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Motivations

Message/signals, noises, and systems are random in nature
o CDF/PDF are used as models
Parametric vs. nonparametric

o speech signal can be modeled as a Markov chain (process) - current state depends partly
on the previous state, but no other states. Each state contains a Gaussian mixture

o Color image signal can be modeled by a Gaussian mixtures — each mode represents
different color, say, R, G, B
o Signal detection: optimal (LR and GLR) detector is a function of signals’ PDFs

o Channel model

Power delay profile of a channel

o Strictly speaking, this models the output of the channel, but it is used to characterize the system response
(similar to using A(#) to characterize the I/O response of a LTI system)

Deterministic vs. Probabilistic model
o Different, so no better or worse
o Performance of design depends on
System model (D/P)
Problem model (D/P)
Application

o Like any modeling problems, if the underlying model is incorrect, results will be incorrect
no matter how good the model is. E.g. models having a million parameters
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Definition of Probability

Relative frequency

Pr(4)2 lim &, N, : #of event 4 outcomes, N : total # of trials
N—>o0 N 4

0 Experimental and intuitive but infinite # of experiments
are required — not possible

0 Only approximates a probability
o Not satisfactory for mathematical analysis

Axiomatic theory

o Mathematical

o Rigorous

o Facilitate further derivation
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Example: Tossing Two Fair Coins

Relative Frequency

Axiomatic Theory

(Events: A B, ---
Model: < Prob. of Events:
\Pr(A),Pr(B),- :

A: event for observing HH
B : event for observing HT
Possible outcomes: HH,HT ,TH,TT
To find Pr(A) and Pr(B), repeat
experiment N times

N, 1

4
Pr(4 orB)—}flm NN %

S: Sample space = { HH ,HT,TH,TT}
HH,HT,..., }
¢

E : class of events, e.g. { {HH HT}
U yens

Pr () : real-valued probability function defined

onE,ie. E—[0,1]

Axiom 1: Pr(A4)>0 for all events 4 in §

Axiom 2: The probability of all possible

events occurring is unity, i.e. Pr(S)=1

Axiom 3: If the 4 and B are mutually

exclusive events, then
Pr(4wB)=Pr(A4)+Pr(B)

If 4,4,

= Pr(4,04,U---)=Pr(4,)+Pr(4,)+-

... are mutually exclusive
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Probability Relationships

e AUA=S, A: the event "not A"
From Axiom 2, Pr(A)+Pr(Z) =Pr(S)=1
:Pr(ﬂ)zl—Pr(A)
e Generalization of Axiom 3
AUB=AuU (B N A ) (verify by Venn Diagram)
= Pr(AUB)=Pr(4)+Pr(BNA)
e Also, AN B and A N B are disjoint and (AmB)u(ZmB) =B
= Pr(ANB)+Pr(4nB)=Pr(B)
e From previous two relationships
Pr(4UB)=Pr(A)+Pr(B)-Pr(4AnB)
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Probability Relationships

e Conditional probability
» P(ANB)
P(B)
= Pr(A|B)Pr(B)=Pr(B|4)Pr(4)
Pr(4|B)P(B)
Pr(4)

e Statistical independence

or Pr(B|A)éPr}£:1(2)B)

= Pr(4|B)

= Pr(B|4)=

(Bayes' rule)

occurrence or nonocurrence of one event influence the other event
= Pr(4|B)=Pr(4) and Pr(B|4)=Pr(B)
So using Bayes' rule: Pr(4nB)="Pr(A4)Pr(B)
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Example 6.3: Bayes’ Rule

Suppose two fair coins are tossed simultaneously. Let
A: event that a least one head

B: event that there 1s a match
Find Pr(4), Pr(B), Pr(4|B), Pr(B|4), and Pr(4UB).

B: HH, TT = Pr(B)=

<«
_ Pr(4nB) _/4 1

Pr(4]5) Pr(B) 1/2 2

H
Pr(B|A)_Pr(BmA)_1/4_l T<
- Pr(4)  3/4 3

T
Since Pr(AmB):Pr(A|B)Pr(B):lol:l
2 2 4
Pr(AuB):Pr(A)+Pr(B)—Pr(AmB):%Jr%—%:l
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‘ Example: Conditional Probability

Given x y ={ O)’ (2’ 1)}
What is Pr(x,y) and Pr(y| )?

Pr(x,y) y=0 y=1

x=1

x=2
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Multiplication Theorem for Conditional
Probability (aka Chain Rule)

Forany events 4, 4,, ..., 4,
Pr(4 nd,m--nA)=Pr(4)Pr(4,nn4,|4)
=Pr(4,)Pr(4|4)Pr(4nn4|4N4,)

=Pr(A4)Pr(4|4)Pr(4|4 n4,)-Pr(4,]4 N4 nnA4)
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Partitions and Total Probability

Suppose the events 4,, 4,,..., A form a partition of a sample space S, that is,
the events 4.'s are mutually exclusive and their union is S. Suppose B is any

other event. Then

B:SmB:(OAi)mB
i=1
=(4 NB)u(4,NB)uU---U(4,NB),

where 4, N B are also mutually exclusive. Then

Pr(B)=Pr(4, NB)+Pr(4, "B)+---+Pr(4,NB).
From the multiplication theorem,

Pr(B)="Pr(4,)Pr(B|4)+Pr(4,)Pr(B|4,)+-+Pr(4,)Pr(B

This is known as the law of total probability.

4,).
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Example 6.4: Statistical Independence

A single card i1s drawn at random from a deck of cards. Which of the following events
are independent. (a) The card is a club, and the card 1s black. (b) The card is a king,
and the card is black.

(a)
A : event that the card is a club
B : event that the card 1s black

There are 26 black cards, 13 of them are clubs = Pr(A‘ B) = % :%
PI‘(B)=§:1, and Pr(A):Ezl
52 2 52 4

So, Pr(AnB)="Pr(4|B)Pr(B) =GJGJ :%, but Pr(4)Pr(B) :%

Hence, 4 and B are not statistically independent. Why?

