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Signal Retrieval and Communication 

 Theory of systems for the conveyance of information 
 Characteristics of communication systems 

 Uncertainty 
 Noise and “information” (deterministic vs. probabilistic) 

 Keep in mind:  Signal retrieval problem 
 Communication (only particular type of signal retrieval problem) 

 Optimal design is crucial 
 Many “optimal” designs are not optimal – depends on objective 

 How do we do it?  (We are engineers, this is important!) 
 Statistical signal detection and estimation theory 

 Weiner optimum filter, matched filter, adaptive filter, and many more… 
 Information theory and coding 

 Shannon says it can be done, but didn’t tell us how:  block, iterative coding, … 
 Usually two resources to consider 

 Bandwidth vs. Power 
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Block Diagram of a Narrowband Digital 
Communication System 

Keep in mind that this is only a model! 

Can we make it simpler?  More 
complicated?  Consequences? 

Channel 
Encoder and 
Interleaver 

Source Modulator Channel RF 

RF 
Channel  

Decoder and 
Deinterleaver 

Demodulator Equalization 

Synchronization: 
Carrier & Timing 

Channel 

• Ease of radiation 
• Reduce noise and interference 
• Increase BW efficiency: Rb/B 
• Channel assignment 
• Multiplexing  

 

• Source coding:  remove 
redundancy  increase efficiency 

• Channel coding: increase 
redundancy  protect information 

• Remove ISI 

• Internal and external 
additive noise 

• Convolutive noise 

• Carrier:  Coherent modulation 
requires carrier 

• Timing:  Need to know when to 
sample to recover digital signal 

Source 
Encoder 

Source 
Decoder 
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Bandwidth and Power Efficiency 

 Channel bandwidth and transmit power are two primary 
communication resources and have to be used as efficient 
as possible 
 Spectrum utilization efficiency (bandwidth efficiency) 

 Measured by the achievable data rate per unit bandwidth Rb/B 
 Power utilization efficiency (energy efficiency) 

 Measured by the required Eb/N0 to achieve a certain bit error probability 
 It is always desirable to maximize bandwidth at a 

minimal required Eb/N0 
 However, in certain scenario, such as space communications, it is 

important to achieve high energy efficiency as bandwidth is 
abundant, but power is scarce 

 Discussion shall be restricted to uncoded system 
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M-ary Signaling for Bandwidth- vs. Power-
Limited System 
 Bandwidth-limited system 

 Spectrally-efficient modulation techniques 
can be used to save bandwidth at the 
expense of power, i.e. Eb/N0, e.g. MPSK 

 Power-limited system 
 Power-efficient modulation techniques can 

be used to save power at the expense of 
bandwidth, e.g. MFSK 

 A symbol in an M-ary alphabet is 
related to a unique sequence of k bits:  
M = 2k  k = log2 M, M is the alphabet 
size 

 Symbol refers to the member of the M-
ary alphabet that is transmitted during 
each symbol duration Ts 

 Symbols are then mapped to a voltage 
of waveform 

 Example: M = 16:  1  0  1  1  1  0  0  1 
 (1011), (1001)  M-tuple 
 Each M-tuple is a symbol with length Ts 
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M-ary Signaling for Bandwidth- and 
Power-Limited System 
 Channel bandwidth 

required to pass M-ary 
signals (symbols) is      

 Note that symbol duration 
Ts = Tb log2 M 
 Tb: bit duration 

 Also date rate Rb = 
(log2M)/Ts = (log2M)/( Tb 
log2 M) = 1/Tb 

 Hence  
 And bandwidth efficiency 
  

 
 

BW-limited system: 
Fixed PB and B, 
Eb/N0↑  M↑  ρ↑ 

Pwr-limited system: 
Fixed PB, B↑  ρ↓  Eb/N0↓ 

Bandwidth-
efficiency diagram 
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 Source symbols mi from alphabet of M symbols 
denoted as m1, m2, …, mM 

   
 Transmitter codes mi into a distinct signal si(t) 

suitable for transmission over channel 
 si(t) occupies for T duration and has finite energy 
  

