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Signal Retrieval and Communication

Theory of systems for the conveyance of information

Characteristics of communication systems
o Uncertainty
Noise and “information” (deterministic vs. probabilistic)
o Keep in mind: Signal retrieval problem
Communication (only particular type of signal retrieval problem)
o Optimal design is crucial
Many “optimal’ designs are not optimal — depends on objective

o How do we do it? (We are engineers, this is important!)

Statistical signal detection and estimation theory

o Weiner optimum filter, matched filter, adaptive filter, and many more...
Information theory and coding

o Shannon says it can be done, but didn’t tell us how: block, iterative coding, ...

Usually two resources to consider
o Bandwidth vs. Power
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Block Diagram of a Narrowband Digital

Communication System

» Source coding: remove « Ease of radiation
redundancy - increase efficiency Reduce noise and interference

* Channel coding: increase _ Increase BW efficiency: R,/B
redundancy -> protect information Channel assignment

* Internal and external
additive noise
* Convolutive noise

Multiplexing
Source Channel
Source —p Encoder —» Encoder and —» Modulator —» RF
Interleaver
 Remove ISI Channel Source
—» RF —» Equalization —» | Demodulator —» Decoder and —>
: Decoder
Deinterleaver
Synchronization:
’ Carrier & Timing
] ] o e Carrier: Coherent modulation
Keep in mind that this is only a model! requires carrier
* Timing: Need to know when to
Can we make it simpler? More sample to recover digital signal

complicated? Consequences?
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Bandwidth and Power Etticiency

Channel bandwidth and transmit power are two primary
communication resources and have to be used as efficient
as possible
o Spectrum utilization efficiency (bandwidth efficiency)

Measured by the achievable data rate per unit bandwidth R,/B
o Power utilization efficiency (energy efficiency)

Measured by the required E,/N, to achieve a certain bit error probability
It is always desirable to maximize bandwidth at a
minimal required E./N,

o However, in certain scenario, such as space communications, it is
iImportant to achieve high energy efficiency as bandwidth is
abundant, but power is scarce

Discussion shall be restricted to uncoded system
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M-ary Signaling for Bandwidth- vs. Power-
Limited System pany

Bandwidth-limited system

o Spectrally-efficient modulation techniques , ﬂ ﬂ ﬂ ﬂ n n n ﬂ n ﬂ ,
can be used to save bandwidth at the UV VUV VUYY

expense of power, i.e. E,/N,, e.9g. MPSK
AAAAAAMANL ANAAAAAMANN

Power-limited system

o Power-efficient modulation techniques can - U U U U U U U U U U U U U U U U U U U U |

be used to save power at the expense of M

bandwidth, e.g. MFSK AN ARMAAMA A LA RARM ,
g WAL

A symbol in an M-ary alphabet is SHUVUUR

related to a unigue sequence of k bits: _

M = 2X=>» k = log, M, M is the alphabet P amples of digiua) modutatian schemes.
size ASK” (Analogous to AM):

Symbol refers to the member of the M- Xuge (1) = A [L+d (t) |cos (27 ft)
ary alphabet that is transmitted during
each symbol duration T,

PSK”™ (Analogous to PM):

Symbols are then mapped to a voltage Xp (1) = ﬂcos[Zﬂ ft+2d (t)j

of waveform ) 2
Example:M=16: 10111001 FSK™ (Analogous to FM):

= (1011), (1001) € M-tuple Yoo (t):&cos(zﬂmkf j‘d(a)da)

o Each M-tuple is a symbol with length T,
*d(t) isaline code, e.g. NRZ
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M-ary Signaling for Bandwidth- and

Power-Limited System

Channel bandwidth

required to pass M-ary
signals (symbols) Is 5= 2
Note that symbol duration

RIW (bit/s/Hz)

T,=T,log, M
a T, bit duration

efficiency diagram

BW-limited system:
Fixed Pg and B,
E/N,T =2 MT = pl

16|~ Capacity boundary
forwhichR=C
Region for -
: Region f
which R > C.'8 which R < C
* Bandwidth

. limited
BandW'dth' 4+ Pl region

Also date rate R, =
(logzM)/T (logzl\/l)/( Ty
log, M) = 1/T b

Hence B = Ty 1og2M - 102;5314
And bandwidth efficiency

= log2 —bits/s/Hz
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S

&
Shannon M=4 7 ,FPB3
limit — . /4
1 \
I ) Directi_cm of
l /7 improving Pg
] 1 N M;f‘?l ] | | | E3/Np (dB)
20} -1.0 ] 12/13 24 30 36
Note: scale |
change P -~
/s M=4
1/2 —/ IMI= 5 1
mM=8 |
/ .
f Yegend
M =16 /e Coherent MPSK, Pg = 10-5
1,"" B - /
s Noncoherent orthogonal MFSK, Pg = 10-%
Lower
o I:::;Iit:: A Coherent QAM, Pp = 10-5
Pwr-limited system:
Fixed Pg, BT = pd = E,/Nyv
6
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Signal-Space Analysis

m; s:(2) x(1) m’= estimate of  m;

Message ——— Transmitter ——={ Channel ———= Receiver -

source

Block diagram of a generic digital communication system

Source symbols m; from alphabet of M symbols
denoted as m;, m,, ..., my,

pi £ Pr(m;) =2, fori=1,2,..., M.

Transmitter codes m; into a distinct signal s;(t)
suitable for transmission over channel

si(t) occupies for T duration and has finite energy
E; = fOT 52@)

]
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Signal-Space Analysis

Assumptions

o Channel is linear and bandwidth is wide enough to accommodate the
transmit signal s;(t) with little or no distortion

o Channel noise, w(t), is sample function of a zero mean white Gaussian
noise process = makes receiver calculation tractable

Then, the channel is referred to as additive white Gaussian noise
(AWGN) channel, where the output is modeled as

0<t<T,
2(t) = si(t) + wt), { i=1,2.... M
Transmitted Received
signal signal
5;(1) +® x(2)

+

White Gaussian noise

w (1)
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Digital Communications Fundamentals

Geometric Representation of Signals

Represent any set of energy signal
{si(t)} as a linear combination of N
orthonormal basis functions, where N <

M, i.e.

