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Definition of Probability

Random Processes (Stochastic Processes)

o Informal definition

The outcomes (events) of a chance experiment are mapped into
functions of time (waveforms)

Cf. Random variables: outcomes are mapped into numbers

o Each waveform is called a sample function, or a realization. The
totality of all sample functions 1s called an ensemble

o Chance experiment that gives rise to this ensemble 1s called a
random/stochastic process
0 Formal definition

Every outcome { we assign, according to a certain rule, a time
function X(z,¢). X(#,¢;) signifies a single time function
X{(#;,¢) denotes a single RV

X{(t;,¢;) 1s a number
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Gen. No. t=0 1

Flgure 7.1

A statistically identical set of
binary waveform generators
with typical outputs.

Voltage at the terminals of a
noise generator. 10
ensemble experiments
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Statistical Description of Random Process

A random process 1s statistically specified by its
N™ order joint pdf’s that describes a typical
sample function at times #,, > #,., > ... > ¢, for
any N where
Fyixo. xnXptiXo,t; -5 Xlty) = Plxy-dx; <X, < xy,
Xo-AdXy <Xy S Xoy oy Xpmdxyy < Xy S Xy)
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Figure 7.2

X(t. gy Typical sample functions of a

Noise |—o random process and illustration
1 of the relative-frequency
Gen.1 [—= interpretation of its joint pdf.
(a) Ensemble of sample
X(t.2) _ functions. (b) Superposition of
) . ] the sample functions shown

Noise [—2 4\ n /\ in (a).
Gen.2 (—o ‘ ™~ V d .

X (@ Cu) * ~__ «—— Random process from
Noise [—o A—\q /\ . realization (.

o = TV
h L
(a) X(#;,¢) is a random variable

e

", oint probability (from relative frequency) is the
number of sample functions that pass through
the slits placed at ~=¢, and 7=¢, in both barriers
divided by the total number of M of sample

(b) functions as M becomes large w/o bound

AN
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Stationarity and Wide-Sense Stationarity

= Statistical stationarity in the strict sense
or stationarity

o Joint pdfs depend only on the time
differences #,-, t;-t,, ..., Iyt
= Not dependent on time origin

o Mean and variance independent of time

o Correlation coefficient or covariance
depends only on difference, e.g. £,-,

= Wide-sense stationarity (WSS)
o Joint pdfs are dependent on time origin
o Mean and variance independent of time

o Correlation coefficient or covariance
depends only on difference, e.g. £,-,

= Stationarity =» WSS

o Converse is not necessarily true

=  Exception: Gaussian random process
(Why?)
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Figure 7.3
Sample functions of nonstationary processes contrasted with a sample function of a stationary process.
(a) Time-varying mean. (b) Time-varying variance. (c) Stationary.

Nonstationary
processes

Stationary
processes

DEE3338: Principles of
Communication Systems




Ensemble Average (Expectation)

Mean: m, ()= E[X(t)] :m = Lafx (a.t)da

Variance: oy ()= E{[X(t)—%}z} = E[‘X(f)\sz

Covariance:

‘2

Autocorrelation:
Ry (t,t,)=E| X (1) X" (1,)]
- Iaz jal alazleXz (al’ tl;aZ’tZ ) dalda2
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Ensemble Average (Expectation) for WSS

Process

WSS:
Mean: m, (1)=E| X (1) ] = constant
Variance: o7 ()= constant

Covariance:
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Froodicity

Ergodic processes are processes for which time and ensemble averages are interchangeable.

For example, for real-valued WSS processes:

m, _E[X )|=(X (1))

ot - -G

R, (r)=E[X(t)X(t+7)]=(X(t)X t+z'>

a1 g7
where <v(t)> = ;TJOEI_Tv(t)dt.
Note:

e All time and ensemble averages are interchangeable, not just the above.

e Ergodicity = strict-sense stationarity

Communication Systems
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Example 7.1

Consider a random process with sample function
n(t)=Acos (27 fyt +6),
where f, 1s a constant and ® is a RV with pdf

fo(0)=427"

0, otherwise

9|S7z

Calculate its ensemble and time-average.

Ny
1
S
I

1 ¢=
gLTAcos(ZﬂfOt+6’)d6’=O

= _7; A’ cos® (27 fot +0)dO

=;4_2j” [ 1+cos(47z ft +20)]d6
g

A2
"2

"EB8%  DEE3338: Principles of
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_lim— [’ _Acos(2x fyt +0)dt =0

Gz(t):E[nz(t)}:i [ [cos(27 4+ 6)] do (n(t))=lim |

<n2( )>—thT A? cos® (27 ft +0) dt

E[n(t)] = <n(t)>=c0nstant and aj (t) <n2 (t)> = constant.

It may be stationary and ergodic.
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Example 7. ]{.

2 T
Suppose f;, (6) =1 7 ‘Q‘SZ.

|0, otherwise

Calculate its ensemble and time-average.

