 0 I/t 2t / /
(c) e
\\\Slope =-nT
() A

Figure 3.57
Generation of PAM. (a) Holding network. (b) Impulse response of holding network. (c) Amplitude
response of holding network. (d) Phase response of holding network.
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PAM

Unless pulse width 7 1s small, amplitude distortion in m_(#) can be significant.

e Solution: equalization, 1.e. pass m_(¢) through filter ‘ ‘ prior to reconstruction

b
H(f)

mg(tl

LPF | ——>m(t)

m. (1) yHy)
Equalizer

com () =my (6)*h(£) = M, (f)=M;(f)H(f)
Demodulation:

Recover M (f) < mg(t) samples
Recover M (/)< m(t) message

9’ DEE 3338: Principles of
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PWM

Pulse width proportional to values of messasge

0 0="%T,
0 Negative: <2 T,
o Positive: > 2 T
Analog

0 Max. value =1/ T signa

PWM
signal

"5fB8%  DEE 3338: Principles of

Communication Systems
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PPM

Pulse position 1s proportional to the values of the
message

PPM signal
x(1)=2.g(-1,)
2(?) represents shape of the individual pulses

t 1s the occurrence time — related to values of the
message signal m(z)

@' DEE 3338: Principles of
Communication Systems
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Digital Pulse Modulation (related to AM)

Messages are discrete-amplitude (finite levels)
samples

o DM — delta modulation

o PCM - pulse-code modulation

These methods fall into the category of predictive
coded modulation where the difference between the

current value of the input and predicted value are
coded

o Why? The difference contains less variance than coding the
actual sample value, thus less bits need to be used to
represent the coded value

39' DEE 3338: Principles of
Communication Systems Y




DM

m(t) — samples (analog amplitude) — difference — binary
or
m(t) — difference — binary — samples

Operations:

D d(t)=m(t)-m,/(¢)
2) A1) = threshold(d(t)) {

Ms(t) is a reference signal

8y, d(1)20,

0, =1 11
-5, d(t)<0’ T Y

3) x, () = samples of A(¢) =A(t)zn:5(t—n7;) =Zn:A(n7;)5(t—n7;)

4) Prediction: m, (t)=Y A(nT,)[ 8(a—nT,)da

sﬁ' DEE 3338: Principles of
f Communication Systems

50



DM

Output of DM 1s a series of impulses, each having
positive or negative polarity depending on the
sign of d(?) at the sampling instants

In practice, pulse generator does not produce
sequence of impulses functions
o Output pulse of finite width

0 Impulses are assumed for analysis

After integration, reference signal m (¢) 1s a
stairstep approximation of m()

DEE 3338: Principles of
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Pulse
generator
o1 =X &(t—nTs)
n=— oo
m(1) d(1) Limiter | zp x(f)
—(x - »@ -
_ 1 s
Pulse modulator

- el .

I I

I [ |- I

I I

Acts as a predictor that uses the previous sample
in x(¢) and predict forward the next sample and
compare to current “sample” in m(t).

* The integrator takes the value in x(¢) and
holds in for 7, second. This value will be
compare to the current value (next time ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

t

x (1)

instant) of m(¥)

Delta modulation. (a) Delta modulator. (b) ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Modulation waveform and stairstep
approximation. (c) Modulator output.

(c)

DEE 3338: Principles of
Communication Systems 52




Demodulating DM

Integrate x_.(¢) to form m (¢)

Then lowpass filter m (7) to eliminate the jumps to
get m(?)

Note that the modulator/encoder contains part of
the demodulator/decoder

9’ DEE 3338: Principles of
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Problem with DM: Slope Overload

If message signal m(¢) has Sope - 5T
a slope greater than can be o HH
followed by the stair-step T

. . 1 1 1 5
approximation m (t) e |
Assume step-size=& > @

max. slope = 9,/T, canbe .,
used to follow m(¢)

Example (right)

fo

(b)

[lustration of slope overload. (a) Illustration of m(#) and m () for a step change in m(¢). (b) Error between m(¥)
and m(¢) resulting from a step change in m(¥¢).

DEE 3338: Principles of
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Mathematical Analysis of Slope Overload
Problem

Assuming m(t) = Asin (27 f,t)

Max. slope that m_(¢) can follow is S,, = %

%m(t) = 27.Af, cos(27 f1)
.. m,(t) can follow m(t) without slope overload if
% > 2 Af.

S

So there is a BW constraint on m (t) in order to

avoid this problem.