The real-valued basis functions ¢,(t),
o (1), ..., , ¢y(1), are orthonormal, i.e.

/qu-(t)@-(t)dt—é--— bR
o YTl 0, ifi#Ag

where &; Is the Kronecker delta function

& (1)

- : A,
Recall the projection matrix: P = ——.
VARY,

If v is orthonormal(rewrite as q;), then

a:qlﬁ"‘qz Ci;ﬁ-+q3 qgla

analysis analysis analysis
v .
synthesis synthesis synthesis

{Sij }?;1 may naturally be viewed as an
Si1
. . . 842
N-dimensional signal vector, denoted by s; =
SiN
fore=1,2,... .M
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Example: Binary Phase-Shift Keying

(BPSK)

Pair of signals used to
represent binary symbols 1
and O

[2F
s1(t) = - cos(2mf.t)
T,
2F, 2F
sa(t) = 1/ =2 cos(2m fut + ) = —y | =2 cos (2 ft)
VT, V',

Note the orthonormal basis
functions is

2
1(t) = \/T cos(2m fet), for 0 <t < T,
b

si(t) =VEpi(t), 0<t<T,
— { sa(t) = —VEppi(t), 0 <t < Ty

_ ) su= fOTb s1(t)¢1(t)dt = +/Ey
S21 = fOTb s2(t) 1 (t)dt = —V/Ep

Digital Communications Fundamentals

Decision
boundary
|
Regior L Regio
7, 1 7
I
VE, i VE,
- } - b
Message 0] Message :
point | point
2 I 1

V2T, |- V2E,T,
”//\\//\ - ”\/f\\/
—2E,IT, 1~ ' N T

o - Tb = - = = Tb =

Py — 2

Signal-space diagram for coherent binary PSK
system. The waveforms depicting the
transmitted signals s,(t) and s,(t), displayed in
the inserts, assume n_ = 2.
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Geometric Representation of Signals

f

—{x)
=~
:
-

f1()

() 5t
S

f;(\ fOT 1t == SiN I
fl0) fe)
() (b) . . .
(a) Synthesizer for generating the signal s;(t). (b) Analyzer [llustrating the geometric representation of
for generating the set of signal vectors {s;}. signals. N=2,M =3,

Given N elements of the vectors s;, (1.€. S;, Sj,..., Siy) Operating
as Input, can use the synthesizer shown to generate s;(t)
Givensi(t), 1=1, 2, ..., M, can use the analyzer in (b) to obtain
Sit, Sioye--y Sine 1 NIS CcONSISts of a bank of N product-integrators or
correlators
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‘ Geometric Representation of Signals

12 N 1/2 .
e Induced norm of s;: ||s;]| = (s7s;) '~ = (Z: 32-) . fori=1,2,.... M

e Energy of s;(t) can be computed as

7=1 k=1
N N T
=D 3) ST QEALEAY.
j=1 k=1 0
N N N
=D sysudie =)y = llsill’
j=1 k=1 J=1

e Inner product: (s;,s;) = fo si(t)si(t)dt = s!'sy

e Euclidean distance: ||s; — si||” = Z;VZI (5 — s1;)° = fOT (si(t) — sp(t)) dt

sTs
S; Sk
[sillllsl

e Cosine of angle 6;;.: cos;, =
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Gram-Schmidt Orthogonalization/
Orthonormalization

Step 1: Orthonormalize s1(t) to obtain ¢;(¢)

sl

1(t
E;

S—

P1(t) =

ﬁ

Step 2: Project so(t) onto the space spanned by ¢1(t), then subtract from s(¢) and normalize.
The result will be orthonormal to ¢ (t)

Projection: sa1 = (61(£), (1)) = / s5(1)n () dt

Subtraction: go(t) = so(t) — s2101(¢)
92(t) 92() So(l) — sa101(t)

lxO1 [T gt \JIT [52(0) — smon 0] [sa(8) — s2100(0)]

S9(t) — s2101(t)

= (cross terms of denominator = —2s3,)

VvV E2 — 531

Normalization: ¢9(t) =
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Gram-Schmidt Orthogonalization/
Orthonormalization

In general, Pi(t) = %, fori=1,2,...,N
Remarks

o The signals s,(t), s,(t), ..., Sy(t) form a linearly
Independent set, 1.e. k;S,(t) + ...+kySy(t) = 0 1ff kq, ...,
ky, equal 0. Inthat case, N =M

o The signals s,(t), s,(t), ..., Sy(t) do not form a linearly
Independent set, then N <M, and g;(t) =0, fori1 >N
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Statistical Characterization of Correlator
Outputs

Denote X; as the random variable whose sample value is represented by the
correlato? output x;, forj=1,2, ..., N

From AWGN channel model, X(t) Is @ Gaussian process (since W(t) is AWGN)

T T
ai—E[/ Wt(/)~tdt/ Wu.(-5~u)du]

px, = EX;] = Elsij + W]
— s+ E[W,] = 5,5 =F [/ / o () (u)W(t) u)dtdu]
0%, =var [X;] = E [(X; — 5i5)°] / / ¢ (1) d; (u W (u)]dtdu
=L [Wag] ? /’ /
T = Q5j t ¢j R)Rﬂ/(t u)dtdu

with Wé/ W (), (t)dt
T Jo ! N//(bj(tcﬁj 5(t — w)dtdu

N
0/¢ t)dt = —V]

where the expression for R,(t,u) is obtained as the noise is assumed to be WSS and has a
constant PSD Ny/2. The Iast equality is obtained because ¢(t) is orthonormal
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Statistical Characterization of Correlator
Outputs

X; are mutually uncorrelated because ¢(t) form an
orthogonal set:

cov [ X; Xi] (X5 = px,) (X — px, )|

B
E(X; — si) (Xi — si)]
E[W; W]

—EU W (t)o;(t) dt/ W ()i ( )du]
//qu )i (w) Ry (t, w)dtdu
_ Mo / / &, (1) ()3 (t — u)dtdu