E[n(t)]= 2 Acos (27 fyt +6)do

72' -r/4
/4 _2\/514

—xl4 7

:zAsin(Zﬁfot+9)
T

cos (27 fyt)

/4

o2 ()= E[ n(1)] = % [ [4cos(2n £yt +6)] do

A2 /4
= _”/4[1 +cos (47 1 +20) |d6
2 2
= A?+A7cos(47zf0t)

Process 1s not stationary as first and second moment depends on ¢, hence

it 1s for different time origin.

DEE3338: Principles of
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Summary for Ergodic Process

1. Mean: m, (t)=E| X(1)]= <X(t)> is the DC component

2. X(t) = <X(t)>2 is the DC power

3. X°(1)= <X2 (t)> is the total power

2

4. o (1)= X’ (1)-X(t) = <X2 (t)> —<X(t)>2 is the power 1n the

alternating current (time-varying) component

5. Total power X (¢)=o0 (¢)+ <X(t)>2 is the AC power plus the
DC power

"EB8%  DEE3338: Principles of
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Example 7.2: Random Telegraph (binary)
Wavetorm

1. Values at any instant #, are either X (¢,) = 4 or X (¢, ) = —4 with equal probability

2. k number of switching instants in any time interval 7' obeys a Poisson distribution

k
P (k)= (alZ;) e, forsome a >0

Probability of more than one switching instant at d# is zero. Probability of exactly one

switching instant in df is adt, « is constant. Successive switchings are independent.

X(@® Figure 7.4
Sample function of a random

A telegraph waveform.

I| 1y f} I—l Is ?‘b I7

Ry (7)=E|[X(1)X(t+7)] DI S A -
= (A)(A)OPr[X(t) and X (¢+7) have the same sign in interval 7 |
+(A)(—A)0Pr[X(t) and X (¢+7) have the different sign in interval r]

=Ae Pr[even # of switching in interval r] ~Ae Pr[odd # of switching in interval r]

DEE3338: Principles of
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‘ Example 6.2: Random Telegraph
(binary) Wavetorm

For a7 >0

(a7) .

e
k!

Pr[even # of switching in interval z'] = Z

k=0
k even

k (a‘[)k

k!

e (-1
s
k=0

—Qar
=e"") = (e‘” +e ™ )
2

aQ

(since i (ar')

ik

(1 +e )

N | —

@ &% DEE3338: Principles of
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Example 6.2: Random Telegraph (binary)
Wavetorm
(@7)

T
e
k!

Pr[odd # of switching in interval r] = Z
k=0

k odd

= _(1 + 8_2‘” ) _%2(1 _e—Zar) _ Aze—zar

Similarly, for a7 <0, R, ()= A"

~. In general, R, (7) = A2

@ DEE3338: Principles of
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Correlation and Power Spectra

PSD: S, (f)=F{R,(r)} for stationary process
Average Power: R, (0)= jf Sy (f)df

What is the relationship between S, (/) and F {X (¢)}?

Since sample functions of stationary random process are power signal, to consider its Fourier

transform, let's define a truncated function
T
H<—

n (6,4 = { () 2.
0

,  otherwise

No(£:6)= ] n(0g)e
} N2 (£
T

So the time average power density over [—5,5 . For all &, take ensemble average

and limit as 7" — oo to obtain the distribution of power density with frequency, i.e.

\Nfé“\

T—)oo

S, (f)=1

Communication Systems
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Wiener-Khinchine Theorem

N
,/ \\
%\/9 ]
) e

Show that R, (7) < S, (/).

9

T 2

Rewriting the expression before: S, (/) = lim EUF {Zz; (t)}‘ }
F{n, () =|] n()e™at| =[" n(t)e ™ at|
= E| [P oy (O} | = E[F {mr (0} F {7 (0

=[" [ E[n(t)n" (o))" drdo
= IT IT R, (t- J)e_jw(t_a)dtda
~TJd-T
Use variable substitution to solve.

Recall that an area A = dtdo < A' = dudv, and that dudv = ‘det (J )‘ dxdy,

.TT n (o)e’do

where J is the Jacobian (similar to RV transformation in Ch. 5)

DEE3338: Principles of
Communication Systems
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Digression: Review of Variable
Substitution

Yy %
A | u=ulxy) A

v =w(xy)

In general, the area
A" = dudv = ‘det (J)‘ dxdy = ‘det (J)

where the ‘det (J )‘ scales the

A,

original area A4

P> u

Substitution using functions u(x,y) and v(x,y) which are linear equations w.r.t. x and y

L L Au| |u, u,| Ax
In general, using linear approximation, for small Ax and Ay : = ,

Av V. vV, |lAy
_8_u 8_u_
{”x uy} dx dy
for small Au and Av, where J = = :
vov e o
| dx dy |
dA = |det(J)|dA=|det (3)|dxdy = [ [ --dxdy = jA,---mdudv