Block diagram of a generic digital communication system 

Signal-Space Analysis 
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Signal-Space Analysis 

 Assumptions 
 Channel is linear and bandwidth is wide enough to accommodate the 

transmit signal si(t) with little or no distortion 
 Channel noise, w(t), is sample function of a zero mean white Gaussian 

noise process  makes receiver calculation tractable 
 Then, the channel is referred to as additive white Gaussian noise 

(AWGN) channel, where the output is modeled as 
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Geometric Representation of Signals 

 Represent any set of energy signal 
{si(t)} as a linear combination of N 
orthonormal basis functions, where N ≤ 
M, i.e. 
 
 
 
 
 
 

 The real-valued basis functions φ1(t), 
φ2(t), …, , φN(t), are orthonormal, i.e. 
 
 
 
 
where δij is the Kronecker delta function 

( )1 tφ

( )2 tφ

( )3 tφ
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Example: Binary Phase-Shift Keying 
(BPSK) 
 Pair of signals used to 

represent binary symbols 1 
and 0 
 
 
 

 Note the orthonormal basis 
functions is 
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Signal-space diagram for coherent binary PSK 
system. The waveforms depicting the 
transmitted signals s1(t) and s2(t), displayed in 
the inserts, assume nc = 2. 



Geometric Representation of Signals 

 Given N elements of the vectors si, (i.e. si1, si2,…, siN) operating 
as input, can use the synthesizer shown to generate si(t) 

 Given si(t), i = 1, 2, …, M, can use the analyzer in (b) to obtain 
si1, si2,…, siN.  This consists of a bank of N product-integrators or 
correlators 

(a) Synthesizer for generating the signal si(t).  (b) Analyzer 
for generating the set of signal vectors {si}. 

Illustrating the geometric representation of 
signals.  N = 2, M = 3. 
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Geometric Representation of Signals 
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Gram-Schmidt Orthogonalization/ 
Orthonormalization 
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Gram-Schmidt Orthogonalization/ 
Orthonormalization 
 In general,  
 Remarks 
 The signals s1(t), s2(t), …, sM(t) form a linearly 

independent set, i.e. k1s1(t) + …+kMsM(t) = 0 iff k1, …, 
kM equal 0.  In that case, N = M 

 The signals s1(t), s2(t), …, sM(t) do not form a linearly 
independent set, then N < M, and gi(t) = 0, for i > N 
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Statistical Characterization of Correlator 
Outputs 
 Denote Xj as the random variable whose sample value is represented by the 

correlator output xj, for j = 1, 2, …, N 
 From AWGN channel model, X(t) is a Gaussian process (since W(t) is AWGN) 

 
 
 
 
 
 
 
 
 
 
 
 
where the expression for RW(t,u) is obtained as the noise is assumed to be WSS and has a 
constant PSD N0/2.  The last equality is obtained because φj(t) is orthonormal 
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Statistical Characterization of Correlator 
Outputs 
 Xj are mutually uncorrelated because φj(t) form an 

orthogonal set: 
 
 
 
 
 
 

 Since Xj is Gaussian r.v., hence, they are also 
statistically independent 
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Statistical Characterization of Correlator 
Outputs 

 
 
 
 
elements are independent Gaussian rv’s with mean sij and variance N0/2 

 Hence, the conditional pdf of X, given that si(t) (or 
corresponding mi) was transmitted, can be expressed as the 
product of the conditional probability density functions of its 
individual elements 
 

 
x and xj are samples values of X and Xj 

 Channel that satisfies the above equation is called memoryless 
channel 
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Statistical Characterization of Correlator 
Outputs 
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Why do we care about this? 
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( )
In the context of AWGN channel, the optimal receiver is the ML detector
Design objective:  Expected cost  or Bayes' Risk E C R

( )

A generalization of the minimum  criterion assigns costs to each
type of error.  Let  be the cost if we decide  but  is true.

