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Digital Baseband Modulation

 aka line coding
 Transfer digital bit stream (e.g. 

after pulse modulation) over an 
analog baseband channel (e.g. 
serial bus in PCs)

 Includes pulse shaping, 
synchronization, bandwidth 
reduction

 Pulse shaping (filtering)
 Avoidance of intersymbol

interference (ISI)
 Convolutive noise

 Synchronization
 Carrier sync, symbol sync, 

frame (groups of symbols) 
synchronization
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Line Code

 Baseband data format can influence digital 
modulated signal.  Several formats are available

 Nonreturn-to-zero (NRZ) 
 1: positive level, A
 0: negative level, –A

 NRZ mark
 1: a change in level
 0: no change in level

 Unipolar RZ
 1: ½-width pulse (pulse that returns to 0)
 0: no pulse

 Polar RZ
 1: positive RZ pulse
 0: negative RZ pulse

 Bipolar RZ
 1: alternating RZ pulses
 0: 0 level

 Split phase (Manchester)
 1: A switching to –A at ½ symbol period
 0: -A switching to A at ½ symbol period
 Transition occurs at low frequency
 Can be obtained from NRZ by multiplying a square-

wave clock waveform with a period equal to the symbol 
duration
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Issues Concerning Choice of Data Format

 Self-synchronization (symbol detection)
 Can synchronizers be easily designed to extract timing clock from the code?

 Power spectrum 
 Is power spectrum of the code suitable for particular channel spectrum under 

consideration?
 Transmission BW

 Which code occupies the least amount of BW?  May conflict with other issues
 Investigates its PSD

 Transparency
 Every possible data sequence should be received faithfully and transparently

 Error detection capability
 Some data format offers inherent data correction ability

 Good bit error probability performance
 Easy to implement minimum error probability receivers using the chosen data format
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Power Spectra of Line Coded Data
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Power Spectra of Line Coded Data
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Power Spectra of Line Coded Data
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Example 4.1 – PSD of NRZ
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Example 4.2 – PSD of Split Phase
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Example 4.3 – PSD of Unipolar RZ
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Example 4.3 – PSD of Unipolar RZ
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Example 4.4 – PSD of Polar RZ
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Example 4.5 – PSD of Bipolar RZ
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Example 4.5 – PSD of Bipolar RZ
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Summary

 None of the above formats possesses all the 
desired properties below, tradeoff is needed
 Self-synchronization
 Power spectrum 
 Transmission BW
 Transparency
 Error detection capability
 Good bit error probability performance
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Intersymbol Interference (ISI)

 Convolutive noise
 System will smear input signal 

during convolution
 If system can be modeled as FIR 

filter
 ISI will occur when length > 1

 Hard to deal with as increasing 
SNR does not help

 Example:  Covolving NRZ pulse 
with lowpass filter

h(t) = (1/α)e-t/αu(t)
α can be controlled by values of 
RC in RC circuit
 Different time constants have 

different smearing effect
 Assume FIR model: one has 

longer impulse response than 
other
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Effect of Different Degrees of ISI on 
Different Line Codes

Split phase is more susceptible 
to ISI than NRZ (Why?)

System with shorter length System with longer length
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Techniques Combat Against ISI 

 Zero-ISI property (ideal – assuming no synchronization error)
 Transmit and receive filters used to achieve zero-ISI condition

 Linear Receiver techniques
 Deterministic (parameters are modeled as deterministic variables)

 Zero-forcing equalizer
 Least-squares equalizer

 Bayesian/Stochastic (parameters are modeled as RVs)
 Linear Minimum Mean-Squared Error (LMMSE) equalizer

 Nonlinear receiver techniques
 Decision feedback equalizer (DFE)

 ZF
 LMMSE

 Better performance than linear receivers
 Increase computational complexity compared to linear receivers
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Techniques Combat Against ISI 

 Nonlinear transceiver techniques
 Tomlinson-Harashima precoding

 Move feedback portion of DFE to Tx
 Presubtract interference

 Modulo operation to prevent significant increase in input signal energy
 Feedforward @Rx mitigates remaining interference

 Use different transmission methods
 Block based transmission (DSP: Overlap-Save)

 Discrete MultiTone (DMT)
 Cable modem, ADSL

 Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal 
Frequency Division Multiple Access (OFDMA)
 IEEE 802.11ax (Wi-Fi 6 standard), 5G NR downlink and uplink (frequency range 

1: sub 6 GHz, frequency range 2: ≥ 6 GHz (likely 28, 38 GHz))
 Single-carrier modulation (SC) (called DFT-precoded OFDM)

 3GPP LTE (uplink) and 5G NR (uplink)



DEE3338: Principles of  
Communication Systems 20

ISI-free Transmission 
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Zero-ISI Property
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Zero-ISI Property
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Zero-ISI Property: Raised cosine
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Nyquist’s Pulse Shaping Criterion
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P f

T

( ) ( )

( ) ( )

( )

( )

                

Proof:
Recall:  

.