DEE3338: Principles of
Communication Systems 18




Wiener-Khinchine Theorem

2 .1 oot o (T
:J. n(t e’ a’tJ. n O' e
=,

e ’""dido

i ou Ou i lines where o is constant
o oo 1 -1 _ e )
then ‘det(J)‘ = |det ot do || _ det =1 © u=-I+I=0 .
8v ov 1 0 Q u=T+T=2T Lower anc
— > upper limits
a(y @ yu=-7-T=-2T for u
O u=T7IT7=0
ja)(t—a) W,
EDF{n2T ‘ } I I dido u=t-T=v-Tdv=utT

— j LI R, (u)e ' dvdu

To obtain the limits of
integration, consider the ::> -
uv picture S
u=t+T=v+T=> vzu—T/
V=t
% DEFE3338: Principles of
cat 19
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Wiener-Khinchine Theorem

B[l o 0 |- R, (1-0)e " ata

-T

= .. J‘A' R, (u)e "™ dvdu

2T putT e
=] L_T R (u)e 7 dvdu

= :_OZT J‘_M;T R, (u)e "™ dvdu+ IOZT J‘MT_T R, (u)e ™ dvdu
- R (u)e‘j“’”J‘:Tdv du +j02TRn (u)e‘j“’”J'T_Tdv du

Jor *

= ._()2T(2T+u)Rn (u)e "™ du +IOZT(2T—u)Rn (u)e "™ du

39 DEE3338: Principles of
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Example 7.4

Given the random process n () = Acos(27 fyt +0)

where f, 1s a constant and © 1s a RV with pdf

L o<

fo (9) = {277

0, otherwise
R, (r)=E[n(t)n(1+7)]=[" 4 Cos(zyzfoHe)cos[zm(z+f)+e]‘2f_‘9
- n
- %J”; cos (27 f,7) +cos| 27 f, (2t +7)+20 |dO

= %Az cos(27 f,7)

Sn(f):F{%AZ cos(27zfor)}:%2[5(f—f0)+5(f+f0)]

DEE3338: Principles of
Communication Systems
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Properties of R(7)

(1) R(0)2|R(z)|, V=

Proof: Consider ‘X 1)t X (t+r)‘2 >0 (X (¢) stationary)

=X ()£2X (1) X (t+7)+ X (¢+7)20
:>2R(O)+2R( )=0

R(0)<R(r)<R(0)

(2) R(r) iseven; R(z)=R(-r) if x(¢) real
Proof: By definition (for WSS)

R(r)=X ()X (t+7)=X({'-7) X (') =X () X (' —7)

witht' =t+71

sﬁ'” DEE3338: Principles of
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Properties of R(7)

(3) |1|im R(r)=X (t)2 if {X (t)} does not contain a periodic component

Proof: lim R(r)=lim X (1) X (t+7)~X () X(t+7)=X (1)

2nd equ|a|lity is true |b|ecause interdependence between X (¢) and X (¢+7)
becomes less as || — oo, and last equalty is due to stationarity of {X (t)}
(4) If {X (1)} periodic, then R(7) is also periodic with same period.
Proof: R(7)2E| X ()X (t+7)|=E[X(t)X (t+T,+7)|=R(T, +7)
(5) S(f)=F{R(z)} =0, Vf

Proof: From Wiener-Khinchine Theorem:

$(f)=tim o E|[F L, (0)f [20

DEE3338: Principles of
Communication Systems
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Properties of S(})

(1) S(f)=F{R(7)}=0, Vf
(2) S(f) is real-valued
Proof: because R(r) 1S conjugate symmetric
(3) If X (¢) isreal, S(f) is even
Proof: If X (¢) is real, so is R(z). FT of real-valued function, is even

4) [ R(z)dr=5(0)

"total power" = jf S(f)df=R(0)

9 DEE3338: Principles of
%/ Communication Systems
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Example 7.5 — White Noise

Processes for which

NO
S(f)=172 f|<B

0, otherwise
where N, is constant, are commonly referred to as bandlimited white noise.
As B — oo, all freqgs are present, we called this process white. N, is the single-
sided power spectral density of the nonbandlimited process.

For a bandlimited process

R(r)=[" Seear

_&eﬂ”ﬁ ’ N sin(ZﬂBr)

2 p2mr|, " 2z7Br
= BN,sinc(2Br)

AsB— o, R(7) > %5(7) , 1.e. samples are uncorrelated.

If Gaussian process, then samples are independent.

DEE3338: Principles of
Communication Systems
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Autocorrelation Functions for Random

Pulse Trains (Revisit)

xak Ao (t)
A

Bandwidth requirement of line-coded data can be computed
by looking at its PSD

T

< [
« »

x(t)é;akp(t—kT—A)

Let ...,a_,,a,,q,,...,q,,... be a sequence of RVs, indep

with A, with correlation
Ela,a,,,]= . a4,a;.,D, (a,)da, =R,, m=0,+1,+2,...