The expected cost or Bayes risk is
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Bayes’ Risk 
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Result: MAP Detector 
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ML Detector 
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Example 
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Example 

Digital Communications Fundamentals http://cwww.ee.nctu.edu.tw/~cfung 24 

[ ]
1

2
2

0

1

Taking log
1                   2 0,

2
or we decide  if / 2.
This has the same form as the NP criterion except for the threshold.
To determine the , note that

                  

N

n

e

A x n NA

H x A

P

σ

−

=

 − − + > 
 
>

∑

2

0

2

1

0, ,   conditioned on 
           ~

, ,   conditioned on 

N H
N

x
N A H

N

σ

σ

  
  
  


 
   



Example 
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Likelihood Functions 

 The likelihood and log-likelihood (LL) function are 
defined as 
 
 

 The LL function for an AWGN channel is 
 

 
where the constant term –(N/2) log(N0) is ignored 

 Receiver will use the LL function to detect the 
presence of the transmitted symbol 
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Coherent Detection of Signals in Noise: 
MAP Decoding 
 Signal detection problem 

 Given the observation vector x, perform a mapping from x 
to an estimate     of the transmitted symbol, mi, in a way that 
would minimize the probability of error in the decision 
making process 

 Decision making criterion:  minimize probability of 
error: 

 Can be shown that the optimum decision rule is 
 
 
for k = 1, …, M.  This is known as maximum a posteriori 
probability (MAP) rule   
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m̂
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Coherent Detection of Signals in Noise: 
ML Decoding 
 Applying Bayes’ rule, the MAP decision rule becomes 

 
 
 
where pk is the a priori probability of transmitting symbol mk 

 Assuming pk = pi , for all i, the decision rule becomes the 
maximum likelihood rule 
 
 

 The ML decoder can be used at the receiver to decode the 
transmitting symbol 

 Note that the ML rule applies for all additive noise 
 No assumption about its statistical property is made 
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Graphical Illustration of Signal 
Constellation 
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Illustrating the effect of noise perturbation, depicted in (a) on the location of the 
received signal point, depicted in (b). 
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Graphical Interpretation of ML Rule 

 Let Z denote the N-dimensional space of all  
possible observation vectors x.  This is known as 
observation space.  Since the ML rule says            
, where i = 1, …, M, the Z is partitioned into M-
decision regions, Z1, Z2, .., ZM. 

 ML rule can be restated as 

Digital Communications Fundamentals 30 http://cwww.ee.nctu.edu.tw/~cfung 



ML Rule for AWGN 

 Recall the LL function for AWGN channel is 
 
 

 So maximum value of l(mk) is attained when the term in 
the sum is minimized by choosing k = i.  So ML rule for 
AWGN channel becomes 
 
 
 

 Note that ||x – sk|| is the Euclidean distance between 
received signal point and message point, represented by x 
and sk, respectively 
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ML Rule for AWGN 

 Note that 
 
 
 

 ML rule becomes 
 
 
 
 
 

 Can deduce from this rule that the decision regions are regions of 
the N-dimensional observation space Z, bounded by linear [(N-1)-
dimensional hyperplane] boundaries 

l(mk) is called the likelihood 
function (LL) 
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Partition of Observation Space Into 
Decision Regions 

Illustrating the 
partitioning of the 
observation space into 
decision regions for 
the case when N = 2 
and M = 4; it is 
assumed that the M 
transmitted symbols 
are equally likely. 
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Correlation Receiver 

(a) Detector or demodulator.  (b) Signal transmission decoder. 

( )1 tφ

( )2 tφ

( )N tφ
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Probability of Symbol Error 

 Pe is a way to evaluate noise performance of receiver 
 Use idea of observation space partitioned into M  Zi 

partitions, then an error occurs when x does not fall inside 
Zi 

 Use the idea of union bound to compute the pairwise 
probability 
 If a data transmission system uses only a pair of signals, si and sk, 

then the pairwise probability Pr(Aik) = Pr2(si,sk) is the probability 
of the receiver mistaking sk for si  (only two signal vectors are 
compared) 
 Aik denotes the event that the observation vector x is closer to the signal 

vector sk than to si when the symbol mi (or vector si) is sent 
 depends on only two signal vectors si and sk 
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Union Bound on the Pe 

 Conditional probability of symbol 
error when symbol mi is sent, 
Pe(mi), is equal to the probability of 
the union of events, Ai1, Ai2, …, Ai,i-
1, Ai,i+1, …, Ai,M 
 Aik denotes the event that the 

observation vector x is closer to the 
signal vector sk than to si when the 
symbol mi (or vector si) is sent 

 This is overbounded by the sum of the 
probabilities of the constituent events, 
i.e. 
 