DEE3338: Principles of
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Example 6.4: Statistical Independence

(b)
A: The card is a king
B : event that the card 1s black

There are 26 black cards, 2 of them 1s a king = Pr( A| B) - 216 :%
PI(B)=§=1, and Pr(A):i:i
52 2 52 13

So, Pr(4nB)=Pr(4|B)Pr(B) =(%)G) =2i6, and Pr(A)Pr(B) :2L6

Hence, 4 and B are statistically independent. Why?
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Example: Total Probability

Three machines 4, B and C produce respectively 50%, 30%, and 20% of the total
number of items of a factory. The percentages of defective output of these machines
are 3%, 4%, and 5%. If an item i1s selected at random, find the probability that

the item 1s defective.

Suppose an item i1s selected at random and is found to be defective. Find the probability

that the item was produced by machine 4; that is, find Pr(A‘ D).

DEE3338: Principles of
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Example 6.5: Binary Channel

Pr(1]1)=0.9

1 sent 1 rcved

Pr(0]0)=0.9

0 sent 0 rcved

Notation: Pr(t|s)
(likelihood probability)

DEE3338: Principles of
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Given:
Pr(Os):O.8 = Pr(ls):l—Pr(Os)=O.2

If 1 was received, what's the probability that 1 was sent?

Pr(lsn1r)  Pr(lrfls)Pr(ls)
Pr(1r) Pr(1r)
Note that Pr(1r)=Pr(lrN1s)+Pr(1r N 0s)
= Pr(1r|1s)Pr(1s)+Pr(1r|0s)Pr(Os)

Pr(1s]1r) =

= (0.9)(0.2)+(0.1)(0.8)
=0.26
_Pr(1snlr)  Pr(lrls)Pr(ls) (0.9)(0.2)
= Pr(lsjir) = Pr(lr)  Pr(lr) 026 000

14



Example 6.5: Binary Channel

Pr(1]1)=0.9

1 sent 1 rcved

Pr(0]0)=0.9

0 sent 0 rcved

Notation: Pr(r|s)
(likelihood probability)

Pr(Os|1r) =7
PI’(OS| Or) =7

DEE3338: Principles of
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If 0 was received, what's the probability that 1 was sent?

Pr(lsn0r) Pr(0r|1s)Pr(1s)
Pr(0r) Pr(0r)
Note that Pr(0r)="Pr(0r1s)+Pr(0rN0s)
= Pr(0r|1s)Pr(1s)+ Pr(0r| Os) Pr (0s)

Pr(1s|0r) =

= (0.1)(0.2)+(0.9)(0.8)
=0.74
_ Pr(1sn0r)  Pr(0rls)Pr(ls) (0.1)(0.2)
= Pr(1s]0r) = Pr(0r)  Pr(0r) 074 00
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Random Variable (RV)

Table 5.2 Possible Random Variables (RV)

A random variable is a function P B ——h e
that assigns a numerical value 5 = wils Xi(5) = - | Xa(52) = V2
each possible outcome in S, i.e.

S— 9 (field of real number)

o  More convenient to work with a o -

Pictorial representation of sample

numerical value than ‘
. i spuces and random variables.
nonnumerlcal Value pead \| (:) Coin-tossing cxperiment.

Up side is (b) Pointer-spinning experiment.

Up side 1

Can be discrete or continuous = ‘ ‘
(example of discrete RV on top L? N R
right, continuous RV on bottom o T e
right) Fomr e e
Convention =
o Capital letters denote RVs er & ﬂ
o Lowercase letters denote values ) k,\p/\ f—
the RVs take on | 1
E.g. f{(x) distribution function for [P S B
RV X with value x g o i r =

’=f8% DEE3338: Principles of
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CDF and PDF

Functions which relates the probability of an
event to a numerical value assigned to an event

Parameter vs. nonparameteric

0 There are several different parametric PDFs

o Nonparametric

Estimated directly from data
Easily adaptable

DEE3338: Principles of
Communication Systems
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Probability (Cumulative) Distribution

Functions

e A way to probabilistically describe an RV
Fy(x)2Pr(X <x)

From 2., Fy(x) 1s continuous from

F. (9 right, so the jump amount = P,

Properties of F, (x)
1. 0<F,(x)<I, with F, (-0)=0, F, (0)=1

~

2. F, (x) is continuous from the right, that is,

Py =P(X =x0) 4
lim F, (x)=F, (x -
xX—>xg X ( ) X ( O) ___-—-""'_-—
. X
3. Fy (x) is a nondecreasing function of x, i.e. 0 %o
) Figure 6.5
F, (xl) <F, (xz) ifx, <x, [lustration of the jump property of f, (x).

DEE3338: Principles of
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Probability Density Functions (PDF)

More convenient to express statistical averages using PDFs

_dF, (x)
I (x)  dx
Properties of f (x)
dF
LF (x)=[ fi(n)dn = fy(x)= Zx(x) >0

2. Lf(x)dle
3. Pr(x, <X <x,)=F,(x,)-F, (xl)zj-:fX (x)dx

4.f¢(x)dx=P(x—dx< X <x)

39 DEE3338: Principles of
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Example 6.9 — Discrete PDF and CDF

Figure 6.6
The cdf (a) and pdf (b) for a
2 falr COlnS are tossed Fi(x) coin-tossing experiment.
4l —_—
4 |
X: # of heads | E—
ol
4 [ I
RO
4 | |
=Y. 0 i é *
Outcome X Pr(X=x)) W
Ji(x) Some texts use pmf where the
TT X 120 % Dirac delta’s are represented

simply as Kronecker delta’s

TH Area = 1
} x,=1 Y5 ?
HT Area =

HH X;=3 Vi

1
4

(b) pdf

DEE3338: Principles of
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Example 6.10: Cont. PDF and CDF

Consider the pointer-spinning experiment. Assume any one stopping point is not
favored over any other and that the RV O is defined as the angle that the pointer
makes with the vertical, modulo 27. Thus © is limited to [0,277) and for any two
angles 6, and 6, in [0,27), we have
Pr(6,-A6<©<6,)=Pr(6,-A0<©<0,) (equally likely assumption)
= fo(6)=1o(6,), 0<6,,0, < 2.