=R, (r)2E[x(t)x(t+7)]

p

a, ~ unspecified distribution
A~Unif [-T/2,T/2]

X t) 1
LA df: A)=—, forAe|-T/2,T/2
a, A pdf: p;(A) 7 orAe| ]

A a, and A are statistically indep.

=E_z;akakmp(t—kT—A)p(H-r—(k+m)T—A)—l

a{
p !

- (t—kT-A) }

Indep. _ p
assumption ;;E[a"a’”’”]EL(Hr—(k+m)T—A)

SRS p(e=kT =) ple+ e (k+m)T - A)dA
m k

DEE3338: Principles of
Communication Systems
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Autocorrelation Functions for Random
Pulse Trains (Revisit)

Rxx(r):ZRmZ%LTZT/Zp(t—kT—A)p(t+T—(k+m T—A)
m k

Letu=¢t—kT — A
~(k+1/2)T

1 ¢t
=R, (7)= ZRmZk:?L_ _(k_l/z)Tp(u)p(u +7-mT)du

1

SR, {?Lp(u)p(u+r—mT)du}

m

/a% DEE3338: Principles of
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Example 7.6 — {a,} Has Memory

Suppose {a,} has memory built into it by the relationship

a, = 84 + g4,
where g, and g, are constants, 4, are RVs, with 4, =+ 4. Sign is determined by a
random coin toss independently from pulse to pulse for all £ (note that if g, =0, there

is no memory). The assumed pulse shape is p(¢) =T1(z/7).

A A, m=0
Define R, (m) = E[4,4,,,]= {O, 0
E[akakm] = E[(gOAk +g1Ak_1)(g0Ak+m +g.4.,, )]
=E| g0 Ay, + 8 A Ay + S8 A Ay + £081 A1 A |
=g.R, (m)+g12RA (m)—lrgoglRA (m—l)—l—goglRA (m—l—l)
(gg +g12)A2, m=0
= gOgIAz, m=x1 =R .

0, otherwise

% DEFE3338: Principles of
‘E  Communication Systems
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Example 7.6 — {a,} Has Memory




‘ Example 7.6 — {a,} Has Memory

S..(f)=ATsinc’ (ﬂ”)[gé +gl +2g,8, cos(27zﬂ’)]
Case 1: g, =1, g, =0 (no memory)

20 a2 = =T:61=0
S..(f)=ATsinc® (/T) El? | L
Case2: g, =g, =1//2 Zost /\, |
0 . _' I . .
S (f) =2 A*Tsinc® (fr)COS2 (ﬂ'fT) (a) ; T 1 0 1 2 3 1 5
N T T T T T _I ,0:0_—}07; ] :IO.'?DT
Case 3: gozl/\/i, glz—l/\/i 51?: [—2 g %
% 05 |
. 0 L | ! |
In case 2, power spectrum is more confined. ¢ =~ 4 ° 2 0 L1234 S
Case 3: spectral width doubled, null at f =0. = 1? R |
E | A—t/\/\l/\ |
T | | | | | |
S 4 3 2 4 0 1 2 3 4 5
(c) T
Figure 7.6

Power spectra of binary-valued waveforms. (a) Case in which there is no memory. (b) Case in which
there is reinforcing memory between adjacent pulses. (c¢) Case where the memory between adjacent
pulses is antipodal.

DEE3338: Principles of
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Cross-correlation

Given two random processes X (7) and Y (¢), cross-correlation is defined as

RXY(tl,tz)éE[X(tl)Y*(tz)]
R, (7)= E[X(t)Y* (t+r)} if X (¢) and Y (¢) are joint WSS

Cross-covariance

Cor (1o12) = E| (X (1) =, (1)) (X (1) = my (1))

=Ry (1,,8,)—my (1) my (1)

If X (¢) and Y (¢) are joint WSS S, (/)= F{RXY (r)} is the cross-power spectral density

Properties of R, (7) and S,, (/)
(1) Ry (7)=Ryy (-7)
@) Sy (f)=Sx (/)

DEE3338: Principles of
Communication Systems
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Uncorrelated, Orthogonal, Independent
Random Processes

Given two random processes X (¢) and Y (t)
(1) Uncorrelated

if Ry (1,,8,)=my(8,)my(8,), Vt,t,
(2) Orthogonal

if Ry, (#,,1,)=0, V1.1,
(3) Independence: if

Far (X V155, Vo ty5e 5%, 0,01,

=fy (xl,tl;xz,tz;...;xn,tn)fy (yl,tl;yz,tz;...;yn,tn)

Remarks:

(1) Independence = Uncorrelated

(2) Uncorrelated = (X(t)—mX (t)) and (Y(t)—mY (t)) are orthogonal
(3) (Uncorrelated and either m, (t)=0 or m, (¢)=0) = orthogonal