 
 
 

 That is, shaded area of (a) ≤ sum of 
the shaded areas in (b)  
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Illustrating the union bound, M = 4.  s1 is 
transmitted message point.  (a) Constellation 
of four message points. (b) Three 
constellations with a common message point 
and one other message point retained from 
the original constellation. 
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Union Bound on the Pe 

 Pr(Aik) = Pr2(si,sk) 
 depends on only two signal vectors si and sk 
 It’s the pairwise probability 

 If a data transmission system uses only a pair of signals, si and sk, 
then Pr2(si,sk) is the probability of the receiver mistaking sk for si  
(only two signal vectors are compared) 
 
 
 
 
 
 

 Different from                          : probability of observation vector x is 
closer to signal vector sk than every other, when si (or mi) is sent 
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Union Bound on the Pe 

 Decision boundary 
 Represented as bisector that 

is perpendicular to the line 
joining the points si and sk 

 Assuming mi (or si) is sent.  
If x lies on the side of the 
bisector where sk lies, error 
is made 
 Probability of this event 
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Union Bound on the Pe 

 Complementary error function 
 
 
 
 
 

 Average over M symbols 
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Union Bound on the Pe: Special Forms 

 If signal constellation is circularly symmetric about the origin, then Pe(mi) same for all i 
 
 
 
 

 Define                                                         , and noting that erfc is monotonically decreasing w.r.t. u   
 
 
 

  
 
 

 Since erfc is bounded as 
 
 

  
 
 
 
 

 That is, Pe decreases exponentially as squared minimum distance, dmin
2 
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Bit Error Probability (BER) 

 log2 M bits/symbol 
 Mapping binary to M-ary symbol  M-tuple 

 Suppose M = 16:  1  0  1  1  1  0  0  1  (1011), (1001) 
 Gray coding 

 Adjacent symbols only differ by one bit 
 
 
 
 
 
 

 Note that Pe ≥ Pr(ith bit is in error) = BER 
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Passband Data Transmission 

 Data stream is modulated onto carrier with fixed frequency limits imposed by bandpass 
channel 

 Attention given mainly to coherent system 
 Carrier phase is sync at Rx 

 M-ary signaling scheme is used in which M possible signals s1(t), …, sM(t), may be sent 
during signaling interval T 
 M = 2n, n: # of bits 
 Symbol duration: nTb, Tb: bit duration 
 Signals are generated by changing amplitude, phase, or frequency (or hybrid form of these) of a 

sinusoidal carrier in M discrete steps 
 Usually more BW efficient than binary signaling 

 
 
 

 Recall that analysis of passband signal can be carried out using its baseband equivalent 
 Design schemes are different 

 Maximum bandwidth efficient ρ, e.g. by trading off power (more) 
 Maximum power efficiency, e.g. by trading off PB (higher) or bandwidth (more) 
 Minimize symbol error (Pe) or bit error (PB), e.g. by trading bandwidth (more) or bit rate Rb 
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Assumptions on Passband Data 
Transmission 
 M symbols of alphabet are equally likely with probability 

pi = Pr(mi) = 1/M, ∀i 
 M-ary output of the message source is injected to the 

encoder 
 Produces si (N complex elements) 
 Modulator constructs a distinct signal real-valued signal si(t), 

from si, of duration T seconds with energy 
 

 Carrier is sinusoidal 
 Step change (called switching or keying) in amplitude, frequency, 

phase, or hybrid form in both amplitude and phase or amplitude 
and frequency is used by modulator to distinguish one signal 
from another 
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Assumptions on Passband Data 
Transmission 
 Bandpass channel assumptions 

 Channel is linear, with a bandwidth that is wide enough to 
accommodate the transmission of the modulated signal si(t) 
with little or no distortion 

