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Motivations

 Message/signals, noises, and systems are random in nature
 CDF/PDF are used as models 

 Parametric vs. nonparametric
 speech signal can be modeled as a Markov chain (process) - current state depends partly 

on the previous state, but no other states.  Each state contains a Gaussian mixture
 Color image signal can be modeled by a Gaussian mixtures – each mode represents 

different color, say, R, G, B
 Signal detection: optimal (LR and GLR) detector is a function of signals’ PDFs
 Channel model

 Power delay profile of a channel
 Strictly speaking, this models the output of the channel, but it is used to characterize the system response 

(similar to using h(t) to characterize the I/O response of a LTI system)
 Deterministic vs. Probabilistic model

 Different, so no better or worse
 Performance of design depends on

 System model (D/P)
 Problem model (D/P)
 Application

 Like any modeling problems, if the underlying model is incorrect, results will be incorrect 
no matter how good the model is.  E.g. models having a million parameters
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Definition of Probability

 Relative frequency

 Experimental and intuitive but infinite # of experiments 
are required – not possible

 Only approximates a probability
 Not satisfactory for mathematical analysis

 Axiomatic theory
 Mathematical
 Rigorous
 Facilitate further derivation

( )Pr lim ,   :  # of event  outcomes,  :  total # of trialsA
AN

NA N A N
N→∞


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Example: Tossing Two Fair Coins

Relative Frequency Axiomatic Theory

( ) ( )

( ) ( )

( )

Events:  A, B, 
Model: Prob. of Events: 

Pr , Pr ,

:  event for observing 
:  event for observing 

Possible outcomes:  , , ,
To find Pr  and Pr ,  repeat
experiment  times

1Pr lim
4

Pr  

A
N

A B

A HH
B HT

HH HT TH TT
A B
N

NA
N

A

→∞







= =





( ) 1or lim
2

A B
N

NB
N
∪

→∞
= =

{ }

{ }
( )

[ ]
( )

:  Sample space , , ,

, , ,
:  class of events, e.g. 

, ,

Pr :  real-valued probability function defined

on , i.e. 0,1

:  Pr 0 for all events  in 
: The probabili

S HH HT TH TT

HH HT
E

HH HT

E E

A A S

φ

=

  
 

⋅

∪  

→

≥Axiom 1
Axiom 2





( )

( ) ( ) ( )

( ) ( ) ( )
1 2

1 2 1 2

ty of all possible
events occurring is unity, i.e. Pr 1

: If the  and  are mutually
exclusive events, then
      Pr Pr Pr
If , ,  are mutually exclusive

Pr Pr Pr

S
A B

A B A B
A A

A A A A

=

∪ = +

⇒ ∪ ∪ = + +

Axiom 3



 
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Probability Relationships

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

  ,  :  the event "not "

From Axiom 2, Pr Pr Pr 1

Pr 1 Pr

 Generalization of Axiom 3

     (verify by Venn Diagram)

  Pr Pr Pr

 Also,  and  are disjoint and 

   

A A S A A

A A S

A A

A B A B A

A B A B A

A B A B A B A B B

• ∪ =

+ = =

⇒ = −

•

∪ = ∪ ∩

⇒ ∪ = + ∩

• ∩ ∩ ∩ ∪ ∩ =

( ) ( ) ( )

( ) ( ) ( ) ( )

Pr Pr Pr

  From previous two relationships
   Pr Pr Pr Pr

A B A B B

A B A B A B

⇒ ∩ + ∩ =

•

∪ = + − ∩
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Probability Relationships

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

  Conditional probability
Pr

Pr   or  Pr
Pr

 Pr Pr Pr Pr

Pr
Pr   (Bayes' rule)

Pr
 Statistical independence

  occurrence or nonocurrence of one event influence the other event
 P

P A B A B
A B B A

P B A

A B B B A A

A B P B
B A

A

•

∩ ∩
⇒

⇒ =

⇒ =

•

⇒

 

( ) ( ) ( ) ( )
( ) ( ) ( )

r Pr  and Pr Pr

 So using Bayes' rule:  Pr Pr Pr

A B A B A B

A B A B

= =

∩ =
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Example 6.3:  Bayes’ Rule

( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( )

Suppose two fair coins are tossed simultaneously.  Let
:  event that a least one head
:  event that there is a match

Find Pr , Pr ,  Pr ,  Pr ,  and Pr .

3: HH, HT, TH Pr
4

1:  HH, TT Pr
2

Pr
Pr

P

A
B

A B A B B A A B

A A

B B

A B
A B

∪

⇒ =

⇒ =

∩
=

( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1/ 4 1
r 1/ 2 2

Pr 1/ 4 1Pr
Pr 3 / 4 3

1 1 1Since Pr Pr Pr
2 2 4

3 1 1Pr Pr Pr Pr 1
4 2 4

B

B A
B A

A

A B A B B

A B A B A B

= =

∩
= = =

∩ = = • =

∪ = + − ∩ = + − =

H

T

H

T
H

T
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( ) ( ) ( ) ( ) ( ){ }
( ) ( )

, 1,0 ,  1,0 ,  2,0 ,  2,Given 

What is

 1

Pr ,  and Pr ?

x y

x y y x

=

Pr(x,y) y=0 y=1

x=1

x=2

Pr(y|x) y=0 y=1

x=1

x=2
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Multiplication Theorem for Conditional 
Probability (aka Chain Rule)

( ) ( ) ( )
( ) ( ) ( )

1 2

1 2 1 2 1

1 2 1 3 1 2

For any events ,  ,  , 

Pr Pr Pr

                                  Pr Pr Pr

                                                              
                      

n

n n

n

A A A

A A A A A A A

A A A A A A A

∩ ∩ ∩ = ∩ ∩

= ∩ ∩ ∩



 





( ) ( ) ( ) ( )1 2 1 3 1 2 1 2 1            Pr Pr Pr Pr n nA A A A A A A A A A −= ∩ ∩ ∩ ∩ 
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Partitions and Total Probability

B

A1

A2
A3

A4

An

1 2

1

Suppose the events , , ,  form a partition of a sample space , that is,
the events 's are mutually exclusive and their union is .  Suppose  is any
other event.  Then

                 

n

i

i
i

A A A S
A S B

B S B A
=

= ∩ =



( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 1 2

                                 ,
where  are also mutually exclusive.  Then
          Pr Pr Pr Pr .