(4) Uncorrelated and Gaussian = Independent

DEE3338: Principles of
Communication Systems
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Linear Systems and Random Processes
Given /(¢) is LTL and Y (¢)=h(¢)* X ()

Meanon()'
)= E[h(0)* X (1)) = E| [ ()X (¢=u)du |= | h(u) E[X (1-u) ]

I h(u du m, H(O)

Cross-correlation
RXY(tl,tz)zE[X(tl)Y(tz)]=E[X(t1)J‘uh(u)X(t2—u)du}
= [ E[X X (t,—u)]du
—j t —t - u)du
If X (¢) is WSS, let 7 =1, -1,

R, (7) :L h(u)R, (7—u)du=h(z)*R,(7)

SN DEE3338: Principles of
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Linear Systems and Random Processes

Similarly
Ry (6) = E[Y (6) X (1)) = E| [ h(a) X (1~} dux (1,
:L h(u)E| X (t,—u) X (1,) | du
= [ h(u) Ry (1, —t, +u) du
If X (¢) is WSS, let 7 =¢, —¢,

R, (T) = L h(u)RX (r+u)a’u = h(—r)*RX (r) = h(—r)*RX (—z') =R,, (—r)
R ()= E[Y ()Y (1+7)] = E| [ h(u) X (¢ =u)aa¥ (1 7)|
=1,

u)E[X(t—u)Y(t+r)]du

(" A% DEE3338: Principles of
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Linear Systems and Power Spectral
Densities

Ry (t)=h(7)*Ry(7) < Sy (/)=H(f)Sx (/)
Ry (7)=h(-7)*Ry () =Ry (-7) = S (f)=H (=) Sx (f)=H (f)Sx (f
Ry(r)=h(=2)*h(z)*Re(z) =S, (f)=H (/VH(S)S (f)=|H (/)

DEE3338: Principles of
=) Communication Systems
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Remarks

If X() WSS, A(¢) LTI (no 1nitial condition)
0 then Y(¢) 1s also WSS

So far, we have only considered 2™ order
statistics (mean, correlation, covariance). In
general, given the joint pdf of X(?), 1t 1s very
difficult to find the joint pdf of ¥(¢). But 1f X(¢) 1s
jointly Gaussian, then Y(?) 1s also jointly Gaussian
and thus 1s completely characterized by mean and
correlation functions

DEE3338: Principles of
Communication Systems 36
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Filtered Gaussian Procesess

(1) Let X () to be a stationary white Gaussian random process and

supposed length of 4(7) > 1.
Mean = m,, autocorrelation =R, (7)

R, (t.t,)=6(t,—1,)=5(7)
Sy (f) =1 (constant)

:>y(t)zj x(r)h(t—r)dt

T

= Alirilozklx(kAr)h(t—kAr)Ar

= weighted sum of Gaussian RVs

. Y (¢) has a Ist order Gaussian distribution. Similarly
the higher order joint pdf of Y (¢) is jointly Gaussian,
but not white (Y (¢) has been colored by /(¢)).

DEE3338: Principles of
Communication Systems
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Filtered Gaussian Procesess

(2) If input 1s not white, assuming the process is regular then

it can be obtained by passing a white process through an

innovation filter. Then by the same argument as in (1),

Y (¢) is a colored Gaussian process.

What kind of processes are not regular processes?

h(r)
H(f)

- Figure 7.7
v(f)  Cascade of two linear systems with

z(1) x(1)
o—y H(f) .
{(White and (Nonwhite and
Gaussian) Gaussian)

7 Gaussian input.

X(¢) 1s a regular process

DEE3338: Principles of
Communication Systems
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Properties of Gaussian Processes

(1) X (¢) Gaussian, H () stable and linear = Y (¢) Gaussian

(2) X (t) Gaussian and WSS = X (¢) stationary in strict sense

(3) Samples of a Gaussian process X (¢, ), X (¢, ),... are uncorrelated
= they are independent

(4) Samples of a Gaussian process, X (#,), X (¢, ),... have a joint
Gaussian pdf specified completely by the set of means

m, =E| X(t)| and auto-covariance function

E|(X(t)=my )(X (1)=my)]

Remarks: Why do we use Gaussian model?
(1) Easy to analyze
(2) Central limit theorem: many "independent" events combined together

become a Gaussian RV (random process)

DEE3338: Principles of
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Example 7.8 — RC Filter with WG Input

Let input to a lowpass RC filter be a zero mean white Gaussian process with PSD

S, (f):%,—oo<f<oo. Output PSD is

N,/2 R
S, (N =S, (N = : o
: (NJH ) +(f1 1) W
fi= e is the 3-dB cutoff freq. G) n{1) C == my(1)
R, (7)= P75, ()} ="M oo : L.
Figure 7.8
N, o TR L — 7], A lowpass RC filter with a white-noise input.
4RC " RC g
Output power: n, (t)=0, =R, (0)= ﬂf;NO = 4];()(?
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Example 7.8 — RC Filter with WG Input

Another approach:

BN : N, /2 N, /2

n(t)=1 S e df| = 0 df = 0 d

. (1) If . (/) ff:o If1+(f/f3)2 / If1+(27zRCf)2 / R
Letx =27zRCf, dx =27zRC df . W o—0
N, 1 N, ¢~ 1 N,

" ()= ke I 7 ® " 2rC J 7 % 2re OLU C == no(®

To obtain the PDF of Y (¢) : S0
Figure 7.8

Mean of n, (¢): n,(t)=0-H(0)=0 A lowpass RC filter with a white-noise input.