 Channel noise w(t) is the sample function of a white 
Gaussian noise process of zero mean and PSD N0/2 

 Receiver 
 Consists of symbol detector followed by source decoder 
 Reverses operations performed transmitter 
 Minimizes the effect of channel noise on the estimate      

computed for the transmitted symbol mi 
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Binary Phase-Shift Keying (BPSK) 

 Pair of signals used to represent binary symbols 1 and 
0 
 
 

 Eb: transmitted signal energy per bit 
 fc chosen to be nc/Tb, where nc is integer 

 Ensures each transmitted bit contains an integral number of 
cycles of the carrier wave 

 This is antipodal signals 
 Envelope of signal is constrained to remain constant 
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BPSK 

 Note the orthonormal 
basis functions is 

Signal-space diagram for coherent binary PSK 
system. The waveforms depicting the 
transmitted signals s1(t) and s2(t), displayed in 
the inserts, assume nc = 2. 
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Pe of BPSK 

 Decision boundary 
 Midpoint of the line joining the two messages s11 and 

s21 

 Decision regions 
 For symbol 1 (or signal s1(t):  

 Z1: 0 < x1 < ∞, where 
 Conditional probability density function of rv X1 given 

that symbol 0 (i.e. s2(t)) was transmitted is 
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Pe of BPSK 

 Conditional probability of the receiver deciding in favor of 
symbol 1 given that symbol 0 was transmitted is 
 
 
 
 
 
 

 Due to symmetry, p01 = p10.  Hence, average symbol error 
probability (also equal to BER because 1 bit/symbol) 
 
 

 As symbols 1 and 0 move apart, i.e. Eb increases, Pe decreases 
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M-ary PSK 

 Phase of carrier takes on one of M possible values, θi 
= 2(i-1)π/M 

 That is, during signaling interval T, one of the M 
possible signals are 
 
E: signal energy/symbol, fc=nc/T for fixed integer nc 

 Orthonormal basis functions are 
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Pe of M-ary PSK 

 Signal-space diagram is 
circulary symmetric 
 Pe is bounded by the union bound 

 
 
 

 Assume m1 transmitted and E/N0 
is large enough to consider the 
nearest two message points 

 Euclidean distance of each these 
two points from m1 is  
 
 

 Then average symbol error 
probability is  

  
 

Signal-space diagram for octaphase-
shift keying (i.e., M = 8),  illustrating 
the application of the union bound for 
octaphase-shift keying. 
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M message points are 
equally spaced on a circle 
of radius       and center at 
the origin 



Bandwidth Efficiency of M-ary PSK 
Signals 
 Recall bandwidth 

efficiency 
 

 
  

 

BW-limited system: 
Fixed PB and B, 
Eb/N0↑  M↑  ρ↑ 

Pwr-limited system: 
Fixed PB, B↑  ρ↓  Eb/N0↓ 

Bandwidth-
efficiency diagram 
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Information Theory 

 Entropy 
 Formally defined as the probabilistic behavior of a 

source of information 
 Randomness of data 

 Capacity 
 Intrinsic ability of a channel to convey information 

 Noise characteristics of the channel 

 If entropy of the source is less than the capacity of 
the channel, error-free communication over the 
channel can be achieved 
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Information 

 Source output modeled as discrete random variable S, 
which takes on symbols from a fixed finite alphabet 
 S  = {s0, s1, …, sK-1} 
 With probabilities P(S=sk) = pk, k = 0, 1, …, K-1 
 Constraint  

 
 Source symbols are assumed to be statistically independent 

 Discrete memoryless source 

 Information defined as  
 Hence, less probability of symbol occurring, the more 

information it contains when it occurs 

1

0
1

K
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Properties of I(sk) 

 I(sk) = 0, for pk = 1 
 If we are certain of the outcome of an event, no information is gained 

 I(sk) ≥ 0, for 0 ≤ pk ≤ 1 
 Occurrence of event S = sk provides some or no information, but never brings 

about a loss of information 
 I(sk) > I(si) , for pk < pi 

 Less probable an event is, the more information we gain when it occurs 
 I(sksi) = I(sk) + I(si) if sk and si are statistically independent 
 Base of log is arbitrary but usually 2 