—/ ¢;(t)pr(t)dt =0, for j#k

Since X; Is Gaussian r.v., hence, they are also
statlstlcally Independent
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Statistical Characterization of Correlator
Outputs

XN
elements are independent Gaussian rv’s with mean s; and variance Ny/2

Hence, the conditional pdf of X, given that s (t) (or
correspondlng m;) was transmltted can be expressed as the

product of the conditional probablllty density functions of its
Individual elements

x(x|m;) HfX zjm;), fori=1,2,..., M

x and x; are samples values of X and X;

Channel that satisfies the above equation Is called memoryless
channel
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Statistical Characterization of Correlator
Outputs

Since X is Gaussian rv with mean s;; and variance Ny/2, we have

B 1 1 9 j=1,..., N,
ij($j|mi)—WeXP {_ﬁo(%’_sij) ] codor g
So
1 )
fX(X|mz) = (WNO)_N/Q exp [—FO jgl (.ZCJ — 87'3) ] ,fOI' 1= 1, .. .,M

Note that the AWGN channel is equivalent to an N-dimensional vector channel modeled as

x=s;+w, fori=12...,M
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Why do we care about this?

In the context of AWGN channel, the optimal receiver is the ML detector
Design objective: Expected cost E(C) or Bayes' Risk R

A generalization of the minimum P, criterion assigns costs to each
type of error. Let C; be the cost if we decide H; but H; is true.
The expected cost or Bayes risk is

R2E(C)=33C,P(HH,)P(H,)

i=0 j=0
:COOP(H0|HO)P(HO)+C11P(H1|Hl)P(Hl)
+C10P(H1|HO)P(HO)+C01P(HO|Hl)P(Hl)
IfC,=C,=0,C,=C, =1 thenR=P..

Digital Communications Fundamentals http:/ | ewwmw.ee.nctn.edu.tw/ ~cfung
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Bayes’ Risk

Let R, ={x:decide H,} be the critical region and R, = {x: decide H,}

1

RziZCijP(Hi|Hj)P(Hj)
= CyoP (H,|H, ) P(H,)+CyuP(H,|H,)P(H,)
+Cy,P(Hy|Hy ) P(Hy)+CoiP(Ho|H, )P (H,)
:COOP(HO)_[RO p(x|H0)dx+C01P(Hl)jRo p(X|H,)dx

+c10P(HO)jR1 p(X HO)dX+C11P(H1)_[R1 p(X| H, )dx.
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Result: MAP Detector

Assume that C,, > C,,, and C,, > C,,, the detector which minimizes the
Bayes risk is to decide H, if

p(x|H1)>(C10—COO)P(HO):7/

p(X|H0) (Cor —Cui)P(H,)
Since p(x|H; )P(H;,) o p(H;|x)=> the optimal MAP detector is
decide H, if ~ (Cy,—Cy,) p(H,|X)>(Ciy—Cqy) P(Ho|x)
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MI. Detector

P, =Pr{decide H,, H, true} + Pr{decide H,, H, true}
=P (H,|H,)P(H,)+P(HyH,)P(H,)
1FP(Hy)=P(H,)= p
= R =P, =p;| P(H,|H,)+P(H,[H,)|
So the detector that minimizes the P, is the optimal ML detector
Decide H, if

p(H)
p(xH,) 7T

or decide H, if  p(x/H,)> p(x/H,)
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Example

We have the detection problem
H, :x[n]=w[n], n=01...,.N-1
H,:x[n]=A+w[n], n=0,1...,N-1,
where A >0 and w[n] is WGN with variance o*. Assuming p(H, )
= p(H,)=1/2=y=1

Decide H, if

Digital Communications Fundamentals http:/ | ewwmw.ee.nctn.edu.tw/ ~cfung
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Example

Taking log
1 N-1 )
- (—ZAHZ(; x[n]+ NA j >0,
or we decide H, if X > A/ 2.
This has the same form as the NP criterion except for the threshold.
To determine the P,, note that

-

2
N O,%), conditioned on H,

2

N A,%j, conditioned on H,
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Example

What happens when A=1and N =1
H, : x|0] =w]0], n=0,4...,N-1
H,:x[0]=1+w[0], n=0,1...,N-1

= Decide H, if x[0]>1/2

'N(0,0%), conditioned on H,
X[O] ~ <

N(Lo?), conditioned on H,
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Likelihood Functions

The likelihood and log-likelihood (LL) function are
defined as

L(m;) & fx(x|m;), fori=1,2,..., M
[(m;) = log L(m;), fori=1,2,...,M

The LL function for an AWGN channel iIs

N
1
l(ml):—VOZ(QZ’J—SZJ)Q, @:1,2J,A1
j=1

where the constant term —(N/2) log(N,) Is ignored

Receiver will use the LL function to detect the
presence of the transmitted symbol
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Coherent Detection of Signals in Noise:
MAP Decoding

Signal detection problem

o Given the observation vector X, perform a mappmg from x
to an estimate M of the transmitted symbol, m;, in a way that
would minimize the probability of error in the decision
making process

Decision making criterion: minimize probability of

error.  P.(m;|x) = Pr(m; not sent|x) = 1 — Pr(m; sent|x)

Can be shown that the optimum decision rule Is
Pr(m; sent|x) > Pr(my, sent|x),Vk # i

fork =1, ..., M. This is known as maximum a posteriori
probability (MAP) rule
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Coherent Detection of Signals in Noise:

. Decoding

Applying Bayes’ rule, the MAP decision rule becomes

Pefx(X|my) is maximum for k =1
fx(x)

where p, Is the a priori probability of transmitting symbol m,

Assuming p, = p;, for all i, the decision rule becomes the
maximum likelihood rule

Set m = m; if

[(my,) is maximum for k = i

The ML decoder can be used at the receiver to decode the
transmitting symbol

Note that the ML rule applies for all additive noise
o No assumption about its statistical property is made
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Graphical Illustration ot Signal

Constellation

Noise cloud

(a)

Noise
Received  vector
signal point w
Observation

vector Message

point

(P)

[llustrating the effect of noise perturbation, depicted in (a) on the location of the

received signal point, depicted in (b).