39{ DEE 3338: Principles of
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Adaptive DM: Solution to Slope Overload

Adjust the step-size 9, based on
x(?)
Idea:

o If m(¢) = constant, x (¢)
alternates in sign =¥ leads to
small DC (close to zero) at
output of LPF — this controls
gain at variable gain amplifier
= 5,4 at the integrator input

a Ifm@®)7T (or {) rapidly, x(?) has
the same polarity =» leads to big
value of the magnitude of the
output of LPF = &, T at the
integrator input =» reducing
time-span of slope overload

sﬁ DEE 3338: Principles of
/ Communication Systems

mif) + : () 1l Alr) ® D)

Adjust step-size: if several output samples

have same slope (sign), then increase step-

size, else decrease

* Tradeoff smaller slope error with larger
quantization error

* Solution: Use LPF to smooth the error

Pulse
generatar

Limiter l

B —1
mJdr)
/ gein
| al
|
| Square-law
I ar - Lowpass ]
|
|

magnitude filter
device

Figure 3.61 ' o o o o = o ]
Adaptive delta medulator.
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Adaptive Delta Demodulator

Notice the demodulator is
part of the modulator

o The receiver 1s required to
match changes in ¢, that
was made at the modulator

0 This is often used 1n
waveform coders (speech
and video)

Known as analysis-by-
synthesis coding

O Determine what
parameters the coder
should used by duplicating
what the decoder does

sﬁ' DEE 3338: Principles of
Communication Systems

Pulse
generatar

Limiter l

.gz ‘
anolif
L Square-law
or Lowpass

x A1)

magnitude filter
device
Figure 3.61
Adaptive delta medulator.
Figure 3.62
o Variablo: s Adaptive DM receiver
— | cuin ;o
amplitier
Square-law
Lowpass _ or

filter magnitude
device
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Pulse-Code Modulation (PCM)

(1 PCM
m(t) 9 Samples (analog m—l- Sampler = Quantizer —®= Encoder m
amplitude) = quantized @
samples = binary Quantization
. . level Encoded
representation (e.g. 8 levels in number output
Fig. 3.29(b)) = representation : e 5 /\\
5 101
as pulses > o [ N
3 011 ¢ N
Pros 2 010 \\-..-—'
o More reliable communication C - o I
Cons \ 0 T, 2, 3T, 4T,
: )
o Wide BW (€ reduced by Iﬁ&ﬁ&ﬁ&ﬂ;ﬂi
“compression”) E
o Complicated circuits (€ cost O A
reduced by VLSI)

Fig. 3.29. Generation of PCM. (a) PCM modulator. (b) Quantizer
and coder. (c) Representation of coder output.

DEE 3338: Principles of
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BW of PCM

896
4

Assume the number of quantization levels =g =2" (e.g. on last page: ¢ =8, n=3)

= n =log, q binary pulses must be transmitted for each sample of the message signal.

Let: Message BW=W
Sampling rate =2W
= 2nW binary pulse/second
Thus, max. width of each binary pulse is
1

(A7), =
max 2nW
— transmission BW = 2inW

k 1s a proportionality constant
Hence, B = 2Wklog, q.

Recovered message error is due mainly to quantization error

Thus, ¢T — errord — BT

DEE 3338: Principles of
Communication Systems
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PCM Modulating RF Carrier

PCM waveform can be _
transmitted on an RF carrier using
amplitude, phase, or frequency
modulation

Figures shows data bits are
represented by an non-return to
zero (NRZ) waveform for serial
transmission (hence, symbol
sync 1s important)

0 6 bits are shown (101001)

o ASK

Carrier amplitude determined by
data bit for that interval

o PSK

Phase of carrier is established by
the data bit

o FSK

Carrier freq. 1s established by the
data bit

" &% DEE 3338: Principles of

Communication Systems
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FIGURE 3.B6 An example of digital modulation schemes.
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Multiuser Communication Systems -
Multiplexing

A number of data sources share the same
communication

Used mainly to multiplex signals from different
users onto the same channel for transmission

0 Can also be used for stereophonic FM transceiver to
multiplex sum and differences of signals

Different multiplexing techniques

0 Frequency-division multiplexing (FDM)
0 Quadrature multiplexing (QM)

0 Time-division multiplexing (TDM)

DEE 3338: Principles of
Communication Systems
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Frequency- Division Multiplexing (FDM)

Signals from different sources can
used different modulation

0 Source 1 uses DSB m [ ed Flgure 364 - on
1 requency-division multi-
lexing. (a) FDM modulator.

o Source 2 uses SSB e E o E’b)) ngMb denai
0 Source 3 uses FM ] 2 mod. —— (c) Baseband spectrum.
BPF used at receiver to retrieve DO /
signal from different sources ®
0 Guard bands are injected between ore | [ pemoa. P20

each source signal before . . dr >

transmission to realize non-ideal = e o et

BP filtering at Rx L o0

. Bgl\)/F | ol De%od. !