—(x—mx)2]

207

X

Since Y (¢) Gaussian which has the form 1 - exp{
2o

Then substituting the mean and variance from above we have

1 —y2
,t — ; —
L (mt) =1, () s xp| 7

2RC  L2RC
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Noise-Equivalent Bandwidth

e The noise-equivalent bandwidth for a lowpass filter 1s defined as the bandwidth of an
ideal filter such that the power at the output of this filter, if excited by white Gaussian
noise, is equal to that of the real filter given the same input signal

e The estimation of the noise-equivalent bandwidth allows us to compute the amount
of in-band noise and its effect on the received signal SNR regardles of the filter's

transfer function.

Figure 7.9
/\ -— By Comparison between |H(f}|2 and an idealized

—
/ \ / \ approximation.
f
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Noise-Equivalent Bandwidth

Suppose we pass white noise through a filter with frequency response H ( f )

output average power:

P =R, (0)=] S, (Nar =] s, (NH (] dr =] SEH ] dr =N, |1 () ar

%: 2-sided PSD of input

Suppose H ( f') is ideal with BW B,, and max gain H,,
o0 2 By
=P, =N, |H (/) df =N, | " Hdf =N,B,H;
Question: What is the BW of an ideal, fictitious filter that has the same max. gain as

H ( f ) and that passes the same noise power?

Suppose the max. gain of H ( /) is H,, the ans. is obtained by equating the results above.

9 DEE3338: Principles of
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Noise-Equivalent Bandwidth

Since B, = N, [|H () df =N, [, Hidf = N,B,H;
- %Jj‘ H ( f )‘2 df 1s the single-side BW of the fictitious filter

From Rayleigh's energy theorem, i.e. j ‘H (f) ‘2 df = _‘- h(t)‘2 dt

and the fact that H, = H (f)|,_, = [ h(t)e ™ df| = | h(t)ds

f=0 *!

t‘dt

2 2
Ut h(t)dt}

sﬁ\ DEE3338: Principles of

Communication Systems

44



N
,/ \\
%\/9 ]
) e

Example 7.10

The noise-equivalent BW of an n” order Butterworth filter with squared mag. response

2 1
H —
Note that H, (0)=1
1 e
- | |H d d
H(f-[o‘ )= I01+f/f3) d
|
:f3-[0 1+x2"dx
_ 7mfy/2n 12
_sin(ﬂ/2n)’ o
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Narrowband Noise

BP noise (signal) A /\
s 1,

<+—>
B <<f
B: BW of channel

In communications, channel is characterized as a BP system, so it is more

convenient to represent noise in terms of quadrature components ~ Figure 7.11
A typical narrowband noise

n(t)=n,(t)cos(2z fot+0)—n (t)sin(27z fit +0) waveform.

n(t)

| ~1/B — 1 “
(t) \/nc (t)+ns (t), ¢(t) an [nc(t) < /\ A /\ Rr)
AVAVESAVAVE
0 : arbitrary time-invariant phase bias M- \A ~ %L N \J >

Can also be represented using envelope-phase representation

. For narrowband noise, R(¢) and @(t) are
n (t) =R (t) cos (27Tf0t + 9) slowly varying envelope and noise

aﬁ DEE3338: Principles of
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Extract #(?) and 7 (?)

LPF:  H(f)
- f;\ == | | i 11.(1)
\r I —%B 0 %B f
2 cos @f +6) Figure 7.12
' s 1] ‘ - .
) — The operations involved in

=2 sin (@ gf +6)

T _
LPF:  H([f) pdeU’C]nE H{' (f) ﬂI]d ”s {f}
7 | | f et 11,(1)

1 o 1
—28 7B

We will show that n(¢)=n, (t)cos(27 fot +6)—n, (t)sin(27 fit + )
in the mean-squared sense, 1.€.
E[{n(t) [, (¢)cos (27 fy+0) —n, (¢)sin (27 fyt + 9)]}1 -0
Remark: Here, we assume O is a RV, indep. of n(¢), uniformly distributed over

(0,27) (or (—7[,7[)). If® isnotaRV, Z (¢) and Z, (¢) are not WSS, and LTI

theory cannot be used to predict the outputs of LPFs.