1
—, 050 <2r,
=>f@(9)= > <2r

0, otherwise

Area under PDF curve is the probability.

Je@) Fg(0)
1.0
Figure 6.7
0 The pdf (a) and cdf (b) for a
aaf L1 11 I g  pointer-spinning experiment.
0 T 2r 0 2z
(a) (b)

DEE3338: Principles of
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Joint CDFs and PDFs

Characterized by two or more RVs
F.y (x,y) = Pr(X <x,Y< y)

O°F,, (x,)
axay Figure 6.8

The dart-throwing experiment.
Y2 (X2
Pr(x1 <X<x,,y <Y< yz) = L L Iy (x,y)dxdy
1 1

= Fy (0,0) =] | fio (x,7)dxdy=1
:fXY(x,y)dxdy=P(x—dx<X£x,y—dy<Y£y)

for (%)=

39{ DEE3338: Principles of
/ Communication Systems
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Marginal CDFs and PDFs

Can obtain cdf or pdf of one of the RVs from joint RVs
F, (x,y) = Pr(X <xY< oo) =F,, (x,oo)
F,(x,y)=Pr(X <o0,Y <y)=F,, (,y)

% DEE3338: Principles of
/ Communication Systems
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Conditional CDFs and PDFs

Conditional RV:
Fo(x,y
By 1)y (o £2) - Z2)
8FXY(x‘Y=y) S (x,9)
_ | _Jxr\M
fXV(x‘y)_ Ox - fy(J’)

Bayes Theorem:

For (63) Lo GIX =2) £ (x) e (5]3) £ (5)

T (a12) =203 70 £ ()

where fY|X (y‘x)dx:Pr(y—dy<Y£y givenX:x).

@ DEE3338: Principles of
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Statistical Independence

Two RVs are stat. independent if values one takes on do not influence

the values that the other takes on.
:>Pr(X£x,Y£y) (

Fy (%,y)=F ()
Sor (x.9) = 1 (%) £y (¥)

If X and Y are not independent, then using Bayes' rule

Sor (2 9)= S (2) Sy (V]%) = £ (9) S (3] 9)-

DEE3338: Principles of
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Example 6.11: Statistical Independence

Two RVs Xand Y have joint pdf

A —(2x+y)’ , > 0
ny (x,y):{ e X,y

0, otherwise.
A can be found by noting that
Fyy (o0,00) = jy [ for (x,9)dxdy =1
Since j:’ '0°° A dxdy =1 = A=2

. "2 gy x>0 [2e x20 )
= R d e J‘O i = >
fX(X) 'nyY(x )’) g { 0, x<0 {0, x<0

e’, =20

fy(y):_.xfxy(x:y)dx:{

Conditional prob’s are

0, y<0
/ equal to respective
f (x| )_fXY(x,y)_ 2¢™, x20 )| marginals & Xand Y
xy \XY)= 1. (y) B 0, 1 <0 are independent.
fXY(x’y) {ey,yZO >
Tox (V|x) = =
Y‘X( | ) fX(y) 0, y<0
J

DEE3338: Principles of
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Example 6.11: Statistical Independence

Jxyr(x, y) fx(x) Jr(y)
2
0 0 X 00 b
(b) (c)
Figure 6.9
Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for X. (c) Marginal
pdf for Y.

A x>0

0, otherwise.

ny(x,y)={

JOOO 2¢ ) x>0 B {2e2x, x>0

fX(X)=J.nyY(x,y)dy={O’ 20 0, <0

e’,y20

fY(y)szXY(xoy)dxz{O’ <0

DEE3338: Principles of
F Communication Systems
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Sum of Two Statistically Indep. RVs

The density of the sum of
two statistically
independent RVs 1s the
convolution of their
individual density
functions.

Suppose X, and Y are
three independent RVS
where W= X+ Y, then

Sy (W) =L fy (9) fx (w=y)dy ([ fr () dsdy
]I; Vé(%/;)(; ff XI/(I;C)j( ag?lg y)(f)/) arev\ _ L £ () j“:o fx(x) dxdy (stat. indep.)
respectively

%

(w)=P(W<w)=P(X+Y <w)

Differentiating we get the result

39 DEE3338: Principles of
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Transtormation ot RVs (Monotonic)

Given a known X, define a second RV such that it is a function of the first:
Y=g (X )

Assume g (X ) monotonic. Probability that X lies in the range

(x —dx, x) is the same as the probability that Y lies in the range

(y—dy,y)

Sx (X ) dx = f, ( y) dy, g (X ) monotonically increasing
fy(x)dx=—f,(»)dy, g(X) monotonically decreasing

Y =g(X) ny(y)zfx(x)% :_1()= forx:g_l(y)
» dx
ij(y):fx<g (J’))E
x=g"'(y)

Figure 6.11
A typical monotonic transformation of a random
X  variable.

0 x—dx x

DEE3338: Principles of
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Example 6.13

1
—, 0<0<2
From Ex 6.10, suppose f (6’) =427 i

0, otherwise.

Suppose Y is a transformed version of ® according to

Y:—(lj®+l = O=—-rny+nxm
T

do
dy

= 5, ()= 1u(0) e

O=—ry+rw

1
=9 2
O=—ry+r O,

Since transformation is affine = f; () is also uniform, Unif (-1,1).