 Results unit of information is called the bit 
 
 

 
 pk = ½,  I(sk) = 1 bit 

 One bit is the amount of information that we gain when one of two possible and equally 
likely events occurs 
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Entropy 

 Entropy 
 
 
 
 Measures the average information content per source 

symbol 
 S     is not an argument for H, it’s only a label. 
 H only depends on the probabilities of the symbols 

in the alphabet S  of the source 
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Example: Entropy of Binary Memoryless 
Source 
 Let symbol 0 occurs with probability p0 
 Let symbol 1 occurs with probability 

p1=1-p0 
 Source symbols are statistically 

independent 
 Entropy is 

 
 

 Observations 
 When p0 = 0, entropy = 0 

 Because xlog x  0 as x  0 
 When p0 = 1, the entropy = 0 
 Entropy attains its maximum value, Hmax = 

1 bit, when p1 = p0 = ½, i.e. 1 and 0 are 
equiprobable 

 Entropy function H(p0) is plotted on the 
right 
 Function of a priori probability p0 
 Notice that H(S  ) gives entropy of a discrete 

memoryless source with source alphabet S 
(difference is subtle) 
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Example – Entropy of Extended Source 

 Consider a discrete memoryless source with 
alphabet S   = {s0, s1, s2} with respective 
probabilities p0=1/4, p1 = 1/4, p2 = ½  
 H(S  ) = p0log2(1/p0) + p1log2(1/p1) + p2log2(1/p2) 

= (1/4)log2(4) + (1/4)log2(4) + (1/2)log2(2) 
= 3/2 bits 
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Example – Entropy of Extended Source 

 Suppose now that alphabet S   2 which consists of 9 symbols {σ0, 
σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8} with the same source alphabet as 
before 
 
 
 
 
 
 

 
 
   

Extended source:  Each block consists of n successive source symbols 
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Discrete Memoryless Channel 

 Discrete memoryless channel is a 
statistical model with an input X 
and an output Y that is a noisy 
version of X 
 X and Y are rv’s 

 Channel accepts an input symbol X 
(from alphabet X  ) and emits an 
output symbol Y (from alphabet Y  ) 

 Channel is “discrete” when both 
alphabets X  and Y  have finite sizes 

 Input alphabet  
 

 Output alphabet 
 

 Transition probabilities 

Probability distribution 
p(xj) = Pr(X=xj), for j = 0, 1, J-1 
Joint probability distribution 
p(xj,yk) =  Pr(Y=yk|X=xj)Pr(X=xj) = p(yk|xj)p(X=xj) 
Marginal pdf Y 
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Mutual Information 

 H(X   ): entropy of input 
 Represents uncertainty about 

channel input before observing 
channel output 

  H(X   |Y   ): conditional entropy 
 Represents uncertainty about 

channel input after observing 
channel output 

  I(X   ;Y    ) ≡ H(X   )- H(X   |Y   
):  mutual information 
 Represent uncertainty about 

channel input that is resolved by 
observing the channel output 

 Similarly I(Y    ;X   ) ≡ H(Y   )- 
H(Y   |X    ) 
 

http://cwww.ee.nctu.edu.tw/~cfung 60 Digital Communications Fundamentals 



Channel Capacity 

 I(X   ;Y    ) ≡ H(X   )-H(X   |Y   ), using the equation of H(X   
) and H(X   |Y   ), and using the fact that p(xj|yk)/p(xj) = 
p(yk|xj)/p(yk)   (Bayes’ rule) 
 
 
 
 

 Note that 
 
 
 MI depends not only on channel, but also on the input pdf p(xj)  
 

• I(X   ;Y    ): measure of 
uncertainty about the 
channel input that is 
resolved by observing 
channel output 

• I(Y    ;X   ): measure of 
uncertainty about the 
channel output that is 
resolved by sending the 
channel input 

• Cannot lose information by 
observing output of channel 
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Channel Capacity 