Digital Communications Fundamentals

http:/ | ewwmw.ee.nctn.edu.tw/ ~cfung

29



Graphical Interpretation of ML Rule

Let Z denote the N-dimensional space of all
possible observation vectors X. This is known as
observation space. Since the ML rule says @ = m;
,Where1=1, ..., M, the Z is partitioned into M-
decision regions, Z,, Z,, .., Zy.

ML rule can be restated as

Observation vector x lies in region Z; if

[(my,) is maximum for k =i

Digital Communications Fundamentals http:/ | ewwmw.ee.nctn.edu.tw/ ~cfung
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ML, Rule for AWGN

Recall the LL function for AWGN channel is
[(my) ——Z —,skj . k=1,2.....M

So maximum value of I(m,) Is attained when the term in
the sum is minimized by c lEoosmg k=1. So ML rule for
AWGN channel becomes

Observation vector x lies in region Z; if

N
(2; — sk;)° = ||x — s¢” is minimum for k =i

7=1

Note that ||x — s,/| Is the Euclidean distance between

received signal point and message point, represented by x

and s,, respectively
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ML, Rule for AWGN

Note that
N
|x — SkH2 = Z;\T_l (x; — Skj)2 = Zjv_l x? — 2 Zj\r_l TjSkj + Z Sij

——
Ey

ML rule becomes

Observation vector x lies in region Z; if

E TjSp; — —Ek is maximum for k =1

I(m,) is called the likelihood I=
function (LL)

Can deduce from this rule that the decision regions are regions of
the N-dimensional observation space Z, bounded by linear [(N-1)-
dimensional hyperplane] boundaries
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Partition ot Observation Space Into
Decision Reglons

fa
Illustrating the i N
partitioning of the N JEgliessage 7 boundary
observation space into A /

.. . Region - » Region
decision regions for z, N 0 Z
the case when N =2 =T W o

-y - * * f,
and M =4, 1tis —\E . VE
assumed that the M A LN
transmitted symbols y b

. // Message \\
are equally likely. v ~VE ¢ point 4 N Decision
Region boundary
Z4
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‘ Correlation Recetver

Seles!
i reest

> Es1i|:-rll|;hata

- - Inner-product calculator
B ) ] dr b— vy . - - 1
L ¥ o R ::rs. —
¢ [(t) —:—Zh- % —3= Accumulator 1—:—,‘\; —
| -
o) = % — J‘; di == ¥y | Observation o5,
] ¢2|(t) vail‘.or ¥ h—r-:ll: I—Jl- Accumulator —:—'(E :I—il-
ty(0) T )
: : : 52 2k
T
—{ % | Jf N ;
W o — X'sy —
¢'\1 (t) —;—._ijl—:- Accumulator —:—kzl—h-
: I
] u 3 Ey

(b

(a) Detector or demodulator.

T = fOTx(t)qﬁj(t)dt, forj=1,2,....N

(b) Signal transmission decoder.

Observation vector x lies in region Z; if

N
L. . .
;S — — I 18 maximum for £ =1
JR] 2
j=1

Digital Communications Fundamentals http:/ | cwmwm.ee.nctu.edn.tw/ ~cfing

34



Probability of Symbol Error

P. Is a way to evaluate noise performance of receiver

Use Idea of observation space partitioned into M Z

partitions, then an error occurs when x does not fall inside

Z;

Use the idea of union bound to compute the pairwise

probability

o If a data transmission system uses only a pair of signals, s; and s,,
then the pairwise probability Pr(A;) = Pr,(s;,s) Is the probablllty
of the receiver mistaking s, for s; only two signal vectors are

compared)

A, denotes the event that the observation vector x is closer to the signal
vector s, than to s; when the symbol m; (or vector s;) is sent

o depends on only two signal vectors s; and s,
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Union Bound on the P,

Conditional probability of symbol
error when symbol m; is sent,
P.(m;), is equal to the probablllty of
the union of events, A;;, Ap,, ..., A
1 A -0 A
o Ay denotes the event that the
observation vector x is closer to the

signal vector s, than to s; when the
symbol m; (or vector s;) Is sent

o Thisis overbounded by the sum of the
probabilities of the constituent events,
I.e.

. (m;) < PT (Ai), fori=1,2,.... M
k:;éz

o Thatis, shaded area of (a) < sum of
the shaded areas in (b)

Digital Communications Fundamentals

f
\ : y
~\, /’
\\ 5 4 ,f
N, rd
N, 4
N, 7/
N, s
|7
- I“\ - f
S / “ Sy
P ] A Y
s X A Y
I, \\
s %24 N
7’ .
rd .
(a)
f fa f .
y
\\ AS Y 51, ,/
N NN
L \\(

A, N
SN rd £
' Y rd ~
rd f f -

5 Y
5 N // Sy
Y - Fan.:
Y * rs X
Y rs
N S8 /
hY

(b)

[llustrating the union bound, M = 4. s, is
transmitted message point. (a) Constellation
of four message points. (b) Three
constellations with a common message point
and one other message point retained from
the original constellation.
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Union Bound on the P,

PrAy) = Pry(s;,sy)
o depends on only two signal vectors s; and s,

o It’s the pairwise probability

If a data transmission system uses only a pair of signals, s; and s,,
then Pr,(s;,s,) Is the probability of the receiver mistaking s, for s;
(only two signal vectors are compared)

M
P.(m;) < ZPr (Air)
i
M
— ZPT-Q (si;sp), fori=1,2,..., M

(=%
Different from Pr (m = my|m;) . probability of observation vector x is
closer to signal vector s, than every other, when s; (or m,) is sent
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Union Bound on the P,

Decision boundary

o Represented as bisector that
IS perpendicular to the line
joining the points s; and s,

o Assuming m; (or s;) is sent. =
If X lies on the side of the fz
bisector where s, lies, error S
IS made P\

Probability of this event N :

Pry (s;,sx) = Pr(x is closer to sg than s,

when s; is sent)

/'OO 1 ( v? ) p
= —exp (| —— | dv,
Jdp, /2 VTN Ny

dip = ||si — si|

Digital Communications Fundamentals
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Union Bound on the P,