1,   ,
Condition on pulse for ISI-free transmission: 

0,   ,
and 0 1 by normalization.

n
n

i i n
n

k

i

y t a p t nT

y t a a p i n T

i n

kP f T

p i n T
i

p

T

n

µ

µ µ
≠

= −

= + −  

=
⇒ − =  

 − = 


 ≠

=





∑

∑

∑
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Nyquist’s Pulse Shaping Criterion

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )

2

Let 

From sampling theorem:  

           

1Since     

            *

1              *

s
m

m

m k

j f

m

m

m i n p i n T p mT

p mT p t p t t mT

p mT t mT

kt mT f
T T

P e F p t t mT

P f F t mT

kP f f
T T

π

δ

δ

δ δ

δ

δ

δ

= − ⇒ − =  

= = −

= −

 − ⇔ − 
 

 ⇒ = − 
 

 = − 
 

= −


∑

∑

∑ ∑

∑

∑

1             

k

k

kP f
T T


 


 = − 
 

∑

∑

( ) ( ) ( )

( ) ( )

( )

2 2

2

2

However, by definition 

     

             

             

Recall that 0 corresponds to ISI-free transmission:

                             

j f j ft

t
m

j ft

t
m

j fmT

m

P e p mT t mT e dt

p mT e t mT dt

p mT e

m

π π

π

π

δ

δ

−

−

−

= −

= −

=

=

∑∫

∑ ∫

∑

( ) ( )
( )

( )

2

0

2

0

0 1,

where the last equality comes from the assumption that 

1is normalized.  Since 1  

                                  

must satisfy the ISI-free tra

j f

m

j f

m k

k

P e p

p t

kP e P f
T T

kP f T
T

π

π

=

=

= =

 = = − 
 

 ∴ − = 
 

∑

∑
nsmission criterion.
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Example 4.6: Other Zero-ISI Pulse

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

2

2

0

Triangular spectrum:  
            sinc /
Zero-ISI condition is satisfied because 

1,   0,
              sinc

0,   0.

First condition is equivalent to 0 =1. j f

n

P f T Tf p t t T

n
p nT n

n

P e pπ

∆ ∆

∆

∆ ∆=

= Λ ⇔ =

=
= =  ≠

=

k

kP f
T∆

 − 
 

∑

( )2Recall:  Bsinct Bf
B

 Λ ⇔ 
 
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Transmit and Receive Filters
Suppose  is a sequence of sample values, e.g. 2-, 3-bit/sample.  The  sample
value multiplies a unit impulse occuring at time .  The output of the transmit filter is

                             

th
ka k

kT

( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( )

( )

               *

                                                  .

Output of channel:               *

Output of receive filter:       *

Assume  is used.

    

k T
k

k T
k

C

R

RC

x t a t kT h t

a h t kT

y t x t h t

v t y t h t

p t

δ= −

= −

=

=

∑

∑

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2
RC

                                  .

:   delay introduced by , , .

                        * *     

                           

d

k RC d
k

d T C R

RC d T C R

RC

j
T C R

T

ftf e

v t a Ap t kT t

t h t h t h t

Ap t t h t H f H fh t h t AP

AP f H

H fπ−

⇒ = − −

⇒ − =

⇒

=⇔

=

∑

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

1/2

1/2

     (i.e. in terms of magnitude)

Assume the channel impulse response is known, and assume 

                                  

C R

T R

RC
T R

C

f H f H f

h t h t

AP f
H f H f

H f

=

⇒ = =
What happens if this equality is not satisfied?  E.g. HC(f) 
not available, but an estimate of HC(f)?                
 Solution:  Equalization

aka matched filter
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Zero-Forcing Equalization (ZFE)

( )
( )

( ) ( )

:  output of a non-causal equalizer (FIR filter)

:  pulse response of the channel output 

                             ,

:   tap spacing
2 1:   length of equalizer
Suppose we samp

eq

c

N

eq n c
n N

p t

p t

p t p t n

N

α
=−

= − ∆

∆
+

∑

( ) ( )

le the output of the equalizer every 
sec.  Assume  ( 0.5  for fractionally spaced
equalizer).  Recall the condition on pulse for ISI-free
transmission: 

         

            

N

eq n c
n N

T
T T

p mT p m n Tα
=−

∆ = ∆ =

= −  ∑
1,   ,

            for 0, 1, , .
0,   ,

m n
m N

m n
=

= = ± ≠

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Zero-Forcing Equalization
Note:
1. ISI-free condition can be satisfied at only 2  time instants since 
    there are only 2 1.

length of channel greatly affects the length of (time-domain equalizers).
     I.e.  Longer the lengt

N
N +

⇒
h of the channel, longer the length of the equalizer

         Solution:  frequency-domain equalizers
2.  Output of the filter at 0 is forced to be 1.t =
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Zero-Forcing Equalization

[ ]
[ ]