% DEE3338: Principles of
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Properties of Quadrature-component
Representation

(1) n(t) =n, (t) =n, (t) =0

Proof:

(P1.1) LetX( )én(t)—n t)
Ry (7)=E[X ()X (t+7)]=| n(t)=n(1) || n(t+7)=n(t+7)|
=n(t)n(t+7)+n(t)en(t+7)—n(t)n(t+7)—n(t)n(t+7)

=R, (7 )—(n(z‘))2 since X (¢) is WSS

sﬁ DEE3338: Principles of
/ Communication Systems
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Properties of Quadrature-component
Representation

E[cos(27 fy)cos(8) —sin (27 fy1)sin (6) ] :wr”cos(ﬁ)d@—wr”sin(e)dﬁ
V4 0 V4 0

_ (27rft)[ n(@)]z” N sin (27 fyt) [cos(@)]iﬂ 0

27 27

(1) n(t)=n(t)=n,(t)=0

Proof:
(P1.2) E[Z1 (t)} =2n(t)scos(27 fit +0)
= E[n (1] = E[2 (1)1 (0)=0
Similarly, £| n, () |= E| Z,(¢) |H(0)=0

0

% DEE3338: Principles of
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Properties of Quadrature-component

Representation
2 S, (£)=5, (f)=LP{s, (f £)+S,(f+1,)]
S, ( f f)+S.(f+1), W< f<W
0, otherwise

and S, (f =- LP{ f=1f)-S (f+f0)}
Proof: Show (

)

(P2.1) Since Z, (¢)=2n(t)cos(awyt+0)

R, (7)= { n(t)n(t+ )cos(a)ot+6?)cos(a)0(t+r)+9)}
=2E{n(t)n(t+7)}cosayr+2E{n(t)n(t+7)cos(2a, + w,r +26)|
=2R (7)cos @,z +2E{n(t)n(t+7)} E{cos(2m,t + m,7 +26)}
=2R (7r)cosw,T

Thus,

S, (1)=S, () [S(f = 1)+ (£ + 1) ]= S, (S = /o) +5, (S + 1)

sﬁ‘ DEE3338: Principles of
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Properties of Quadrature-component
Representation

(P2.2) n,(t) is the lowpass portion of Z, ()
2 S, (f)=LP{S, (f = 1)+ S, (f+ 1))}
Similarly, . S, (f)=LP{S,(f=/)+S,(f+/,)}

Show S, , (f)

(P23) R,, (r)=E|Z (t)Z,(t+7)]
= —E[(2n(t)cos(a)0t+6’))(2n(t+r)sin(a)0t+a)of+9))}
=—2R (7)sin(w,7)

=S8, (0)=J[S,(f~1,)=-S.(f+1)]

DEE3338: Principles of
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Properties of Quadrature-component
Representation

~
~J
N
~
~
-~
<
—~
e
Il
vy
1
S
9}
—~
=~
N
S
—~
N
+
N
~
L1

— U” h(u)Zl(t—u)duIv h(v)Z2 (t+r—v)dv}

(u)h(v E[Z1 (t—u)Z, (t+r—v)]dudv

< ?
S ?
=

)
- Iv L h(u)h(v)Rzlz2 (T+M —V)dudv
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Properties of Quadrature-component
Representation

Proof: n?(¢)=( S, (f)df =[S, (f)df = n*(t) (from (2))

(4) If S, (f) is symmetric w.r.t. f, then n,(¢,) and n, (t,) are
uncorrelated for all ¢, and ¢,

Proof: S, (f) is symmetric w.r.t. £

o LP(S,(F£y) -, (/+ £} =0
=R, (T) =0, Vr (from (2))

= n_(t) and n (¢ +7) are uncorrelated.

% DEE3338: Principles of
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Properties of Quadrature-component
Representation

(5) Ifn(t) is Gaussian, n, (¢,) and n, (¢,) are Gaussian

Proof: n, (¢ ) and n, (t,) are weighted linear combination of n(¢)

(6) Ifn.(t,) and n, (¢,) are Gaussian and uncorrelated, their joint pdf is

2 2
}’l +I’l }’lc 1 I’ls

F(motim ter) = 7 = ¥ o e 2 = f(n.t)e f (nut), VT

27N \/* \/*

implying n, (¢) and n, (¢) are independent (which further validates the property of Gaussian

that if two Gaussian RPs/Rvs are uncorrelated, it implies they are also independent)

In terms of polar coordinates, R () and ¢(¢)

I’2

r [
e N, Vr>0,

27N

f(r.9)=

Communication Systems 54
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Narrowband Noise Model

Theorem: Given a WSS bandpass random process 7(¢) with BW = B, then n(¢) can be
represented by n, (1) cos(27 fjt +0)—n, (¢)sin(27z ft + @) in mean-squared sense. That is

[{ [ (¢)cos (27 fyt +0)—n, (¢)sin (27 £, +0) ]} }:o.