Complementary error function

erfc(u) = % [ exp (—22)dz

Set z = \/T])V_o:
— Pro(s;, s1) = %erfc (2%)
M
:P(m)_%;erfc<2%>,for212 ..... M
kit
Average over M symbols
M
P = sz-P (m;)
;_ZIM M dk
gﬁggmerfe(z\/—o> fori =1,2,..., M
ki
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‘ Union Bound on the P, Special Forms

= If signal constellation is circularly symmetric about the origin, then P,(m;) same for all i

- d
P <= fo [ —= '
6_2;(31"0(2 NO),W

ki

= Define dyy, 2 ming; d;i, Vi and & , and noting that erfc is monotonically decreasing w.r.t. u

dik dmin
fi < erf
e (2W> = ere (QW)

M—1 ;
s P < erfc i
2 2v/ Ny

=  Since erfc is bounded as

f dmin < 1 dI2HiI1
eric — X —_—
0N, ) = r P\ TN,

_p M-t du
©= o x TP\ TN,

= Thatis, P, decreases exponentially as squared minimum distance, d.;,2
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Bit Error Probability (BER)

log, M bits/symbol

Mapping binary to M-ary symbol = M-tuple

o SupposeM=16:1011100 1=>(1011),(1001)
Gray coding

o Adjacent symbols only differ by one bit

logy M
P. = Pr ( U {z’th bit is in error})
=1
logy M %
< Z Pr (z’th bit is in error)
=1

—log, M - (BER)

o Note that P, > Pr(i*" bit is in error) = BER

. Pe
i <BER <P,
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Passband Data Transmission

Data stream is modulated onto carrier with fixed frequency limits imposed by bandpass
channel

Attention given mainly to coherent system

o Carrier phase is sync at Rx

M-ary signaling scheme is used in which M possible signals s,(t), ..., s,,(t), may be sent
during signaling interval T

o M=2"n:#of bits

o Symbol duration: nT,, T,: bit duration

o Signals are generated by changing amplitude, phase, or frequency (or hybrid form of these) of a
sinusoidal carrier in M discrete steps

o Usually more BW efficient than binary signaling
binary: BW Tib
M-ary: BW o -+

?’LTb

Recall that analysis of passband signal can be carried out using its baseband equivalent

Design schemes are different

o Maximum bandwidth efficient p, e.g. by trading off power (more)

o Maximum power efficiency, e.g. by trading off Pg (higher) or bandwidth (more)

o Minimize symbol error (P,) or bit error (Pg), e.g. by trading bandwidth (more) or bit rate R,
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Assumptions on Passband Data

Transmission

M symbols of alphabet are equally likely with probability
p; = Pr(m;) = 1/M, Vi

M-ary output of the message source is injected to the
encoder

o Produces s; (N complex elements)

o Modulator constructs a distinct signal real-valued signal s;(t),
from s;, of duration T seconds with energy

E; = fo s?(t)dt, fori=1,2,..., M

Carrier Is sinusoidal

o Step change (called switching or keying) in amplitude, frequency,
phase, or hybrid form in both amplitude and phase or amplitude
and frequency is used by modulator to distinguish one signal
from another
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Assumptions on Passband Data
Transmission

Bandpass channel assumptions

o Channel is linear, with a bandwidth that is wide enough to
accommodate the transmission of the modulated signal s;(t)
with little or no distortion

o Channel noise w(t) is the sample function of a white
Gaussian noise process of zero mean and PSD N,/2

Receiver
o Consists of symbol detector followed by source decoder
o Reverses operations performed transmitter

o Minimizes the effect of channel noise on the estimate m
computed for the transmitted symbol m,
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Binary Phase-Shift Keying (BPSK)

Pair of signals used to represent binary symbols 1 and

0
s1(t) = UQTEEJ cos(27f.t)
b
sa(t) =4/ QTEZ’ cos(2m fot + ) = —4/ QTEb cos(2m f.t)
b b

E,: transmitted signal energy per bit

f. chosen to be n/T,, where n_ Is integer

o Ensures each transmitted bit contains an integral number of
cycles of the carrier wave

This is antipodal signals
Envelope of signal Is constrained to remain constant
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BPSIK

Decision
boundary

Note the orthonormal S
basis functions Is e

5(n) 51(0)
(bl(t)zw%cos(%rfct), for0<t<T, m—/\ /\ Jm_m\ /\
b

{ Sl(t):\/Ebél(t)? O§t<Tb _42%—;::/ \.j \.} _@T‘: \j \./J

T st = —VEal), 0<t<T, —n— —ni—
su=Jy 51Ot = +VE, _ . .
s = [ sa(t) o (B)dt = —/E, Signal-space diagram for coherent binary PSK

system. The waveforms depicting the
transmitted signals s,(t) and s,(t), displayed in
the inserts, assume 7, = 2.
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P ot BPSK

Decision boundary
o Midpoint of the line joining the two messages s,, and

21
Decision regions

o For symbol 1 (or signal sl(t)'
Z,:0<x, <oo,where =, =[x t)dt
o Conditional probability den3|ty functlon of rv X; given
that symbol 0 (i.e. s,(t)) was transmitted Is

1 1

———exp
VTN lN(}
oo | (4 VE)]
= ex x -
VN, P TN, M b
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P, of BPSK

Conditional probability of the receiver deciding in favor of
symbol 1 given that symbol 0 was transmitted Is

Pio = /OO [x:(21]0)dzy
- ), oo [ (e V) Jan
\/_/E/NoexP 2%) dz (letz— m(fﬂl—l-\/_))

—le'fc E
2NV N,

Due to symmetry, p,; = p,o- Hence, average symbol error
probability (also equal to BER because 1 bit/symbol)

P. = BER = —erfc (\/ﬁ—g)

As symbols 1 and 0 move apart, i.e. E, increases, P, decreases
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M-ary PSK

Phase of carrier takes on one of M possible values, 6
= 2(1-1) M

That Is, during signaling interval T, one of the M
possible signals are

si(t) = \/%cos rft+2(Gi—-1)), i=12,....M
E: signal energy/symbol, f.=n/T for fixed integer n_
Orthonormal basis functions are