DEE3338: Principles of
Communication Systems
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" Note that f,, () ~ Unif (0,27)

otherwise.
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Transtormation of RVs (Nonmonotonic)

Assume g (X') nonmonotonic. (y—dy, y) corresponds to three infinitesimal
intervals: (x, —dx,,x,), (x,—dx,,x,), (x,—dx;,x,)

Probability that X lies in any of these intervals equal to the probability

that Y lies in (y —dy,y).

Generalizing to N disjoint intervals:

N
Pr(y—dy<Y<y)=) P(x —dx,<X<x,).

i=1

Since Pr(y—dy <Y <y)=f,(»)|dy| and

Pr(x, —dx, <X <x,)=fy(x)|dx,], forxi:gl._l(y)
dx,
= £, (» fo (&' M)
Y xi:gfl(y)
Absolute value is used to keep probability nonnegative.
Y=g(X)
Figure 6.12
\p\ i p B A nonmonotonic
i i\—"/i i i\\\— transformation of a random
"Il -’-'Il —dx, ) —d-l’-'z 0 !Iq x_;l— dxy X variable.

DEE3338: Principles of
Communication Systems
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Example 6.14

Consider the transformation y = x”. Iff, (x) = 0.5¢ ™, find f, (»).

X =+, x =0
There are 2 solutions for y = x” : 1 \/; 1 , fory>0.
X, = —\/;, x, <0
( 1
cjlezz\/,,forxlzo _le_y 1 +le_y 1
y >=— S B -
= Y 2 2\/; 2 2\/;
dx, 1
—==—-——+, forx, <0 1
" 2 y
S 5 dx,
:fY(y):ZfX(xz:gz (y))d 1 —\/; f 0
i=1 Y, Z (y) —F=¢e ', 1ory>
=g _ 2\/;
N 1 —‘x —g_l(y)‘ dx. 0 fory <0
— e i R S
;2 dy x=g(») \
S Because Y can’t be <0

DEE3338: Principles of
Communication Systems
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‘ Transformation of >2 RVs
(NonMonotonic)

For random vector X, with pdf fy (x), let f, (y)dy = fx (x)dx, where dy = dy,dy,---dy,

Assume x =g~ (y) has an inverse

:fy(y):fx(x)j—’y‘

_ d
= f(v)=rx(g l(y))d—x,
(O Ox ]
ayl ayn
where dx = |det(J )| dy, where J=| .. i | isthe Jacobian matrix.
L ayl ayn _
= fY (Y) = fx (gi1 (Y))|det(J)|
*2 B)
x=g(y)
dyz% ////
dy
>, » )

DEE3338: Principles of
Communication Systems
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Example 6.15

Consider the dart throwing example. Assume that joint PDF in terms of rectangular

coordinates for the impact point is

1 |
Sy (x,9)= Sy exp[— = (x2 +y2)}, for —o0 < x, y,< o0,

where o is a constant. Express f,, (x, y) using the poloar coordinate system where

R=VX*+Y?, and®:tan‘1(£j, [ Ox  oOx |
X Ax ar oo |l Ar

for 0 <R <, 0<O <27, _|or a9
ey

Lor 00 ]

& Ox
X =Rcos®=g,'(R,0) j_|or o0 cos@ —rsinf Y
=J= =

Y=Rsin®=g,'(R,0) d 0Oy | |sin@ rcosf (x,y)

or 00
Target
cosd —rsind 5 .
:>|det(J)|: det| . =rcos’@+rsin*@=r -
sind rcos@ o
= fro(1.0)=fx (g7 (¥))|det(I) o %
2 .
=" > exp{—r—z}, for0<r<ow Figure 6.8
270 20 The dart-throwing experiment.

DEE3338: Principles of
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Example 6.15

2

Given f, (1,6) = 27;2 exp[— 2’;_2 }, for0<r<ow

Integrate fy, (7,6) over 6, we have

r r
fa (r):?exp[—zgz} for 0<r < oo

This is known as the Rayleigh distribution function.
We see that most probable distance for the dart to land from
the bulleye is R = 0.

f (9
Figure 6.13 /" Rayleigh distribution is used I
o The Rayleigh pdf.

to model distribution of

power profile of wireless channels

X =/x] +x;, where x,,x, ~ N(O,az)
0 o ' \__indep. RVs -

aﬁ DEE3338: Principles of
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Statistical Averages

Sometimes full description of RVs, 1.e. knowing
its CDF or PDF are not required

Sometimes only partial information 1s needed

0 One type of partial information of a set of RVs
statistical average or mean value

DEE3338: Principles of
Communication Systems
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Average of Discrete RV

Expectation of M RVs, x,,...,x,, with respective probabilities P,..., P,
M
M, - E[X] = ijpj
j=1

Justification:

Let experiment be perform N number of time, with N large

Arithmetic mean:

n
By relative frequency interpretation: lim — = P,

M
nx +otnx,
= N _ijpj

j=1

DEE3338: Principles of
Communication Systems
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Average of Cont. RV

Expectation of x, to x,, with pdf f, (x). Suppose we break up this interval into
subintervals of size Ax (assume small). The probability that X lies between
x, —Ax to x; 1s
Pr(x, —Ax<X <x,)= fy(x,)Ax, fori=0,...,M.
Hence, approximated X by a discrete RV that takes on values x, to x,,
with probabilities f (x, ) Ax, ..., fy (x,, ) Ax.

lim
Aan

= U, = E[X] foX Ax Ifo

Communication Systems

"EB8%  DEE3338: Principles of




Properties of Expectation

E[-] 1s a linear operator

0 Sometimes need to perform E(¢r(-)). tr(-) 1s also linear
operator =» E(tr(-)) = tr(E(-))
o Additive
E[X+Y] = E[X] + E[Y] for any 2 RVs
0 Homogeneity
E[cX] = cE[X], for any constant ¢

9 DEE3338: Principles of
%/ Communication Systems
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‘ Example

In a gambling game, the expected value E of the game 1s considered to be the value of
the game to the player. The game is said to be favorable to the player if £ is positive,
and unfavorable if E is negative. If £ =0, the game is fair.