BW is lower bounded by the sum -
of the BWs of the message

signals: ‘ ANl

N I
B= ZVV, ©

% DEE 3338: Principles of
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Example of FDM: Stereophonic FM
Broadcasting

(1) G\ 1(t) +r(1)

Stereo signal 1s perceived by -
having speakers outputing sum . ><® o I NP
and differences of the = . 3 :
monotonically recorded signal sl o et :
Backward compatibility is i
reqUIred i Pilot DSB spectrur
o Necessary for stereophonic FM L)+ k) WL R
receiver to demodulate
monophonic FM signal ; ETIET 3 e

(b)

o 0-15 kHz carries L+R (for Monophonic

monophonic receiver) LA toe | [0 A o0
) iscriminator W=15kHz
o 24-53 kHz carries L-R
() —r(n)

(stereophonic receiver uses L+R e o
and L-R) i

W=15kHz
. . . filter
Information about the carrier is

inserted by the Tx for coherent fnri{gg;;gg
demodulation at the Rx ©

Figure 3.65
Stereophonic FM transmitter and receiver. (a) Stereophonic FM transmitter. (b) Single-sided spectrum of
FM baseband signal. (c) Stereophonic FM receiver.

’5fBQ% DEE 3338: Principles of
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QM

QM iS nOt a FDM A cos w1 2cos w,l ggupl-e 4.36 -

® uadrature mu tplexing.
techmque as spectra of = l l Lowpass |00 ®
m(¢) and m,(¢) overlap in S

filter

fi - e e
requency | ;
o SSB 1s a QM signal with Ao o med

QDSB modulator QDSB demodulator

m,(t) = m(¢) and m,(¢) =
tm (t) Modulation: x, ()= A, | m,(t)cos(27z f.t)+m,(t)sin(27ft) |
Demodulation: If carrier phase is unknown, 1.e.
X, (t)s2cos(27 fit+60) = A | m,(t)cos @ —m,(t)sin 6 ]
+A.[my(t)cos(4r fit+0)+m,()sin(47 f1+6)]
After LPF: output becomes
Yo (1) =A.[m (t)cos@—m, (t)sin@] (ideal: 6 — 0)

DEE 3338: Principles of
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Time-Division Multiplexing (TDM)

Tx

a Data SOllI'CCS aI'e aSSU.IIlCd tO Information Information

have been sampled at ! \ P / 1

Nyquist rate or higher e b Ol o] it
2 2
o Commutator interlaces the : / ; / \ :

samples to form the e Bachand mfu%?ﬂon
baseband signal @
N il il
o Baseband signal is | - .
demultiplexed by using a e .

second commutator

s» DEE 3338: Principles of
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BW of TDM

A "rough" estimate of BW

Let:

BW of i channel = W,

Sampling period of baseband signal = T

= Samples in every T second for the ith channel = 2W.T samples

N
= Total samples (for all channels) in every T’ second: n, = Z 2wT

i=1
or

Assuming baseband 1s lowpass signal with BW B, required sampling rate is 2B.
In a T second interval, there are 2BT total samples.

N
=n, =2BT =) 2WT

N i=1
SO B:ZWI.

This 1s same as FDM.

DEE 3338: Principles of
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‘ Example of TDM: Digital Telephone
System

Voice signal sampling: 8,000
samp/s
o Each sample is quantized to 7 + 1
bit
= 1-bit for signaling

0 call establishment and
synchronization

Bit rate: 8 bit/samp * 8,000
samp/s= 64 kbps
T1 line

o Group of 24 8-bit voice channels
m 24 voice ch * 8 bit/samp + 1 =

193 bit
0 Extra 1-bit for frame
synchronization

o Frame rate

= 193 bit/frame * 8,000 frame/sec —
1.544 Mbps

Frame
0.125 ms

Frame synchronization

Signaling Signaling

bit for bat for

K channel 1 channel 24\|
1 2345678 1 2345671SF

Channel 1 (a) Channel 24

I . .
24 voice T1 used for short distances in area
channels, T

64 kbps channel | with heavy traffic
each
( T3 or T4 used for longer
4TI T2 . g
channels | =e——channel distance
L —
I
TT? | e— T3
channels | =——————1 channel
) I
6T} | e T4 T4 channel
chzmnels'< — channel

(b)

Figure 3.31
Digital multiplexing scheme for digital telephone. (a) T1 frame. (b) Digital multiplexing.

DEE 3338: Principles of
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Comparison Between Different Mux

Techniques

FDM

o Pros
Simple to implement
o Cons
Intermodulation distortion (crosstalk) due to nonlinear channel

TDM

o Pros
Less crosstalk (assuming memoryless channel)
o Cons
Difficult to keep synchronization (frame structure, header)
QM
o Pros
Efficient use of channel
o Cons
Crosstalk between I and Q channels (needs coherent demodulation)

e A% DEE 3338: Principles of
' Communication Systems
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