From the multiplication theorem,
    Pr Pr Pr Pr Pr

n

n

i

n

B

A B A B A B
A B

B A B A B A B

B A B A A B

 
∩ 

 
= ∩ ∪ ∩ ∪ ∪ ∩

∩

= ∩ + ∩ + + ∩

= +







( ) ( ) ( )2 Pr Pr .

This is known as the .
n nA A B A+ +

law of total probability


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Example 6.4: Statistical Independence

A single card is drawn at random from a deck of cards.  Which of the following events
are independent.  (a) The card is a club, and the card is black.  (b) The card is a king,
and the card is black.

(a) 

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

:  event that the card is a club
:  event that the card is black

13 1There are 26 black cards, 13 of them are clubs Pr
26 2

26 1 13 1Pr ,  and Pr
52 2 52 4

1 1 1So,  Pr Pr Pr ,  but Pr Pr
2 2 4

A
B

A B

B A

A B A B B A B

⇒ = =

= = = =

  ∩ = = =  
  

1
8

Hence,  and  are not statistically independent.  Why?A B

=
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Example 6.4: Statistical Independence

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

(b) 
:  The card is a king
:  event that the card is black

2 1There are 26 black cards, 2 of them is a king Pr
26 13

26 1 4 1Pr ,  and Pr
52 2 52 13

1 1 1 1So,  Pr Pr Pr ,  and Pr Pr
13 2 26 26

He

A
B

A B

B A

A B A B B A B

⇒ = =

= = = =

  ∩ = = = =  
  

nce,  and  are statistically independent.  Why?A B
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,  and  produce respectively 50%, 30%, and 20% of the total
number of items of a factory.  The percentages of defective output of these machines
are 3%, 4%, and 5%.  If an item is selec

Three machines A B C

ted at random, find the probability that
the item is defective.

( )
Suppose an item is selected at random and is found to be defective.  Find the probability 
that the item was produc ; that ed by m is, finac d hine Pr .A A D
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Example 6.5: Binary Channel

1 sent

0 sent

Pr(1|1)=0.9

Pr(0|0)=0.9

1 rcved

0 rcved ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

Given:
Pr 0 0.8    Pr 1 1 Pr 0 0.2
If 1 was received, what's the probability that 1 was sent?

Pr 1 1 Pr 1Pr 1 1
Pr 1 1

Pr 1 Pr 1

Note that Pr 1 Pr 1 1 Pr 1 0

                        Pr 1 1 Pr 1 Pr 1 0 Pr 0

s s s

r s ss r
s r

r r

r r s r s

r s s r s

= ⇒ = − =

∩
= =

= ∩ + ∩

= + ( )
( )( ) ( )( )

( ) ( )
( )

( ) ( )
( )

( )( )

                        0.9 0.2 0.1 0.8
                        0.26

Pr 1 1 Pr 1Pr 1 1 0.9 0.2
Pr 1 1 0.69

Pr 1 Pr 1 0.26

s

r s ss r
s r

r r

= +

=

∩
⇒ = = = =

Notation: Pr(r|s)Notation: Pr(r|s) 
(likelihood probability)
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Example 6.5: Binary Channel

1 sent

0 sent

Pr(1|1)=0.9

Pr(0|0)=0.9

1 rcved

0 rcved

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )

If 0 was received, what's the probability that 1 was sent?

Pr 0 1 Pr 1Pr 1 0
Pr 1 0

Pr 0 Pr 0

Note that Pr 0 Pr 0 1 Pr 0 0

                        Pr 0 1 Pr 1 Pr 0 0 Pr 0

                        0.1 0.2 0

r s ss r
s r

r r

r r s r s

r s s r s s

∩
= =

= ∩ + ∩

= +

= + ( )( )

( ) ( )
( )

( ) ( )
( )

( )( )

.9 0.8
                        0.74

Pr 0 1 Pr 1Pr 1 0 0.1 0.2
Pr 1 0 0.03

Pr 0 Pr 0 0.74
r s ss r

s r
r r

=

∩
⇒ = = = =

Notation: Pr(r|s) 
(likelihood probability)

( )
( )

Pr 0 1 ?

Pr 0 0 ?

s r

s r

=

=
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Random Variable (RV)

 A random variable is a function 
that assigns a numerical value 
each possible outcome in S, i.e. 
S→ℜ (field of real number)
 More convenient to work with a 

numerical value than 
nonnumerical value

 Can be discrete or continuous 
(example of discrete RV on top 
right, continuous RV on bottom 
right)

 Convention
 Capital letters denote RVs
 Lowercase letters denote values 

the RVs take on
 E.g. fX(x) distribution function for 

RV X with value x
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CDF and PDF

 Functions which relates the probability of an 
event to a numerical value assigned to an event

 Parameter vs. nonparameteric
 There are several different parametric PDFs
 Nonparametric 

 Estimated directly from data 
 Easily adaptable
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Probability (Cumulative) Distribution 
Functions

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( )
0

0

  A way to probabilistically describe an RV
                 Pr

  

1.  0 1,  with 0,  1

2.  is continuous from the right, that is,

  lim

3.  is a nondecr

X

X

X X X

X

X Xx x

X

F x X x

F x

F x F F

F x

F x F x

F x

+→

•

≤

≤ ≤ −∞ = ∞ =

=

Properties of



( ) ( )1 2 1 2

easing function of , i.e.

    if X X

x

F x F x x x≤ <

From 2., FX(x) is continuous from 
right, so the jump amount = P0
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Probability Density Functions (PDF)

( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

2

1
1 2 2 1

More convenient to express statistical averages using PDFs

                           

  

1.    0

2. 1

3. Pr

4. 