A player tosses a fair die. If a prime number occurs he wins that number of dollars,

but if a non-prime number occurs he loses that number of dollars. The possible

outcomes x, of the game with their respectlve probablhtles f are as follows:

The negative numbers correspond to the fact that the player loses if a non-prime number

occurs. The expected value of the game 1s

g=2.ty3 s 1,1 o1
6 6 6 6 6 6

So the game 1s unfavorable to the player since the expected value is negative.

DEE3338: Principles of
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‘ Average of a Function of a RV

Let Y =g(X).

A Zy" Pr(y,), discrete RV
w2 (1|

j Vfy(y)dx, cont. RV
Yy

" moment of X, for r=0,1,2,.... Let ng(X)zX’

> x/Pr(x,), discrete RV
§EE[X =17
I X" fy(x)dx, cont. RV

r" central moment of X, forr=0,1,2,.... Let Y =g(X)=(X—p, )

m 2 E| (X - ]

Special case: variance: r =2

var[ X |2 m, éE[(X—,uX)z}:E[ij—,uf 20}

DEE3338: Principles of
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Properties of Variance

Let X be a random variable and £ is a real number, then (1) var (X + k) = Var(X ) and
(ii) var(kX )= k> var(X).

Proof:

(i) var(X +k)=E| (X +k)(X +k)]|-E* (X +k)
= E(X?)+2kE (X )+ k> = E* (X )+2kE (X )+k* |
=E(X*)-E*(X)=var(X)

(i) var (kX) = E(K*X? ) - E* (kX)

E(KX*)-KE (X)
K| E(X*)-E*(X)|=k var(X)

"EB8%  DEE3338: Principles of
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Average of a Function of a RV

#" joint moment of X and Y, fori, j=0,1,2,...

D xyiP(x,9,); discrete RV
EEE[ XY =41
I X'y’ foy (x,¥)dxdy, cont. RV
X,y

§ s

Correlation: &, £E [XY]

Note:

Independent: E,, (XY)=E, (X)E,(Y)
Uncorrelated: E,, [ (X —u, )(Y—4,)|=0
Orthogonal: E(XY) =0

Implications:
e [f X and Y are independent and have zero mean, implies X and Y are uncorrelated and orthogonal.
e [f X and Y are uncorrelated and have zero mean, implies they are orthogonal.

¢ Hence, independence is the strongest of the three properties.

¥ ¢
4 £ k\\
/ﬁ ]
) e
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Average of a Function of a RV

#" joint central moment of X and Y, fori, j=0,1,2,...

my 2 E| (X =) (Y1) |

Covariance:

Cov[X,Y]ém11 éE[(X—,uX)(Y—,uY)]:E[XY]—yX,uY

Correlation coefficient for X and Y:
| Cov [X Y ]

a My _
p_w/m m. 252
20""%02 0,0y
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‘ Example

1 1/4 1/4 1/2 1 0 1/2 1/2
3 1/4 1/4 172 3 172 0 172

Sum 172 172 Sum 172 1/2

What is E(XY) and E(X’Y’)? What is Cov(X,Y) and Cov(X’,Y”)?

DEE3338: Principles of
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Conditional Expectation

Conditional expectation of X given ¥ =y

E[X|Y]=E[X|Y =y ]=] oy, (Y =y)dx

Expectation of functions of X : ¥ =g(X)
E[r]=E[g(x)]=] g(x) /i (x)dx

% DEE3338: Principles of
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‘ Removing Conditional Expectation Via

Expectation

Since E

X|Y

(X | Y ) 1s a function of Y, it is also a RV.

EY[ X|r X|Y] _[J‘x)qy x|y)dfo (v) dy

J X

J X

x: X|Y(x|y)fY )dy dx

. x.y Iy (xy)dy dx

..x xfy (x)dx
— EX

[X]

s%\‘ DEE3338: Principles of
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Conditional Expectation

This 1s an "expectation" version of the total probability theorem.
In many cases, we can simplify a problem by conditioning or "fixing"
one RV and performing an expectation. Then remove the conditioning

in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:

E[g(X)]=E,| Ec(g(X)|Y)]

DEE3338: Principles of
Communication Systems
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Example: Nonlinear MMSE Filter

Suppose we want to recover the transmit signal x[n] from the received signal y[n] the MMSE filter g (Y )

2

Cost function to consider
BMSE(3[1])= £, , [(x[n]—;c[n]) ::j [(x[n]-x[n]) p(r.x) dx ay
[ J(xln)=x0n) p(al2) e p(3)ar = [ By | (x[]- (o))
=,y | ()= (1)) |11

= mink,, [(x[n] - (y[”]))z

g(»)

y[n]}p(y)dy

o

unknown
<« X[7n]

experiment

observed (nonlinear) A
—»{ estimator —— x[n]

Hnl o)

sﬁ DEE3338: Principles of
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'BMSE Example

______________________

; PDF i Assume x[n] = A+w[n], forn=0,1,...,N -1 is observed. Assume p(A4)=
i - 1
: 2AQ E U[—AO, AO] and w[n]~N(0,0'2) is independent of 4. Estimate 4 by
: / : minimizing MMSE criterion.
! 1
! i
: o Ao ]
: — f : .
: 0 ! wn
: I
: :
! i
: !
! 1
| | +
i : l'_d‘
: Choose A : P@—P zn] n=01 V-1
| : +
:
I
i

- == [ W Ry S

Bayesian philosophy

A 1s considered to be a random variable with a prior
pdf. We attempt to estimate the realization of 4

DEE3338: Principles of
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BMSE Example

Assume x[n]= A+w[n], forn=0,1,...,N —1is observed. Assume p(A4)=

U|-4,,4,| and w[n|~N (0, 02) is independent of 4. Estimate 4 by

minimizing MMSE criterion.