2
(;f)l(t):\/?COS(Q’FTfCt%OStST
. /2 . ,
Po(t) = 7 sin(2wf.t),0 <t <T
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P, ot M-ary PSK

M message points are
equally spaced on a circle

Signal-space diagram is of radius v'E and center at
circulary symmetric the origin
o P, is bounded by the union bound %
M dis = ,,.."-":._" e
P, < ;erfc (2\/_0) Vi | e _
ki K \\‘ v
o Assume m, transmitted and E/N, i T W
is large enough to consider the -+ e
nearest two message points i
o Euclidean distance of each these
two points from m, is
dis = dig = 2/ Esin (%) T
o Then average symbol error Signal-space diagram for octaphase-
probability is shift keying (i.e., M = 8), illustrating
[E . /« the application of the union bound for
— P. ~ erfc — sin () ) .
No \M octaphase-shift keying.
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Bandwidth Etficiency of M-ary PSK

Signals

RIW (bit/s/Hz)

BW-limited system:
Fixed Pz and B,
E/N,T 2> MT > pf

= Recall bandwidth
forwhichR=C
1 1 Hegion for ! Regian for
efficiency RS AL
M =64 /
A Ry, _ logogM _ logy M *) Bandwidth-
p= =8 = Z—bits/s/Hz 4 o e
/
4., FB2 @
Shjgnnon Pps
imit
Bandwidth efficiency of M-ary PSK signals \ o f
irection o
M 2 4 8 16 32 64 . M,Q improving Pg
P (bltS/S/HZ) 0.5 1 1.5 2 2.5 3 }‘l _z;o _1]_0 1I2/13 J 1 l Ey/No (dB)
Note: scale
change , \
/7 M=4
: ”2/' "ur)
Bandwidth- | M= 1
ffici di f / Legend
erriciency diagram vl M =16/ e Coherent MPSK, P = 10~
o \ ngr_/ = Noncoherent orthogonal MFSK, Pg = 10-%
P\_/vr—llmlted system: fimited | Coorent QAM, Py = 10°5
Fixed Pg, BT =& pl & E,/N,{ 9

Digital Communications Fundamentals
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Information Theory

Entropy

o Formally defined as the probabilistic behavior of a
source of information

o Randomness of data

Capacity

o Intrinsic ability of a channel to convey information
Noise characteristics of the channel

If entropy of the source Is less than the capacity of
the channel, error-free communication over the
channel can be achieved
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Information

Source output modeled as discrete random variable S,
which takes on symbols from a fixed finite alphabet

o . ={Sp Sy +--» Sk.1.}
o With probabilities P(S=s,) = p,, k=0, 1, ..., K-1
o Constraint K1

Z p =1

o Source symbols are assumed to be statistically independent
Discrete memoryless source

Information defined as I(sk)=log[pij

o Hence, less probability of symbol oécurring, the more
Information it contains when it occurs
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Properties of I(s,)

I(s,) =0, forp, =1
o If we are certain of the outcome of an event, no information is gained
I(S,) >0, for0 <p, <1

o Occurrence of event S = s, provides some or no information, but never brings
about a loss of information

1(s) > 1(sy) , for p, <p;

o Less probable an event is, the more information we gain when it occurs
1(s,s;) = I(s,) + I(s;) If s, and s; are statistically independent

Base of log is arbitrary but usually 2

o Results unit of information is called the bit

ij:—logz(pk), fork=0,1,...,K-1

(5= 1oa[ 3

d pk=1/2, 9 I(Sk):lblt
One bit is the amount of information that we gain when one of two possible and equally
likely events occurs
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o Measures the average information content per source
symbol

o .~ 1s not an argument for H, it’s only a label.

o H only depends on the probabilities of the symbols
In the alphabet .> of the source
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Example: Entropy ot Binary Memoryless

Source

Let symbol 0 occurs with probability p,
Let symbol 1 occurs with probability
P;=1-pg

Source symbols are statistically
independent

Entropy is
H (*// ):_po Iogz Py — P, Iogz P,

=Py Iogz Po _(1_ po)logz (1_ po) bits

|
|
|
|
|
|
Observations 206 :
o When p, =0, entropy =0 = |
Because xlogx > 0asx > 0 0.4 |
o When p, =1, the entropy = 0 ' |
o Entropy attains its maximum value, H, ., = I
1 bit, when p; = py =%, i.e. 1 and O are 0.2 |
equiprobable ' |
Entropy function H(p,) is plotted on the |
right 0 | | 1 | |
o Function of a priori probability p, 0 0.2 040506 08 10
o Notice that H(.>/) gives entropy of a discrete Symbol probability, p,
memoryless source with source alphabet .~
(difference is subtle)
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Example — |

“ntropy of Extended Source

Consider a discrete memoryless source with
alphabet .= {s,, S, S,} With respective
probabilities p,=1/4, p, = 1/4, p, = %

> H() = pl

00,(1/p,) + p4l0g,(1/p,) + p,log,(1/p,)

= (1/4)log,(4) + (1/4)log,(4) + (1/2)log,(2)

= 3/2 bits
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Example — Entropy of Extended Source

Extended source: Each block consists of n successive source symbols

Suppose now that alphabet .~ 2 which consists of 9 symbols { o,
0y, Oy, O3, Oy, O, Og, 0, Og} With the same source alphabet as

before
Alphabet particulars of second-order extension of a discrete memoryless source
Symbols of .#? 00 o1 09 03 04 o5 06 o7 IoF

COI‘I"GSpOIldiIlg sequences SpSg SpS1 SpS2 S150 S1S51 S1S2 S250 S251 S259
of symbols of .

Probability p(a;), 1 -+
i=0,1,....8

H (yQ) = ZP(%‘) log, :

i=0 p(oi)

p—
(@]
—_
(@]
o |=
p—
[=>]
—_
(@]
Q0 |—
Qo=
o |—=
o | =

1 1 1 1
=16 log,(16) + T6 log,(16) + 3 log,(8) + 16 log,(16)
1 1 1 1 1
16 log,(16) + ] log,(8) + ] log,(8) + ] log,(8) + 1 log,(4)
— 3 bits
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Discrete Memoryless Channel

Discrete memoryless channel is a
statistical model with an input X
and an output Y that is a noisy
version of X

o XandYarerv’s

Channel accepts an input symbol X
(from alphabet - 7') and emits an
output symbol Y (from alphabet .»)