X
X

X

X
X X X

x
x

X X Xx

X

dF x
f x

dx
f x

dF x
F x f d f x

dx

f x dx

x X x F x F x f x dx

f x dx P x dx

η
η η

=

= ⇒ = ≥

=

≤ ≤ = − =

= −

∫

∫
∫

Properties of

( )X x< ≤
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Example 6.9 – Discrete PDF and CDF

 2 fair coins are tossed
 X: # of heads

½ 

Outcome X Pr(X=xj)

TT x1=0 ¼
TH
HT
HH x3=3 ¼

x2=1 

Some texts use pmf where the 
Dirac delta’s are represented 
simply as Kronecker delta’s
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Example 6.10: Cont. PDF and CDF
Consider the pointer-spinning experiment.  Assume any one stopping point is not
favored over any other and that the RV  is defined as the angle that the pointer
makes with the vertical, modulo 2 .  Thuπ

Θ

[ )
[ )

( ) ( )
( ) ( )

1 2

1 1 2 2

1 2 1 2

s  is limited to 0,2  and for any two

angles  and  in 0,2 ,  we have

       Pr Pr   (equally likely assumption)

                             ,  0 , 2 .

                

f f

π

θ θ π

θ θ θ θ θ θ

θ θ θ θ πΘ Θ

Θ

−∆ < Θ ≤ = −∆ < Θ ≤

⇒ = ≤ <

( )
1 ,  0 2 ,

             2
0,     otherwise

Area under PDF curve is the probability.

f
θ π

θ πΘ

 ≤ <⇒ = 

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Joint CDFs and PDFs

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

1 1

2

1 2 1 2

Characterized by two or more RVs
, Pr ,

,
,

Pr , ,

, , 1

, ,

XY

XY
XY

y x

XYy x

XY XYy x

XY

F x y X x Y y

F x y
f x y

x y

x X x y Y y f x y dxdy

F f x y dxdy

f x y dxdy P x dx X x y dy Y y

= ≤ ≤

∂
=

∂ ∂

< ≤ < ≤ =

⇒ ∞ ∞ = =

⇒ = − < ≤ − < ≤

∫ ∫

∫ ∫
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Marginal CDFs and PDFs

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

Can obtain cdf or pdf of one of the RVs from joint RVs
        , Pr , ,

        , Pr , ,

               ,

               , .

Since 

X XY

Y XY

x

X XYy

y

Y XYx

F x y X x Y F x

F x y X Y y F y

F x f x y dx dy

F y f x y dx dy

′ −∞

−∞

= ≤ ≤ ∞ = ∞

= ≤ ∞ ≤ = ∞

′ ′ ′ ′=

′ ′ ′ ′=

∫ ∫

∫ ∫

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 and 

,   and  ,

X Y
X Y

X XY Y XYy x

dF x dF y
f x f y

dx dy

f x f x y dy f y f x y dx
′ ′

= =

′ ′ ′ ′⇒ = =∫ ∫
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Conditional CDFs and PDFs

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

Conditional RV:
,

                 

,
         

Bayes Theorem:

,
            

where  Pr   given .

      

XY
X Y X Y

Y

X Y XY
X Y

Y

X XY X Y XXY
X Y

Y Y Y

Y X

F x y
F x Y F x Y y

F y

F x Y y f x y
f x y

x f y

f y X x f x f y x f xf x y
f x y

f y f y f y

f y x dx y dy Y y X x

= ≤ =

∂ =
= =

∂

=
= = =

= − < ≤ =
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Statistical Independence

( ) ( ) ( )
( ) ( ) ( )

Two RVs are stat. independent if values one takes on do not influence
the values that the other takes on.
                   Pr , Pr Pr     or

                                    ,

 
XY X Y

X x Y y X x Y y

F x y F x F y

⇒ ≤ ≤ = ≤ ≤

=

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

                                    ,

If  and  are not independent, then using Bayes' rule
                          , .

XY X Y

XY X YY X X Y

f x y f x f y

X Y
f x y f x f y x f y f x y

=

= =
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Example 6.11:  Statistical Independence

( )
( )

( ) ( )
( )

( ) ( )

2

2

0 0

Two RVs and  have joint pdf

,  , 0              ,
0,        otherwise.

 can be found by noting that

         , , 1

Since 1    2

2
,

x y

XY

XY XYy x

x y

X XYy

X Y

Ae x yf x y

A

F f x y dxdy

Ae dxdy A

e
f x f x y dy

− +

∞ ∞ − +

−

 ≥= 


∞ ∞ = =

= ⇒ =

= =

∫ ∫

∫ ∫

∫
( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

2 2

0

2

,  0 2 ,  0
0,        00,                0

,  0
,

0,     0

, 2 ,  0
0,        0

, ,  0
0,     0

x y x

y

Y XYx

x
XY

X Y
Y

y
XY

Y X
X

dy x e x
xx

e y
f y f x y dx

y

f x y e x
f x y

f y x

f x y e y
f y x

f y y

∞ + −

−

−

−

 ≥ ≥ = 
< <

 ≥
= = 

<
 ≥

= = 
<

 ≥
= = 

<

∫

∫ Conditional prob’s are 
equal to respective 
marginals  X and Y
are independent.
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Example 6.11:  Statistical Independence

( )
( )

( ) ( )
( )

( ) ( )

2

2 2

0

,  , 0,
0,        otherwise.

2 ,  0 2 ,  0
,

0,        00,                0

,  0
,

0,     0

x y

XY

x y x

X XYy

y

Y XYx

Ae x yf x y

e x e x
f x f x y dy

xx

e y
f y f x y dx

y

− +

∞ − + −

−

 ≥= 


 ≥ ≥= = = 
< <

 ≥
= = 

<

∫∫

∫



Sum of Two Statistically Indep. RVs

 The density of the sum of 
two statistically 
independent RVs is the 
convolution of their 
individual density 
functions.

 Suppose X, and Y are 
three independent RVS 
where W = X + Y, then

fW(w), fX(x), and fY(y) are 
pdfs of W, X, and Y, 
respectively

DEE3338: Principles of  
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( ) ( ) ( )W Y Xy
f w f y f w y dy= −∫

x

y

x+ y = w

y=w

x=w
x+ y ≤ w

( ) ( ) ( )

( )

( ) ( )

,          ,  

             (stat. indep.)

Differentiating we get the result

W

w y

X Yy x

w y

Y Xy x

F w P W w P X Y w

f x y dxdy

f y f x dxdy

−

=−∞

−

=−∞

= ≤ = + ≤

=

=

∫ ∫

∫ ∫
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Transformation of RVs (Monotonic)

( )
( )

( )

Given a known , define a second RV such that it is a function of the first:
                                              .