 Since channel is not dependent of input, define 
capacity of channel as 
 
  
 
measured in bits/channel use, or bits/transmission 
 Depends only on transition probabilities p(yk|xj) 
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Example: Binary Symmetric Channel 

 Special case of discrete 
memoryless channel 

 Input 
 x0 = 0, x1 = 1 

 Output 
 y0 = 0, y1 = 1 

  J = K = 2 
 Note that 

 
 
 

  
 

  

Transition probability diagram of 
binary symmetric channel. 
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Example: Binary Symmetric Channel 

 
 

 Since I(X   ;Y    ) ≡ H(X   )- H(X   |Y   ), maximum 
can be achieved by maximizing H(X   ) 
 This happens when p(x0) = p(x1) = ½  

  

( )

( ) ( )

0 2 0 1 2 1

0 2 0

0 2 0

log log
           log
              1 log 1   bits

H p p p p
p p

p p

= − −

= −

− − −

S
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Example: Binary Symmetric Channel 

 C varies with probability of 
error (transition probability) p in 
a convex manner 
 Symmetric around p = 1/2 

 When channel is noise free, p = 
0,  C is maximum with 1 
bit/channel use (equals to the 
information in each channel 
input) 
 Coincide with minimum value of 

H(p), which equals 0 
 When p = ½ due to noise, the 

channel capacity C attains its 
minimum value of zero 
 Coincide with maximum value of 

H(p), which equals 1 
 Channel is useless in this case 
 

Variation of channel capacity of a binary 
symmetric channel with transition 

probability p. 
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Channel-Coding Theorem: Channel 
Coding 
 Channel encoder 

 Introduce redundancy to increase 
probability that the original source 
sequence can be reconstructed 

 Dual of source coding 
 Reduces redundancy to improve 

transmission efficiency 
 Assume block codes are used, 

i.e. message sequence is divided 
into block of k bits long, each k-
bit block is mapped into an n-bit 
block, with n > k 
 Redundant bits added n-k 

 Define code rate: r ≡ k/n 
 Capacity-Coding Theorem 

includes the notion of time 

Block diagram of digital communication system. 
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Channel-Coding Theorem for Discrete 
Memoryless Channel 
1. Let a discrete memoryless source with an alphabet S   have 

entropy H(S  ) and produce symbols every Ts sec.  Let a 
discrete memoryless channel have capacity C be used once 
every Tc sec.  If 

 
there exists a coding scheme for which the source output can be 
transmitted over the channel and be reconstructed with an 
arbitrary small probability of error.  C/Tc is called the critical 
rate (in bits/sec). 

2. Conversely, if 
 
it is not possible to transmit information over the channel and 
reconstruct it with an arbitrarily small probability of error 
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Channel-Coding Theorem 

 Theorem does not show us how to construct a 
good code.  It is simply an existence proof in that 
it tells us that if the average information rate is 
less than the critical rate, then good codes do exist 

 Theorem also does not provide precise result for 
the probability of symbol error after decoding the 
channel output.  It does tell us the probability of 
symbol error tends to zero as the length of the 
code increases, provided that  
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Differential Entropy 

 Consider a continuous rv X with the probability density function fX(x). 
 Differential entropy of X is defined as 

 
 

 It’s “differential” because it’s measured based on a reference lim∆x→0 
log2 ∆x.  To see this 
 Since discrete RV xk = k∆x, for k = 0, 1, 2, …, and ∆x approaches zero 
 That is, X assumes a value in the interval [xk, xk + ∆x] with probability fX(xk) ∆x 

as ∆x approaching to zero 
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Goes to ∞, so measure 
H(X) based on reference 



Differential Entropy 

 Extension to X = [X1, X2, …, Xn]T.  Differential 
entropy is defined as the n-fold integral 
 
 

 Consequences on dealing with cont. rv:  
differential entropy can be negative 
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Mutual Information (Cont. RV) 

 Mutual information between rv’s X and Y is 
defined as 
 

 Properties of MI 
1. I(X;Y) = I(Y;X) 
2. I(X;Y) ≥ 0 
3. I(X;Y) = h(X) – h(X|Y) = h(Y) – h(Y|X) 