Since p. (x[n]‘A) =p., (x[n]—A‘A) =p., (x :n]—A)

] 2exp{—212(x[n:—/1)2}

2o

1 1 & 2
Hence p(x|A)= T exp{— 5 Z:(;(x[n]—A) }

DEE3338: Principles of
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BMSE Example

Then the posterior pdf becomes

1
24, (27[02 )N/Z =P {_ 207
p(A‘x) =< 4 1 -
J'—AO 24, (27[02 )N/z cXp )
\O,
: eXp[_ !
24,(270%)"" 207
=< ¢4 1 ) . 1
'[_Ao 2A0 (272_0_2)]\]/2 eXp|:_ 202 N(A—X) :|dA°CXp|:— .
0,

9 DEE3338: Principles of
%/ Communication Systems >




'BMSE Example

1 1 2
24,(275°)"" exp[_ o (VA=) )} [4]< 4
; < 4,
p(4lx)=1 [ 1 s exp{— IZN(A—)?)z}dA
24, (27[0' ) 20
’ 4] > 4,
! exp| — ! - (A—f)2 4] <
=< 2 02 2i
C 7Z'N ] N |
\O |A| > AO where
=]\ ex{
Zﬂ'ﬁ

@ DEE3338: Principles of
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'BMSE Example

The MMSE estimator
A=E(4)x)=[ 4p A\ ) dA

[* A exp| —— (4-%)" | ad

20— 2N
= Nt _ Cannot be evaluated 1n closed-form
IAO ! exp| — lz(zél—f)2 dA
- - plAxX) plAlx]
—4g :{\;xj A ( :li | ’

(b) Large data record

y (4 \ \
)
)\ A
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Remarks on BMSE

e As N increases, the MMSE estimator relies less and less on the prior

knowledge and more on the data.

e Before observation, we assume a prior pdf p (A) After observation,
our state of knowledge about the parameter 1s summarized by the
posterior pdf p (A| x).

e The choice of a prior pdf is critical in Bayesian estimation. A
wrong choice will result in a poor estimator.

e An optimal estimator is defined to be the one that minimizes

the MSE when average over all realizations of 6 and x.

N

MMSE estimator: 6 = E(6?| x) = jé’p(é’| x)dé’

9’ DEE3338: Principles of
a Communication Systems
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Special Average: Characteristic Function

Note:
e This is Fourier transform of f,, (x) if we have e”/**

e Sometimes it is more convenient to use the variable s in place

of jw, the result becomes moment generating function.

Obtaining moments of a RV:

8(1) —]I fo ’w‘dx

Setw=0: = E[X]=(- )‘%‘;—()
@ =0
0"®(w)

=B =) =

w=0

DEE3338: Principles of
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Chebyshev Inequality and the LLaw of
Large Numbers (ILLLN)

Let X be a RV with mean 4, and finite variance o;. Then for any & > 0,

2
Pr(‘X — U X‘ >0 ) < % (Chebyshev Inequality)

Let X, X,,..., X, be11d. (independent and identically distributed)

RVs with mean x, and variance o each. Let the sample mean be

. 1 &
Hx == ZZI: X
Then, for any fixed 6 > 0,
lim Pr(|p, - ,[28)=0. (LLN)
Intuitively, this means the estimator, /2, , will converge to 4, in probability.

If the above limit equals 0, £, is called a consistent estimator of z,.

DEE3338: Principles of
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Proot (Chebychev Inequality)

Given that o = Z(xl. — Uy )2f(xl.). Removing all the terms ‘xl. — ,uX‘ <. Then

i

Z*:(xi—ﬂx)f(xi)ﬁai,

where asterisk indicates the summation extends only over those i for which ‘xl. — U X‘ > 0.

Thus this new summation does not increase in value if we replace each ‘xl. — U X‘ by o
so that > 8% f(x)=8> f(x)<o}.
But Y f(x,) is equal to Pr(‘X—,uX‘ > 5), hence

521)1'(‘)(—/1)(‘25)30)2(. O

% DEE3338: Principles of
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Proof of LLLLN

E(X,)++E(Xy) Ny,
N N
Since X,..., X, are independent, it follows that
var (X, +---+ X, )=var(X,)+---+var(X, )= Noy, then
Xl+---+an 1 1

2
) O
Y, :anr(Xl-F“'-FXn):WNUX:WX.

Note that E (1, )= = U,

var(fi, )= Var(

2
X

So, from the Chebychev inequality, Pr(| L, — U X| >0 ) < ]\f =

. Then as we take

limit as N — o« of the right hand side, it equals 0. m

DEE3338: Principles of
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Useful PDFs

Discrete RVs

o Binomial distribution
Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
Model number of times event A4 has occurred in 7 trials (events are indep)

o Poisson distribution

Related to chance experiment in which an event whose probability of occurrence in a very small time
interval AT 1s P=aAT, where « 1s a constant

Model the probability of k£ events occurring in time 7'
Commonly used to model arrival time of packets in packet switching networks
Continuous RVs

o Normal (Gaussian) distribution

Commonly used to model large number of indep. random events when distribution of each event is
unknown

Sum of large number of independent RVs converges to a Gaussian distribution
o Rayleigh distribution

(see above)
o Rician distribution

Commonly used to model distribution of power profile of wireless channel when direct line-of-sight
(LOS) exists

x = sqrt(x,>+x,%), where x,~N(u,,0%), x,~N(11,,0°) are indep. RV

DEE3338: Principles of
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4

Useful PDFs

Continuous RVs

0 Chi-Squared (central and noncentral)

Commonly encounter in detector design

22 with v degrees of freedom
x=Y32, x, ~ N (0 or s1,1) and indep.
o F-distribution (Eentral and noncentral)
Commonly encounter in detector design

F PDF: ratio of 2 indep. 3 RVs

x, /v

x="—L, x ~z. (4), x,~ g, and indep.