Assume  monotonic.  Probability that  lies in the range 

,  is the 

X
Y g X

g X X

x dx x

=

−

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

same as the probability that  lies in the range

,

,    monotonically increasing
   

,    monotonically decreasing

                                        

X Y

X Y

Y X
x g

Y

y dy y

f x dx f y dy g X
f x dx f y dy g X

dxf y f x
dy =

−

=
 = −

⇒ =
( )

( )

( ) ( )( )
( )

1

1

1

1

,  for 

                                       .

y

Y X
x g y

x g y

dxf y f g y
dy

−

−

−

−

=

=

⇒ =
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Example 6.13

( ) ( ) ( )
1 ,  0 2 ,

From Ex 6.10, suppose   Note that ~ 0,22
0,     otherwise.

Suppose  is a transformed version of  according to
1                                   1    

    

f f Unif

Y

Y y

θ π
θ θ ππ

θ π π
π

Θ Θ

 ≤= 


Θ

 = − Θ+ ⇒ = − + 

≤

 

( ) ( )

( ) ( )

1 ,  1 1,
                           2

0,     otherwise.
Since transformation is affine   is also uniform, 1,1 .

Y y
y

Y

ydf y f
dy

f y Unif

θ π π
θ π π

θθΘ =− +
=− +

 − ≤⇒ = =


⇒ −

≤

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Transformation of RVs (Nonmonotonic)
( ) ( )
( ) ( ) ( )1 1 1 2 2 2 3 3 3

Assume  nonmonotonic. ,  corresponds to three infinitesimal

intervals:  , ,  , ,  ,
Probability that  lies in any of these intervals equal to the probability
that  lies in 

g X y dy y

x dx x x dx x x dx x
X

Y y d

−

− − −

−( )

( ) ( )

( ) ( )
( ) ( ) ( )

1

1

, .
Generalizing to  disjoint intervals:

                        Pr .

Since Pr  and

                   Pr ,              for 

             

N

i i i
i

Y

i i i X i i i i

y y
N

y dy Y y P x dx X x

y dy Y y f y dy

x dx X x f x dx x g y

=

−

− < ≤ = − < ≤

− < ≤ =

− < ≤ = =

∑

( ) ( )( )
( )1

1

1
                     .

Absolute value is used to keep probability nonnegative.
i i

N
i

Y X i
i x g y

dxf y f g y
dy −

−

= =

⇒ =∑
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Example 6.14

( ) ( )

( )

2

1 12

2 2

1
1

2
2

Consider the transformation  .  If 0.5 ,  find .

,     0
There are 2 solutions for :  ,   for 0.

,   0

1 ,  for 0
2

     
1 ,  for 0

2

      

x
X Y

Y X i

y x f x e f y

x y x
y x y

x y x

dx x
dy y

dx x
dy y

f y f x

−= =

 = ≥= ≥
= − <

 = ≥
⇒ 
 = − <


⇒ = ( )( )
( )

( )

( )

1

1

1

1

1

1

1                     
2

i i

i i

i i

N
i

i
i x g y

N x g y i

i x g y

dxg y
dy

dxe
dy

−

−

−

−

= =

− =

= =

=

=

∑

∑

1 1 1 1
2 22 2

1
2

1 ,   for 0
2
0,                for 0

y y

y

y

e e
y y

e
y

e y
y

y

− −

−

−

= − +

=

 >= 
 ≤

Because Y can’t be < 0
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Transformation of >2 RVs 
(NonMonotonic)

( ) ( ) ( )
( )

( ) ( )

( )

1 2 .

1

For random vector , with pdf ,  let ,  where 

Assume  has an inverse

                                        

                                        

nf f d f d d dy dy dy

df f
d

f f

−

−

= =

=

⇒ =

⇒ =

X Y X

Y X

Y X

X x y y x x y

x g y
xy x
y

y g



( )( )

( )

( ) ( )( ) ( )

1

1 1

1

1

1

,

where det ,  where  is the Jacobian matrix.

                                          det

n

N N

n

d
d

x x
y y

d d
x x
y y

f f −

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 

⇒ =Y X

xy
y

x J y J

y g y J



   



x1

x2

dy1

dy2

y1

y2

x = g-1(y)
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Example 6.15

( ) ( )2 2
2

2

2

Consider the dart throwing example.  Assume that joint PDF in terms of rectangular
coordinates for the impact point is

1                   , exp ,   for , , ,
2

where  is a o

1
2

c

XYf x y x y x y
πσ σ

σ

 = − + −∞ < < ∞  

( )

( )
( )

2 2 1

1
1
1

2

nstant.  Express ,  using the poloar coordinate system where

                        ,   and tan ,

for 0 ,  0 2 .

cos ,
sin ,

XYf x y

YR X Y
X

R

x x
X R g R r

y yY R g R
r

π

θ

θ

−

−

−

 = + Θ =  
 

≤ < ∞ ≤ Θ <

∂ ∂ 
  = Θ = Θ ∂ ∂⇒ =   ∂ ∂= Θ = Θ 
∂ ∂ 

J

( )

( ) ( )( ) ( )

2 2

1

2

2 2

cos sin
sin cos

cos sin
det det cos sin

sin cos

                            , det

                                                exp ,     fo
2 2

R

r
r

r
r r r

r

f r f

r r

θ θ
θ θ

θ θ
θ θ

θ θ

θ

πσ σ

−
Θ

− 
=  
 



− 
⇒ = = + = 

 

⇒ =

 
= − 

 

X

J

g y J

r 0 r≤ < ∞

x x
x rr
y y y

r

θ
θ

θ

∂ ∂ 
 ∆ ∆   ∂ ∂=     ∆ ∂ ∂ ∆    
 ∂ ∂ 
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Example 6.15

( )

( )

( )

2

2 2

2

2 2

Given , exp ,   for 0
2 2

Integrate ,  over ,  we have

                         exp ,   for 0
2

This is known as the .
We see that 

R

R

R

r rf r r

f r

r rf r r

θ
πσ σ

θ θ

σ σ

Θ

Θ

 
= − ≤ < ∞ 

 