Note that @ is a RV, uniformly distributed over (—z,7) and is indep. of n(¢).
Proof: Let /() =n,(t)cos(27 fyt +0)—n (¢)sin (27 ft +0)
Wish to show E{[n(t) —~ ﬁ(t)]z} =0

E\[n(t)=a(0)] | =’ (0)=2n(0)a(0) + i (1)
i (0) = E{[n. (1)cos (27 fyt +0) =, (1)sin (27 £t + 0)] | €37 term
)

2(t)ecos® (27 fot + 0) +n? (¢ )esin® (27 fyt + 0) —2n, () n, (¢ )scos (27 fot + 0)sin (27 f,t + 6)

| —— 1 .
=5 c(t)+2n (t)=n*()=N

epg%  DEE3338: Principles of
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Narrowband Noise Model

n(t)n(t) E{n t)| n, (t)cos (27 fyt +6)—n, (1 )sin(27rf0t+l9)]} 20d term
)

1(1)=Ein(t)]
“n,(t)=h(t *[2 )eos (27 it +6) | = J. (t—u)2n(u)cos (27 fyu+0)du
(1)

(
jh(r v)2n(v)sin (27 fyv+0)dv

n, t

:»n(t)n(z):E{juh(z u)2n(1)n (u)cos(27zfou+0)cos(27zf0t+0)du}
+E{Lh(t—v)Zn(t)n(v)sin(27zﬁ)v+9)5in(27zf0t+H)du}
:E{Lh(t—u)n(t)n(u)[cos(Zﬂfo(u—t))+cos(27zf0(u+t)+2¢9)]du}
+E{Lh(t—v)n(t)n(v)[cos(bzfo(v—t))—cos(27zf0(v+t)+249)]du}

n(t), 6 indep

- Lh(t—u)Rn(u—t)cos(Zn'fO(u—t))du
J.h(t—u R (u= 7T u+t)+29)}du
+I (v—t)cos (27 f, (v—1))dv
—I h(t=v)R (v= T Iy v+t)+2«9)]dv

sﬁ\ DEE3338: Principles of
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Narrowband Noise Model

n(t)ﬁ(t):L h(t—u)R, (u—t)cos(27zfo (u—t))du+jv h(t—v)R, (v—t)cos(27zf0 (v—l))dv
:2J h(t- u)R (t—u)cos(27 f; (t—u))du (R, (t—u)=R,(u—t),cos(x)=cos(—x))
—2I )cos(27 fuA )

From Parseval's Theorem: L dt= ij ( f )Y ( f )df

and h(2)cos(27 £, )@lH(f_fo) l H(f+f,) and R (1)< S,(f)

= n(t)A(r) = I[H f=f)+H(f+ 1, ]S
Since S, (/) is nonzero only when H ( f — f, )+ H ( f + fy) =1 because of narrowband assumption

= n(1)i(1)=] S,(1)df =’ (1)
E{[n(e)=()] = (0) =2 () (1) + 2 () =’ (1) =20 (1) 40 (£) =0

%ﬁ DEE3338: Principles of
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‘ Example 7.12

Consider a BP random process with PSD shown in Figure 7.13(a).
() Iff,=7Hz, S,(f) symmetric w.r.t. f;

= n, () and n(¢) are uncorrelated [ | 2}7 ] e

[
S, (f) orS, (f) shown in Figure 7.13(b), 0 B ° ’ 0

(a)

S.0f)

shaded region = LP{SZ1 (f)} =S, (f) orS, (f) 8., () 1S,
4 Sy (1) 15, ()]
(2) If f,=5Hz, S, (f) not symmetric w.r.t. f, 2Il_l | | | N 2f[HZ]
= n, () and n (1) are correlated -15 -10 = ?b] 5 10 15
5. (£)=5,. (/)= LP{S" (/= fo)*S,(f+ 1o )} S, () [S,()]
= shaded region in Figure 7.13(c) . ) S (IS (F]
S, (f)=LP{S,(f=1,)-S,(f+ 1)} = | B IT] |. —
= shaded region of Figure 7.13(d) RE o =S 0 5 i6 15 f )
From the figure, we see that ©
1 1 8212,
Sn(,ns (f): 2]{_H£Z(f_3)]+n(2(f+3)j} N _"‘;S"['"_g{f]
. i6 . —_i6 N _llo I | /- 7 | f(Hz)
<R, (r)=2j [—4smc(4r)e’ ™ +4sinc(47)e”’ ’”] | | s Bl 5 10 15
=16sinc (41’) sin (6m’)
(d)

Son,(t) and n () are indeed correlated. Figure 7.13

Spectra for Example 7.11. (a) Bandpass spectrum. (b) Lowpass spectra for f; = 7 Hz. (c) Lowpass
spectra for f;, = 5 Hz. (d) Cross spectra for f, = 5 Hz.
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