X, /v,
A =0: central I —dist.

DEE3338: Principles of
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Binomial Distribution

Consider repeated and independent trials of an experiment with two outcomes: success

and failure. Probability of success equals p and failure equals ¢ =1— p. If we are
interested in the number of successes and not in the order in which they occur, then
the probability of exactly & successes in n repeated trials is given by

(ijkq"-k, fork=0,1,....n

0, otherwise

Pr(K=k)= P (k)=1

b

v
where "= T is the binomial coefficient, and K is an RV that equals to the
k) k !(n — k) !

number of successes.

DEE3338: Principles of
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Examples

Suppose we wish to obtain probability of £ heads in n tosses of the coin and the probability
of a head on a single toss equals p and that of a tail equals ¢ =1— p. Possible sequence is
HH---HTT---T

k heads  n—k tails

Under the assumption that the tosses are independent, the probability of this particular

sequence is

_ k_n-k
\p.p...pj\q.q...qj_pq .
k fa;étors n—kvtails

Since this is only the probability of this sequence. This sequence is one out of

s

possible sequences of having k heads in n tosses. Since all of these outcomes are

mutually exclusive, the probability of exactly £ heads in n tosses in any order

1S (ijkq”k, k=0,1,....n

DEE3338: Principles of
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Example

A fair coin 1s tossed 6 times and head 1s called a success.

1
:>n:6andp:q:5

(1) The probability that exactly two heads occur (i.e. £ =2) is
(11) The probability of getting at least four heads (1.e. k =4,5 or 6) 1s
(111) The probability of no heads (i.e. all failures):

(1iv) The probability of at least 1 head:

’e38% DEE3338: Principles of
64
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Laplace Approximation to Binomial
Distribution

Laplace approximation to binomial distribution

k-np‘ < @
P () 1 exp[— (k—np)2l

) \/ 2rnpg 2npg

When n — oo,

sﬁ DEE3338: Principles of
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Binomial Distribution (6 different
parameters)

05— 05| 05|
0 1 0 1 2 0 1 2 3
(a) (b) (c)
0.6
05
04— 04| 0.4
03| 03 03
02 |- | | 02 |- i i 02 ‘
01} - 01k T k 0.1 ‘P .
0 1 2 A 0 1 2 3 4 5 0 1 2 3
(d) (e) (f)
Figure 6.17

The binomial distribution with comparison to Laplace and Poisson approximations. (a) n = 1, p = 0.5.
b)yn=2,p=05.(c)n=3,p=05.(d)n=4,p=0.5.(e) n =3, p=0.5. Circles are Laplace

. ) 1 . ) . )
approximations. (f)n =5, p= 0" Circles are Poisson approximations.
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Poisson Distribution

Consider a chance experiment in which an event whose probability of occurrence in a
very small time AT 1s P = aAT, where « 1s a constant of proportionality. If successive

occurrences are statistically independent, then the probability of £ events in time 7 is

k
@(k):%e”, k=0,1,2,...

e Can be used to model the number of telephone calls per minute
e Can be used to model the number of packets arriving at a router
e Can be used to approximate the binonomial distribution when 7 1s large, and p 1s

small, then np = npg

IZéE[K]:np

DEE3338: Principles of
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Gaussian (Normal) Distribution

1 — dimensional: Figure 5.19

n (my, Oy) The Gaussian pdf with mean m, and
1 1 ) | vari oy
fX (X)— 5 CXPp _\/72()‘:_#) \ 270
2ro 20 !
A 2 A 2
where 2 E[X], o* 2E|(X-p) |
0 X~ my ¥+
x— 0, nmy + O,

Marginal distribution:

Joint CDFs and PDFs: Fy (x)=Fy (x,0) = Fyy (x,Y < 0)

FXY(x’y):P(XSx’YSy) FY(y):FXY(OO:y):FXY(XSOan)
_82FXY(x,y) _ J

fXY(xay)— oxdy fX('x) LfXY(xay) y

P(x1 <X <x,y Sngz):J‘yylz J‘: for (x’y)dxdy

39{ DEE3338: Principles of
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‘ 2-D (Brivariate) Gaussian Distribution

| [(x-u)lo.] =20[(x=p)10.][(y=1,) 10, ]+[(v-1,) 10, ]

S (%,7) = exp[ 2(i-p)

2
2.0 \1-p

where
p =E[X], p, =E[Y], ol =var[X], o} =var[Y]

E[(X—ﬂx)E(Y—uy)] _ Cov[X,Y]

2 _2
Gxo-y ,;GXO'y

@ DEE3338: Principles of
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2D (Bivariate) Gaussian Distribution

4
0.2 3
2
—; I ?’;"“‘h\
(©)
; &)
! —
-2
-3
-4
-4 =3 =2 -1 0 1 2 3 4
y
i
3 ! .
2
: | : |
§ Yo 3 -
: . == 2 4
, ) 1 /
3 ‘\EL\“-E%# /| é" Y ofF—
—— 5 ] /(
-4 .
-4 =3 =2 -1 0 1 2 3 4 - (A=
X . i//
-4
4 -3 2 -1 0 1 2 3 4
X

Figure 5.18

Bivariate Gaussian pdfs and corresponding contour plots. (a) my = 0, my = 0, rr_':_=_ l._q_—:_f_l_u_nd

p=0.bym,=1,m, = =2, (r_f =2, u‘f = 1,and p = 0.(c) m, =0, my, = l]urr:r_‘:. =1, 00 =1, 4nd
N 1

p=09 e SRR
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‘ N-dimensional Gaussian Distribution

1 1 T
Ix (X) - (27[)1\//2 (detC)l/z exp[—g(x—px) C (X_"x)}
_E(xl)_
n = E[x]= :
_E(XN)_

C=E [(x —n,)(x—p, )T J (applied element-wise)

@ DEE3338: Principles of
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Central Iimit Theorem

Let X,,X,,...,X, beindep. RVs with zero mean and variance ¢;,0.,...,0..