 
= − ≤ < ∞ 

 
Rayleigh distribution function

most probable distance for the dart to land from
the bulleye is .R σ=

( )2 2 2
1 2 1 2

Rayleigh distribution is used
to model distribution of
power profile of wireless channels

,  where , ~ 0,

indep. RVs

x x x x x N σ= +
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Statistical Averages

 Sometimes full description of RVs, i.e. knowing 
its CDF or PDF are not required

 Sometimes only partial information is needed
 One type of partial information of a set of RVs  

statistical average or mean value
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Average of Discrete RV

[ ]
1 1

1

Expectation of  RVs, , ,  with respective probabilities , ,

                                       

Justification:
Let experiment be perform  number of time, 

Arithmeti

M M
M

x j j
j

M x x P P

E X x

N

P

N

µ
=

=∑

with la rge 

 



1 1

1

1 1

1

c mean:  

By relative frequency interpretation:  lim

                         

M
jm m

j
j

j
jN

M
m m

j j
j

nn x n x x
N N

n
P

N
n x n x x P

N

=

→∞

=

+ +
=

=

+ +
⇒ =

∑

∑




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Average of Cont. RV

( )0Expectation of  to  with pdf .  Suppose we break up this interval into
subintervals of size  (assume small).  The probability that  lies between

 to  is
                               Pr

M X

i i

x x f x
x X

x x x
∆

−∆

( ) ( )

( ) ( )

[ ] ( )


( )
0

0

0

lim

1

,  for 0, , .
Hence, approximated  by a discrete RV that takes on values  to 
with probabilities , , .

                       
x

i i X i

M

X X M

M

x i X i Xx
i

x x X x f x x i M
X x x

f x x f x x

E X x f x x xf x dxµ
∆ →

=

− ∆ < ≤ ≈ ∆ = …

∆ ∆

⇒ ≈ ∆ =∑ ∫




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Properties of Expectation

 E[⋅] is a linear operator
 Sometimes need to perform E(tr(⋅)).  tr(⋅) is also linear 

operator  E(tr(⋅)) = tr(E(⋅))
 Additive

 E[X+Y] = E[X] + E[Y] for any 2 RVs

 Homogeneity
 E[cX] = cE[X], for any constant c
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In a gambling game, the expected value  of the game is considered to be the value of 
the game to the player.  The game is said to be favorable to the player if  is positive,
and unfavorable if  is n

E
E

E 0, the game is fair.
A player tosses a fair die.  If a prime number occurs he wins that number of dollars,
but if a non-prime number occurs he loses that number of dollars. 

egative.  

 The possi
o

If

e

 

bl

E =

( ) of the game with their respective probabilitutcomes  are as followsies :i ix f x
xi 2 3 5 -1 -4 -6

f(xi) 1/6 1/6 1/6 1/6 1/6 1/6

The negative numbers correspond to the fact that the player loses if a non-prime number
occurs.  The expected value of the game is

                      1 1 1 1 1 12 3 5 1 4 6 .
6 6

       
6 6 6 6

So the

    E = ⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅

 game is unfavorable to the player since the expected value is negative.



DEE3338: Principles of  
Communication Systems 41

Average of a Function of a RV
( )

[ ]
( )

( )

( )

( )

( )

Let .  

Pr ,   discrete RV
                        .

,     cont. RV

 moment of ,  for 0,1, 2, .  Let 

Pr ,   discrete RV
                     

i i
i

Y

Yy

th r

r
i i

r i
r

r
Xx

Y g X

y y
E Y

yf y dx

r X r Y g X X

x x
E X

x f x dx

µ

ξ

=


= 



= = =

  = 

∑

∫

∑

∫







( ) ( )
( )

[ ] ( )2
2

,     cont. RV

 central moment of ,  for 0,1, 2, .  Let 

                                     

Special case:  variance:  2

                            var

rth
X

r
r X

X

r X r Y g X X

m E X

r

X m E X E

µ

µ

µ







= = = −

 − 
=

 − = 





 

2 2 2
x XX µ σ  −  
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( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

2

2

2 2 2 2

is a real number, then (i)  and

(ii) var .
Proof:
(i)           va

Let  be a random variable and var va

r

                            

r

var

     2 2

    

k X k X

kX k X

X k E X k X k E X k

E X kE X k E X k X

X

E k

+ =

=

+ = + + − +  
 = + + − + + 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2

2 2 2

2 2 2 2

2 2 2 2

                             var

(ii)               var

                                  

                                  var

E X E X X

kX E k X E kX

E k X k E X

k E X E X k X

= − =

= −

= −

 = − = 
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Average of a Function of a RV

( )

( )

[ ]

( )

,

,

11

 joint moment of  and Y,  for , 0,1, 2,

, ,         discrete RV
                    

, ,     cont. RV

Correlation:   

Note:
Independent:  

th

i j
m i m

i j i j
ij

i j
XYx y

XY

r X i j

x y P x y
E X Y

x y f x y dxdy

E XY

E XY E

ξ

ξ

=


  =  



=

∑

∫









( ) ( )
( )( )

( )
Uncorrelated: 0

Orthogonal:  0

Implications:
 If  and  are independent and have zero mean, implies  and  are uncorrelated and orthogonal.
 If  and  are uncorrelated and ha

X Y

XY X Y

X E Y

E X Y

E XY

X Y X Y
X Y

µ µ− − =  
=

•
• ve zero mean, implies they are orthogonal.
 Hence, independence is the strongest of the three properties.•
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Average of a Function of a RV

( ) ( )

[ ] ( )( ) [ ]11

 joint central moment of  and Y,  for , 0,1, 2,

                       

Covariance:   
        ,

Correlation coefficient for  and :

               

th

i j
ij X Y

X Y X Y

r X i j

m E X Y

Cov X Y m E X Y E XY

X Y

µ µ

µ µ µ µ

=

 − − 

− − = −  





 

[ ]11
2 2

20 02

,
                   

X Y

Cov X Ym
m m

ρ
σ σ

=



Example

DEE3338: Principles of  
Communication Systems 45

X\Y 4 10 Sum

1 1/4 1/4 1/2

3 1/4 1/4 1/2

Sum 1/2 1/2

X’\Y’ 4 10 Sum

1 0 1/2 1/2

3 1/2 0 1/2

Sum 1/2 1/2

What is E(XY) and E(X’Y’)?  What is Cov(X,Y) and Cov(X’,Y’)?
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Conditional Expectation

( )

( )

[ ] ( ) ( ) ( )

Conditional expectation of  given 

    

Expectation of functions of :   

           

X Yx

Xx

X Y y

E X Y E X Y y xf x Y y dx

X Y g X

E Y E g X g x f x dx

=

  =  =  = =   

=

= =  

∫

∫
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Removing Conditional Expectation Via 
Expectation

( )
( ) ( ) ( )

( ) ( )

( )

( )

Since  is a function of , it is also a RV.