Channel is “discrete” when both
alphabets . 7"and .z have finite sizes

Input alphabet

X = {3307331) ceey :CJ—I}
Output alphabet

Y =1{v0,Y1,-- - Yk—1}

Transition probabilities

p(yklx;) = Pr(Y = y| X = x;),Vj and F,
0 <p(ylz;) <1

Digital Communications Fundamentals

wl | X pyly) =y Ly

-1 Yk-1

The channel or transition matrix is

P(yr—1|7o)
P(yr—1]71)

p(y()‘ﬁfn) p(yl |117[))

plyolr)  plnlrr)

P = € R xK

P(?}o|$.f—1) ‘p(‘yl\ﬂf.f—ﬂ P(yh'—1|117,1—1)

and
K- -
Zkzol pylr;) =1,V

Probability distribution
p(x;) = Pr(X=x), forj=0, 1, J-1
Joint probability distribution
PX.Yi) = PriY =y, [X=x;)Pr(X=x;) = p(yu[X;)p(X=X;)
Marginal pdf Y
plyr) = Pr(Y = y)

J—1

= plyklz;)p(x;), for k=0,1,..., K — 1
=0

http:/ | ewwmw.ee.nctn.edu.tw/ ~cfung 59



Mutual Information

H( 7"): entropy of input

o Represents uncertainty about — 1
channel input before observing H(Z'IY = y) = 3 pla;ly) log, [p(g;ﬂyk,)]
channel output =0

H(.7 |.#): conditional entropy

o Represents uncertainty about
channel input after observing
channel output

H(Z|%) = By [H(ZY = yi)]

=

H(Z'Y = y)p(yr)

k=0
): mutual information = ;; > Pl (o) logs [p(wk)]
o Represent uncertainty about o ﬂil
channel input that is resolved by _ p(2;,90) log, [;]
observing the channel output k=0 j=0 p(z;lyk)

Similarly I1(.7;.7") =H(.~)-
H(.~ | 7)
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Channel Capacity

7. 7)=H(7)-H( 7| #), using the equation of H(. 7~
) and H( 7|z ) and using the fact that p(x;|y,)/p(x;) =
p(ydx)/p(y) (Bayes’ rule)

I(7;.7"): measure of

K1 J-1 ) _ uncertainty about the
2,%) = p(x;, yi) log, p(;lyr) channel input that is

== | p(;) | resolved by observing
K—1J-1 ] - channel output

— p(x;, yr) log, P(yxl7;) =¥, 2)>0 * I(.7";-7): measure of

0 j=0 | p(yr) uncertainty about the

channel output that is

NOte th at \ resolved by sending the

p(xj, yk) = p(ylz;)p(z;) channel input

» Cannot lose information by
= p(yrlz;)p(z;) observing output of channel

o Ml depends not only on channel, but also on the input pdf p(x;)
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Channel Capacity

Since channel is not dependent of Input, define

capacity of channel as

C 2 max I(2;%)
{p(z;)}

s.t. p(x;) > 0,V9

> plr) =1
measured In bits/channel use, or bits/transmission
o Depends only on transition probabilities p(y,|x;)
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‘ Example: Binary Symmetric Channel

= Special case of discrete
memoryless channel

= Input
o0 X=0,x,=1
= Output
3 ¥%=0,y;=1
n D>J=K=2
= Note that
p(@j, yi) = plyrlz;)p(a;)
= p(yolzo)p(zo) = p(infx1)p(21) = %
— plyole1)p(ar) = plurlao)plae) = &
=
plyr) = ZP(QH%)P(%)
= p(y) = p(y) = 1_Tp+g=%

Xg = 0 — Yo = 0

xp =1 =1
1 1-p

Transition probability diagram of
binary symmetric channel.

Transition probability matrix
p _ | P(wolze) p(yrlzo) ] _ { l-p p ]
p(yolz1 plyr|21) p l-p
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Example: Binary Symmetric Channel

K-1.J-1
P(ykl'j)]
C 2 max I(2;%) = max plx;,ye) lo [
{p(z;)} (#59) {p(z;)} ;; (%5, 91) log; P(Yi)

s.t.p(x;) > 0,V

Z_:P(i‘j) =1

j=0

Since I(.7;.2)=H(7)-H(7].#), maximum
can be achieved by maximizing H( -

o This happens when p(Xx,) = p(x,) = %2

)

p(yk‘l'j)_
p(yr)

P(ﬂfj; ’yk) log, [

m&zu—pn+2-§m@2m

= (1—p) [logy 2 + logy(1 — p)] + p [logy 2 + log, p]
=1+ (1 —p)logy(1 —p) + plogyp
=1—H(p) <
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Example: Binary Symmetric Channel

C varies with probability of
error (transition probability) p in
a convex manner

o Symmetric around p = 1/2

When channel is noise free, p =
0, = Cis maximum with 1
bit/channel use (equals to the
Information in each channel
Input)
o Coincide with minimum value of
H(p), which equals O |
When p =% due to noise, the 0 L0 HO
channel capacity C attains its o e
minimum value of zero Variation of channel capacity of a binary
. Coincide with maximum value of symmetric chann(_el_with transition
H(p), which equals 1 probapility p
Channel is useless in this case
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Channel-Coding Theorem: Channel
Coding

Channel encoder

o Introduce redundancy to increase
probability that the original source
sequence can be reconstructed

o Dual of source coding

Reduces redundancy to improve

Discrete Discrete

transmission efficiency memoryless e memoryess Channel Destination
Assume block codes are used, I
I.e. message sequence is divided
Into block of k bits Iong, each k- Block diagram of digital communication system.

bit block is mapped into an n-bit
block, with n >k

o Redundant bits added n-k
Define code rate: r = k/n

Capacity-Coding Theorem
Includes the notion of time
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Channel-Coding Theorem for Discrete
Memoryless Channel

Let a discrete memoryless source with an alphabet .-~ have
entropy H(."/) and produce symbols every T, sec. Leta

discrete memoryless channel have capacity C be used once
every T.sec. If
H(S) < C

TS _ T(:
there exists a coding scheme for which the source output can be
transmitted over the channel and be reconstructed with an
arbitrary small probability of error. C/T. is called the critical

rate (in bits/sec).