 Conditional differential entropy 
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Information Capacity 

 Like to formulate information capacity theorem for bandwidth-limited, 
power-limited Gaussian channels 

 Let Xk, k = 1, 2, …, K, be a cont. rv obtained by uniform sampling of 
the process zero-mean stationary process X(t) at Nyquist rate of 2B 
samp/sec  (i.e. X(t) is bandlimited to B) 
 Samples transmitted in T sec 
 Number of samples:  K = 2BT  

 Input to channel: Xk 
 Power limited:  E[Xk

2] = P 
 P: average transmitted power 

 Channel output, Yk, perturbed by additive white Gaussian noise 
(AWGN) of zero mean and PSD N0/2 
 Noise is bandlimited to B Hz 

 Yk = Xk + Nk,  for k = 1, 2, …, K 
 Noise sample Nk is Gaussian: zero mean and σ2 = N0B variance 

 Yk, ∀k are statistically independent 
 
 

Satisfy the 
requirement that the 
channel is BW- and 
power-limited 
Gaussian 
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Information Capacity 

 Information capacity is defined as 
 
 

 I(Xk;Yk) = h(Yk) – h(Yk|Xk) = h(Yk) – h(Nk) 
 2nd equality true because can be shown that h(Yk|Xk) = h(Nk) 
 Since h(Nk) is indep. of the pdf of Xk, C can be obtained by 

maximizing h(Yk) 
 Can be shown that h(Yk) is maximized iff Yk is Gaussian distributed 

 Since Nk is Gaussian  Xk is also Gaussian 

 Hence, capacity can be reformulated as 
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Information Capacity Theorem 

 Assume channel is used K times for transmission of K 
samples of the process X(t) in T sec 
 Information capacity per unit time is C⋅K/T = C⋅2BT/T = C⋅2B 

 
 

 Information Capacity Theorem:  
The information capacity of a continuous channel of 
bandwidth B Hz, perturbed by additive white Gaussian 
noise of power spectral density N0/2 and limited in 
bandwidth to B, is given by 
 
where P is the average transmitted power 
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Consequence of Information Capacity 
Theorem 
 Dependence of C on channel bandwidth B is 

linear 
 Dependence of C on signal-to-noise ratio P/(N0B) 

is logarithm 
 Easier to increase information capacity of a 

communication channel by expanding its bandwidth 
than increasing the transmitted power for a prescribed 
noise variance 
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Bandwidth-Efficiency Diagram 

 Define an ideal system, i.e. Rb = C 
 Average transmitted power:  P = EbC 

 Eb: transmitted energy/bit 
  Ideal system can then be defined as 

 
 

  Signal energy-per-bit to noise PSD ratio, Eb/N0, can be written as 
 

 
 Rb/B vs. Eb/N0 is called the bandwidth-efficiency diagram 
 Taylor Series expansion: 
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Bandwidth-Efficiency Diagram 

 For infinite bandwidth, Eb/N0 approaches the 
limit value 
 
 
 

 Corresponding limiting value of the channel 
capacity is 
 
 
 

 Capacity boundary: Rb = C 
 Separates combination of system parameters that 

has the potential to support error-free transmission 
(Rb < C) from those that cannot support error-free 
transmission (Rb > C) 

 The diagram highlights trade-offs among Eb/N0, 
Rb/B, and probability of symbol error Pe 
 Movement along a horizontal line as trading Pe vs. 

Eb/N0 for fixed Rb/B (bandwidth-limited system) 
 Vertical movement: trading Pe vs. Rb/B for a fixed 

Eb/N0 (power-limited system) 
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Concluding Remarks 

 Proper modeling of (additive and convolutive) noise (incl. 
interference) is important 
 Probabilistic models are often used 

 Design 
 Optimal design is crucial 

 Many “optimal” designs are not optimal – depends on objective 
 How do we do it?  (We are engineers, this is important!) 

 Statistical signal detection and estimation theory 
 Wiener optimum filter, matched filter, adaptive filter, and many more… 

 Information theory and coding 
 Shannon says it can be done, but didn’t tell us how it can be done 
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