  

                        

                        

                       

        

X Y

Y YX Y X Yy x

YX Yx y

XYx y

Xx

E X Y Y

E E X Y xf x y dx f y dy

x f x y f y dy dx

x f xy dy dx

xf x dx

  = 

=

=

=

∫ ∫

∫ ∫

∫ ∫

∫
[ ]               XE X=
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Conditional Expectation

This is an "expectation" version of the total probability theorem.
In many cases, we can simplify a problem by conditioning or "fixing"
one RV and performing an expectation.  Then remove the conditionin

( ) ( )( )

g
in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:   

                          Y XE g X E E g X Y =    
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Example:  Nonlinear MMSE Filter

[ ] [ ] ( )

 [ ]( ) [ ]  [ ]( ) [ ]  [ ]( ) ( )
2 2

,

Suppose we want to recover the transmit signal  from the received signal  the MMSE filter .
Cost function to consider 

               BMSE  = ,   

                   

Y X

x n y n g Y

x n E x n x n x n x n p y x dx dy = − −   ∫ ∫

[ ]  [ ]( ) ( ) ( ) [ ] [ ]( )( ) [ ] ( )

[ ] [ ]( )( ) [ ]{ }
( )

[ ] [ ]( )( ) [ ]

2

2

2 2
                   

                                    

                                              min   

X Y

Y X Y

X Yg y

x n x n p x y dx p y dy E x n g y n y n p y dy

E E x n

E x n g y n y n

g y n y n

 = − = −  

 = −  

⇒  −  

∫ ∫ ∫

experiment

unknown
x[n]

observed
y[n]

(nonlinear) 
estimator
g(y[n])

 [ ]x n
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A is considered to be a random variable with a prior 
pdf.  We attempt to estimate the realization of A

[ ] [ ] ( )
[ ] [ ] ( )2

0 0

Assume , for 0,1, , 1 is observed.  Assume 

,  and ~ 0,  is independent of .  Estimate  by

minimizing MMSE criterion.

x n A w n n N p A

U A A w n N A Aσ

= + = − =

−


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[ ] [ ] ( )
[ ] [ ] ( )

[ ]( ) [ ]( ) [ ]( )

2
0 0

2

Assume , for 0,1, , 1 is observed.  Assume 

,  and ~ 0,  is independent of .  Estimate  by

minimizing MMSE criterion.

Since   

1                            
2

x w w

x n A w n n N p A

U A A w n N A A

p x n A p x n A A p x n A

σ

πσ

= + = − =

−

= − = −

=



[ ]( )

( )
( )

[ ]( )

2

2

1 2

/ 2 22 0

1exp
2

1 1Hence           exp
22

N

N
n

x n A

p A x n A

σ

σπσ

−

=

 − −  

 = − −  
∑x



BMSE Example

DEE3338: Principles of  
Communication Systems 52

( )
( )

[ ]( )

( )
[ ]( )0

0

1 2

/ 2 22 00
01 2

/ 2 22 00

Then the posterior pdf becomes

1 1exp
22 2

,    
1 1exp

22 2

0,                                                                           

N

N
n

NA

NA
n

x n A
A

A A
p A x n A dA

A

σπσ

σπσ

−

=

−

−
=

 − −  
≤

 = − −  

∑

∑∫
x

( )
( ) [ ]

( )
( ) [ ]0

0

0

1
2 2 2

/ 2 22 00
01

2 2 2
/ 2 2 22 00

       

1 1exp
22 2

,    
1 1 1exp exp

2 22 2

0,                                              

N

N
n

NA

NA
n

A A

N A x x n Nx
A

A A
N A x dA x n Nx

A

σπσ

σ σπσ

−

=

−

−
=








 >

  − − + −  
  

≤
 =   − − − −       

∑

∑∫ 

0                                                                              A A








 >

( ) ( )
( )

( ) ( )
( ) ( )

, p A p Ap A
p A

p p A p A dA
= =

∫
xx

x
x x
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( )
( )

( )( )

( )
( )

( )

0

0

2
/ 2 22

0
0

2
/ 2 22

0

0

22

1 1exp
22 2

,    
1 1exp

22 2

0,                                                                          

1 1exp
            22

N

A

NA

N A x
A

A A
p A N A x dA

A

A A

A x
c NN

σπσ

σπσ

σσπ

−

  − −    ≤  =  − −   

 >

− −
=

∫x

2
0

0

,    

0,                                                     

A A

A A

  
  

≤  
 
   


>

( )0

0

2
22

where

1 1exp
22

A

A
c N A x dA

NN
σσπ

−

 
 

= − − 
 
  

∫
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( ) ( )

( )

( )

0

0

0

0

2
22

2
22

The MMSE estimator
ˆ   

1 1exp   
22

   

1 1exp    
22

A

A

A

A

A E A Ap A dA

A A x dA

NN

A x dA

NN

σσπ

σσπ

∞

−∞

−

−

= =

 
 
− − 
 
  

=
 
 
− − 
 
  

∫

∫

∫

x x

Cannot be evaluated in closed-form
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( )

 As  increases, the MMSE estimator relies less and less on the prior
   knowledge and more on the data.
 Before observation, we assume a prior pdf .  After observation,

   our state of knowledge abo

N

p A

•

•

( )
ut the parameter is summarized by the

   posterior pdf .

 The choice of a prior pdf is critical in Bayesian estimation.  A
   wrong choice will result in a poor estimator.
 An optimal estimator is de

p A

•

•

x

( ) ( )

fined to be the one that minimizes
   the MSE when average over  realizations of  and .