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 1
1 1

2 1
1

2 1 2 1

Define the out signal vectors and matrix:

        1

           

0 2
0 2 1

          

2 2 1 0

The I/O r

T N
eq N N

T N
N N N

c c c

c c c N N
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c c c
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p NT p NT p
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× ×
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∈

∈

 − − 
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  





 

   



1

1
1

esponse equation is
                                        .
So the coefficents for the (FIR) equalizer are computed as
                                

                   1

eq c
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N

c

N

−
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−

×

=

=

⇒ =

p P a

P p a

0
a P
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1
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−

 
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P

[ ]
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[ ]

[ ]

Recall the output signal of a causal FIR filter with impulse response  

and input  can be written as
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Example 4.7:  ZFE Example

( ) ( ) ( ) ( )
( ) ( ) ( )

Consider a channel for which the following sample values of the channel
pulse response are obtained:
   3 0.02,   2 0.05,   0.2,   0 1.0

           0.3,  2 0.07,    3 0.03
Suppose w

c c c c

c c c

p T p T p T p

p T p T p T

− = − = − − = =

= = − =

1 1
1

1 1

e use a 3-tap FIR equalizer, i.e. 1
1.0 0.2 0.05
0.3 1.0 0.2 .
0.07 0.3 1.0

1.0815 0.2474 0.1035
1 0.3613 1.1465 0.2474 1

0.1841 0.3613 1.0815
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N N
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N N
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× ×
−

× ×

=

− 
 =  
 − 

−     
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     −     

P

0 0
a P

0 0

( ) ( )( ) ( )
( )( )

0.2474
  1.1465

0.3613

0.2474 1 1.1465

                   0.3613 1 ,  for , 1,0,1,
eq c c

c

p m p m T p mT

p m T m

− 
 =  
 − 

⇒ = − + +

− − = − 

Guarantee to be 0

No guarantee to 
be 0 as it is 
outside 2N+1 
range
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Eye Diagram

 Gives qualitative measure of system 
performance in terms of ISI

 Constructed by plotting overlapping k-
symbol segments of a baseband signal
 Can be displayed on an oscilloscope by 

triggering the time sweep of the 
oscilloscope at t=nkTs
 Ts: symbol period
 kTs: eye period
 n: integer

 NRZ wave input into 3rd order 
Butterworth filter
 4 symbols are shown
 BW is normalized to symbol rate

 E.g. if symbol rate = 1000 sym/s, BW 
of filter = 600Hz  normalized BW = 
0.6

 Graph spanned 200 samples
 Given 50 samples/symbol  k = 

200/50 = 4 symbols are shown
 Note: as BW↑, length of filter↓

Length 
of 
filter↑

Sampling epoch 
@Rx

4 msec
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Characteristics of Eye Diagram

 Two symbols are shown 
instead of 4

 Optimal sampling is when eye 
is most open

 Significant bandlimiting
(increase in filter length)  
closes the eye
 Causes amplitude jitter Aj

 Filter length↑ timing jitter 
Tj↑ (perturbation of zero-
crossings)  more difficult 
for synchronization

 BW of channel (filter)↓
additive noise↑ Aj↑ and Tj↑
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Synchronization

 A detection problem
 Making decision (binary problem: 1/0, signal present/not present, …) 

 Carrier synchronization
 Coherent detection

 Word synchronization
 Detection of initial symbol in codewords (from channel coding) in digital 

communication
 Frame synchronization

 Symbols group together to form frames
 Detection of starting and ending of frame

 Consider symbol synchronization
 Derivation from a primary or secondary standard

 E.g. Tx and Rx slaved to a master timing source
 Use of separate synchronization signal (pilot clock)
 Derivation from the modulation itself

 Known as self-synchronization
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Self Synchronization Method 1

( )2 FFTNRZ 
signal

T

Ts

Ts = T/2: symbol period

T:  period of NRZ wave

Ts

Ts
PLL can be used to track 
the harmonic for timing 
recovery

PLL

FFT will contain harmonic 
component at 1/Ts, the actual 
symbol rate

Idealized system, i.e. no channel
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Peak created by squaring 
operation (ideally, the signal will 
have constant amplitude)sym/s

2nd peak at symbol rate 1000 sym/s

50 samples/sym
Contains 600 samples  600 
samples/ 50 samples/sym = 12 sym
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Self-Synchronization Method 2

Peak indicates the 
actual symbol rate 
located @1000 
sym/s

PLL is used 
to track the 
harmonic for 
timing 
recovery
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Digital RF Modulation

( ) ( ) ( )
( )

( ) ( )

( ) ( )( )

ASK:
1 cos 2

Similar to AM, except  is a line code, e.g. NRZ

PSK:

cos 2
2

FSK:

cos 2

ASK c c

PSK c c

t

FSK c c f

x t A d t f t

d t

x t A f t d t

x t A f t k d d

π

ππ

π α α

= +  

 = + 
 

= + ∫
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