Lets; £0; +---+0.. If for any fixed & > 0, there exists a sufficient large
N such that
o, <&s,, fork=1,...,N,
then the normalized RV
7 8 X+ X, +---+ X,

N

Sn

converges to the standard normal (Gaussian) PDF.
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(-Function

Gaussian O-Function:

Normalized Normal distribution of N (

ConsiderP(yx—aSXS,ux+a):J.

X — alo,
(let y ==& =

(since area under PDF=1) =1- 2J.oj

:1—2Q(

2
where Q(u)= L \/;_7[ exp(—%} dy ~

has been computed numerically.

DEE3338: Principles of
Communication Systems
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1
€X
Gx —-alo, /272- p(

1 y2
exp| —— |d
p( zjy
a
GX

2
lux’o-x

Hy+a 1

NGy

1

U2

2

], foru>1
2

( u
exp
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‘ (Gaussian PDF

n (my, o) Figure 6.19

l The Gaussian pdf with mean m_ and
— variance o2
\ 270y

I
\/ 270 y%e
— .
0] my—a / my \ my + a "
My — Oy my + 0,
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Normalized Distribution Function: F(x)

and Q(x)

Normalized cumulative distribution function: ¢z =0, o, =1

F(x g

=zl
F(-x)=1-F(x)
A related function: F(x)=1-0(x)

O(x)=—= e "d¢
O(-x)=1-0(x)
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TABLE B-1
Values of F(x) for 0 < x < 3.89 in steps of 0.01

X 00 .0 02 03 04 05 06 07 .08 09

0.0 .S000 5040 5080 5120 5160 5199 5239 5279 5319 5359
0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
02 5793 5832 5871 5910 .5948 5987 6026 6064 6103 6141
0.3 6179 6217 6255 6293 L6331 6368 6406 6443 6480 6517
04 6554 6591 L6628 6664 6700 6736 6772 6808 6844 6879
05 6915 6950  BYRS 7019 7054 TORR 7123 7157 7190 7224
0.6 7257 7291 7324 7357 7389 1422 7454 7486 517 7549
0.7 7580 L7611 7642 7673 7704 734 7764 7794 7823 7852
0.8 7881 7910 7939 7967 .7995 8023 .8051 8078 8106 8133
09 8159 8186 .B212 8238  .8264  .8289  .8315 8340 8365 8389
1.0 8413 8438 8461 8485 8508 8531 8554 8577 8599 8621
Il 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830
1.2 8849 .8869 8888 8907 8925 8944 8962 8980 8997 9015
1.3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177 : b

14 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 Normallz ed Cumalthe
1.5 9332 9345 0357 9370 9382 9394 9406 9418 9429 9441
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
I 9554 9564 9573 9582  .9591 9599 9608 9616 9625 9633
1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706

distribution function

1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
20 9773 9778 9783 9788 9793 9798 9803 9808 9812 9817 ’ 7
21 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857 x

22 9861 9864 9868 9871 9875 9878 9881 9884 9887 9890
23 9893 9896 9898 9901 9904 9906 9909 9911 9913 9916
24 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936 F ( )C) =1- Q ( x)
25 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
2.6 9953 9955 9956 9957 .9959 9960 9961 9962 9963 9964
27 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
28 9974 9975 9976 9977 9977 9978 9979 9979 9980 998l
20 9981 9982 9982 9983 9984 9984 9985 9985 9986 9986
30 9987 9987 9987 9988 9988 9989 9989 9989 9990  .99%0
319990 9991 9991 9991 9992 9992 9992 9992 9993 9993
32 9993 9993 9994 9994 9994 9994 9994 9995 9995 9995
33 9995 9995 9996 9996 9996 9996 9996 9996 9996 9997
34 9997 9997 9997 9997 9997 9997 9997 9997 9998 9998
35 9998 9998 9998 9998 9998 9998 9998 9998 9998 9998
36 9998 9999 9999 9999 9999 9999 9999 9999 9999 9999
37 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999
38 9999 9999 9999 9999 9999 9999 9999 10000 10000  1.0000
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Example

As the threshold changes, one error increases while the other decreases

P(H;H,) Probability of false alarm (P,,)
P(H;H )=1-P(H,;H,) Probability of detection (B,)
P.,=P(H;H,) .
:Pr{x[O] . 7/;H0} Suppose P, =107, then y =3. Then
o | P, =P(H;H))
_ Y
_L \/ﬂexp( 2t )dt =Pr{x[0] >7/;H1}

=0(7)
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Error Function

Error function:

erf \/_ I exp

Complementary error function:

erfc( ) 1- erf \/_J- exp

Note:

o

39 DEE3338: Principles of
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Example: Nonlinear MMSE Filter

Suppose we want to recover the transmit signal x[n] from the received signal y[#n] the MMSE filter g (V).

x|y U [” y[” )

Cost function to consider £
2 2
)] | £y sl o10)

EX\Y Ux[n]—g(y[n])
_[ x|y O [n] [n])2

yI)| = minky, |- g (v [n])]

Y= y["]ﬂ

o[£, (1))

ol

Note:
o 7, ( y[n]) >0 and it's not a function of g (y), it can be ignored in computing g ()

° EX\Y (‘x[n] _g(y[n])‘z

e Integral of non-negative quantity w.r.t. y does not affect solution, can be ignored.
— LEXY Ox[n]—g(y[n])ﬂy[n]) =—2E,,|x (‘ [n]—g(y[n])Hy[n]) =0
X\Y(|x[n]|\y[n) Egy (Js(TaD] (1) = & (v [7])

y [n]) > () since we are taking expectation of a non-negative quantity

.. MMSE filter to recover x[n] from y[n]: g(y[n]) =E,, (|x[n]”y[n])

DEE3338: Principles of
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