           MMSE estimator:  

all
ˆ E p dθ θ θ

θ

θ θ= = ∫x x

x
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Special Average:  Characteristic Function
( )

( ) ( )

( ) ( )

( )

Let 

              

1                     
2

Note:
 This is Fourier transform of  if we have 
 Sometimes it is more convenient to use the variable  

j X

j X j x
Xx

j x
X v

j X
X

g X e

E e f x e dx

f x e dv

f x e
s

ω

ω ω

ω

ω

ω

ω
π

−

−

=

 Φ = 

= Φ

•

•

∫

∫



( ) ( )

[ ] ( ) ( )
0

in place
   of , the result becomes .

Obtaining moments of a RV:

                          

      Set 0 :       

                            

jvx
Xx

j

j xf x e dx
d

E X j
d

E X

ω

ω

ω
ω

ω
ω

ω
=

∂Φ
=

∂Φ
= ⇒ = −

⇒

∫

moment generating function

( ) ( )
0

n
nn

nj
d

ω

ω
ω

=

∂ Φ
  = − 
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Chebyshev Inequality and the Law of 
Large Numbers (LLN)

( )

2

2

2

Let  be a RV with mean  and finite variance .  Then for any 0,

                                Pr    (Chebyshev Inequality)

X X

X
X

X

X

µ σ δ

σµ δ
δ

>

− ≥ ≤

1 2
2

1

Let , , ,  be i.i.d. (independent and identically distributed)
RVs with mean  and variance  each.  Let the sample mean be

1ˆ                                 .

Then, for any fixed 0,

N

X X
N

X i
i

X X X

X
N

µ σ

µ

δ
=

=

>

∑



( )ˆ                               lim Pr 0.   (LLN)

ˆIntuitively, this means the estimator, , will converge to  in probability.
ˆIf the above limit equals 0,  is called a consistent estimat

X XN

X X

X

µ µ δ

µ µ
µ

→∞
− ≥ =

or of .Xµ
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( ) ( )

( ) ( )

22

*
2

.  Removing all the terms .  Then

                                   

Given that 

,

where asterisk indicates 

        

the summ

   

ation extends only over tho

  

 for wse 

X i X i i X
i

i X i X
i

x f x x

x f x

i

σ µ µ δ

µ σ

= − − <

− ≤

∑

∑

( ) ( )

( ) ( )

* *
2 2 2

*

hich .

Thus this new summation does not increase in value if we replace each  by 

so that                                  

 is equal to Pr ,  hence

      

.

But 

i X

i X

i i X
i i

i X
i

x

x

f x f x

f x X

µ δ

µ δ

δ δ σ

µ δ

− ≥

−

= ≤

− ≥

∑ ∑

∑
( )2 2                                            Pr .                                  X XXδ µ δ σ− ≥ ≤ 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1
2

1 1

2
21

12 2

, , are independent, it follows that
var var v

ˆNote that  .

Since  
,  then

ˆ           

ar

1 1var var .

So, from the Chebyc

  var

N X
X

N

N N X

n X
n

X

X X

E X E X NE
N N

X X
X X X X N

X X X X N
N N N N

µ

µ

µ µ

σ

σσ

+ +
= = =

…

+ + = + + =

+ + = = + + =  =
 



 





( )
2

2hev inequality,  Pr .   Then as we take

limit as  of the right hand side, it equals 0.                                       
                             

ˆ

   

X
XX N

N

µ σµ δ
δ

− ≥ ≤

→∞ 
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Useful PDFs

 Discrete RVs
 Binomial distribution

 Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
 Model number of times event A has occurred in n trials (events are indep)

 Poisson distribution
 Related to chance experiment in which an event whose probability of occurrence in a very small time 

interval ∆T is P=α∆T, where α is a constant
 Model the probability of k events occurring in time T
 Commonly used to model arrival time of packets in packet switching networks

 Continuous RVs
 Normal (Gaussian) distribution

 Commonly used to model large number of indep. random events when distribution of each event is 
unknown

 Sum of large number of independent RVs converges to a Gaussian distribution
 Rayleigh distribution

 (see above)
 Rician distribution

 Commonly used to model distribution of power profile of wireless channel when direct line-of-sight 
(LOS) exists

 x = sqrt(x1
2+x2

2), where x1~N(µ1,σ2), x2~N(µ2,σ2) are indep. RV
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Useful PDFs

 Continuous RVs
 Chi-Squared (central and noncentral)

 Commonly encounter in detector design

 F-distribution (central and noncentral)
 Commonly encounter in detector design

( )

2

2

1

 with  degrees of freedom

,  ~ 0 or ,1  and indep.i i i
i

x x x N

ν

ν

χ ν

µ
=

=∑

( )
1 2

2

2 21 1
1 2

2 2

 PDF:  ratio of 2 indep.  RVs
/ ,   ~ ,   ~  and indep.
/

                                  0 :  central dist.

F
xx x x
x

F

ν

ν ν

χ
ν χ λ χ
ν

λ

=

= −
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Binomial Distribution
Consider repeated and independent trials of an experiment with two outcomes: success
and failure.  Probability of success equals  1 .  If we are
interested in the number of succes

 and failure equals q pp −

( ) ( )

 successes in  repeated trials is given by 
ses and not in the order in which they occur, then

the probability of exactly 

,   for 0,1, ,
                            Pr

0,        

k n k

n

n
p q k n

K k P k k

k n

− 
= = =  





( )
,  and 

,
                   otherwise

!where  is the binomi  is an RV that equals to the 

number of success

a

es

l coeff

.

icient
! !

n
Kn

k k n k







 
=  − 
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 heads in  tosses of the coin and the probability
of a head on a single toss equals  and that of a tail equals 
Suppose we wish to obt

1 .  Possible 
ain probab

sequence is
                

ility of 

  

k n
p q p= −

 heads  tails

                                  .

Under the assumption that the tosses are independent, the probability of this particular
sequence is
                                  

k n k

HH H TT T
−

 



 factors  tails

                  .

Since this is only the probability of this sequence. This sequence is one out of

!                                            

k n k

k n k

p p p q q q p q

n n
k k

−

−

⋅ ⋅ =

 
 
 

 





( )! !
possible sequences of having  heads in  tosses.  Since all of these outcomes are
mutually exclusive, the probability of  heads in  tosses in any order

is

 exactly 

,  0,1, ,k n k

n k
k n

k n
n

p q k n
k

−

−

 
= … 

 
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16 and 
2

(i) The probability that exactly two heads occur (i.e. 

A fair coin is tossed 6 times and head is called a success

2) is
                         
(ii) The probability of getting at l

.

e

  

n p q

k

⇒ = = =

=

ast four heads (i.e. 4,5 or 6) is
     
(iii) The probability of no heads (i.e. all failures):  
                                                
(iv) The probability of at least 1 head:  

k =



Laplace Approximation to Binomial 
Distribution
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( ) ( )2

Laplace approximation to binomial distribution

When ,  -

1                    exp
22n

n k np npq

k np
P k

npqnpqπ

→∞ ≤

 −
≈ − 

 
 
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Binomial Distribution (6 different 
parameters)
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Poisson Distribution
Consider a chance experiment in which an event whose probability of occurrence in a
very small tim , where  is a constant of proportionality.  If successive
occurrences

e  is
 are statistically in

 T P Tα α∆ = ∆

( ) ( )                                     ,    0

dependent, then the probability of  event

,1, 2,
!

 Can be used to model the number of telephone calls per minute 
 Can

s 

 be us

in time  is

ed to 

k
T

T

T
P k e k

k

k T

αα −= =

•
•



( )

model the number of packets arriving at a router
 Can be used to approximate the binonomial distribution when  is large, and  is

 small, then 

                                                n

n p
np npq

P k

•
≈

( )

[ ]

,
!

k

KK
e

k
K E K np

−≈

=
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Gaussian (Normal) Distribution

( ) ( )

[ ] ( )

( ) ( )

( ) ( )

( ) ( )2 2

1 1

2

2 2

22

2

1 2 1 2

1 dimensional:

1 1                        exp
2 2

where ,   

Joint CDFs and PDFs:
, ,

,
,

, ,

X

XY

XY
XY

y x

XYy x

f x x

E X E X

F x y P X x Y y

F x y
f x y

x y

P x X x y Y y f x y dxdy

µ
πσ σ

µ σ µ

−

 
= − − 

 
 − 

= ≤ ≤

∂
=

∂ ∂

≤ ≤ ≤ ≤ = ∫ ∫

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

Marginal distribution:
, ,

, ,

,

X XY XY

Y XY XY

X XYx

F x F x F x Y

F y F y F X y

f x f x y dy

= ∞ = ≤ ∞

= ∞ = ≤ ∞

= ∫
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2-D (Bivariate) Gaussian Distribution

( )
( ) ( ) ( ) ( )

( )

[ ] [ ] [ ] [ ]
( ) ( ) [ ]

22

22

2 2

2 2

/ 2 / / /1, exp
2 12 1

where 
,   ,   var ,   var

,

x x x x y y y y
XY

x y

x y x y

x y

x y x y

x x y y
f x y

E X E Y X Y

E X E Y Cov X Y

µ σ ρ µ σ µ σ µ σ

ρπσ σ ρ

µ µ σ σ

µ µ
ρ

σ σ σ σ

    − − − − + −           = − −−  
 

= = = =

 − − = =
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2-D (Bivariate) Gaussian Distribution
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N-dimensional Gaussian Distribution

( )
( ) ( )

( ) ( )

[ ]
( )

( )

( )( )

1
/ 2 1/ 2

1

1 1exp
22 det

  (applied element-wise)
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Central Limit Theorem

2 2 2
1 2 1 2

2 2 2
1

2

Let , , ,  be indep. RVs with zero mean and variance , , , .
Let .  If for any fixed 0,  there exists a sufficient large

 such that 
                                        

N N

N N

k

X X X
s

N

σ σ σ

σ σ ε

σ

+ + >

<

 

 

1 2

,   for 1, , ,
then the normalized RV

                                        

converges to the standard normal (Gaussian) PDF.

N

N
N

N

s k N

X X XZ
s

ε =

+ + +




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Q-Function

( )

( ) ( )

2

2
22

2/

/

Gaussian -Function:  

Normalized Normal distribution of ,

1 1Consider exp
22

1(let )                  exp
22
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∫
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1                          2 exp
22

1(since area under PDF=1)  1 2 exp
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u

σ

σ

π

π

σ

π π

∞

∞

 
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 
 
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 

 
= −  

 
 
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∫

∫

∫
2

p ,   for 1
2

has been computed numerically.

u u
 
− 
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Gaussian PDF
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Normalized Distribution Function: F(x) 
and Q(x)

( )

( ) ( )
( ) ( )

( )

2

2

/ 2

Normalized cumulative distribution function: 0,  1
1                         
2

                               1

A related function:  1
1                         
2

x x

x
F x e d
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Q x e
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=
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= −
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ξ
∞
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( )
( ) ( )

Normalized cumaltive
distribution function
            

   1

F x

F x Q x= −
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Example

( )
[ ]{ }

( )

( ) ( )
( ) ( )

( )

3

1 1

1
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Suppose 10 ,  then 3.  Then
;

     Pr 0 ;

1 1     exp 1
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As the threshold changes, one error increases while the other decreases
;                               Probability of false alarm ( )

; 1 ;     Probability of detection ( )
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Error Function

( ) ( )

( ) ( ) ( )

( )

2

0

2

22

2

Error function:
2                   exp

Complementary error function:
2            1 exp

Note:

1                 exp
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2
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Example:  Nonlinear MMSE Filter
[ ] [ ] ( )

[ ] [ ]( ) [ ]
( )

[ ] [ ]( ) [ ]

[ ] [ ]( ) [ ]

2 2

2

Suppose we want to recover the transmit signal  from the received signal  the MMSE filter .

           Cost function to consider     minX Y X Yg y

X Y

x n y n g Y

E x n g y n y n E x n g y n y n

E x n g y n y n E
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Note:

  0 and it's not a function of ,  it can be ignored in computing 
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0 since we are taking expectation of a non-negative quantity

Integral of non-negative quantity w.r.t.  does not affect solution, can be ignored.

2 0X Y X Y

X Y X Y
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E x n y n E g y n y
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[ ] [ ] [ ]( ) [ ] [ ]( ) MMSE filter to recover  from :             X Yg y n
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