Conversely, if ()

Ts

It Is not possible to transmit information over the channel and
reconstruct it with an arbitrarily small probability of error

H(7) - ) .
% is known as the average information rate of the source
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Channel-Coding Theorem

Theorem does not show us how to construct a
good code. It is simply an existence proof In that
It tells us that If the average information rate Is
less than the critical rate, then good codes do exist

Theorem also does not provide precise result for
the probability of symbol error after decoding the
channel output. It does tell us the probability of
symbol error tends to zero as the Iength of the
code increases, provided that 22 < £
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Ditterential Entropy

Consider a continuous rv X with the probability density function f,(x).
Differential entropy of X is defined as

f fx(z)log, [ G )} dx

It’s “differential” because it’s measured based on a reference lim,, .,
log, Ax. To see this
o Since discrete RV x, = kAx, fork =0, 1, 2, ..., and Ax approaches zero

o Thatis, X assumes a value in the interval [xk, X, + AX] with probability f,(x,) Ax
as AX approachlng to zero

)
fx(zp) Az
= hm |:Z fx(x)log, (ﬁ) Az —log, Adr;fx(xk)A

: X | |
- / fta)tos, (fx(ﬁ?)) dz = lim log, Afj fx(x) da

= h(X)r— lim log, A’LI Goes to oo, SO measure

V. Az2l " ' H(X) based on reference
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Ditterential Entropy

Extension to X = [X,, X,, ..., X ]". Differential
entropy Is defined as the n-fold integral

h(X) 2 [, fx(x)log, | 7k | dx

Consequences on dealing with cont. rv:
differential entropy can be negative
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Mutual Information (Cont. RV)

Mutual information between rv’s X and Y IS

defined as

I(X;Y) //ny (z,y)log, {fj;&'))} dxdy

Properties of Ml

1 1OKY) = 1(Y;X)

2. 10X;Y) >0

s 10X;Y) = h(X) = h(X]Y) = h(Y) = h(Y|X)
Conditional differential entropy

) = [ [ rerteanion | iy | st
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Information Capacity

Like to formulate information capacity theorem for bandwidth-limited,
power-limited Gaussian channels

Let X,, k=1, 2, ..., K, be a cont. rv obtained by uniform sampling of
the process zero-mean stationary process X(t) at Nyquist rate of 2B
samp/sec (i.e. X(t) is bandlimited to B)

o Samples transmitted in T sec Satisfy the
o =»Number of samples: K =2BT requirement that the

. channel is BW- and
Input to cha_nnel. X, vower-limited
o Power limited: E[X,2] =P Gaussian
o P:average transmitted power
Channel output, Y,, perturbed by additive white Gaussian noise
(AWGN) of zero mean and PSD N,/2

o Noise is bandlimited to B Hz
Y =X+ N, fork=1,2 ...,K
Noise sample N, is Gaussian: zero mean and o = N,B variance

o Y, Vk are statistically independent
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Information Capacity 2 et ions [ ] s

Ix(x)

f fx(x)log, [ X(x)} dx

Information capacity is defined as

C £ max I(X;;Y})

Ix, (@)

st. E[X;] =P

1(Xi; Y1) = h(Y) = h(Y, X, ) = h(Y,) —h(N,)
o 2"d equality true because can be shown that h(Y,|X,) = h(N,)
o Since h(N,) is indep. of the pdf of X,, C can be obtained by

maximizing h(Y,)
Can be shown that h(Y,) is maximized iff Y, is Gaussian distributed

0 Since N, is Gaussian =» X, is also Gaussian

Hence, capacity can be reformulated as
C = I(Xg; Yz)
with X, Gaussian, E[X}] = P
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Information Capacity Theorem

Assume channel Is used K times for transmission of K
samples of the process X(t) in T sec

o Information capacity per unit time is C-K/T = C-2BT/T = C-2B

C = Blog, (1 ) bits per sec

+ NoB
Information Capacity Theorem:

The information capacity of a continuous channel of
bandwidth B Hz, perturbed by additive white Gaussian

noise of power spectral density N,/2 and limited in
bandwidth to B, Is given by

C' = Blog, (1 + N.B
where P Is the average transmitted power
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Consequence of Information Capacity
Theorem

Dependence of C on channel bandwidth B Is
linear

Dependence of C on signal-to-noise ratio P/(N,B)
IS logarithm

o Easler to increase information capacity of a
communication channel by expanding its bandwidth
than increasing the transmitted power for a prescribed
noise variance
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Bandwidth-Efticiency Diagram

Define an ideal system, i.e. R, =C

o Average transmitted power: P =E,C
E,: transmitted energy/bit

o =¥ ldeal system can then be defined as
¢ = log, (1 + Ebc)

o =>» Signal energy-per-bit to noise PSD ratio, E./N,, can be written as
B, 298 -1

Ny C'/B
R,/B vs. E./N, s called the bandwidth-efficiency diagram
Taylor Series expansion:

20/3 — e(C/B)an ~ 1 i %1112

C/B P P P
Als =In|(1 ~ = (U= —logye
0 Tog, ”( * NUB) NoB N, 52°¢
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Bandwidth-Efticiency Diagram

For infinite bandwidth, E,/N, approaches the 30p
limit value
BY _ o B l+gh2-1 Ol Regon for which
No). Bos N, B OB ;
=n2=0.693 < —1.6 dB 10 Capacity boundary
Corresponding limiting value of the channel - for which R, = C
capacity is [
Cy = lim C - |
B—oo || Region for which
= —logye 9 i R,<C
Ny ° ki
Capacity boundary: R, = C 5
o Separates combination of system parameters that 5 s
has the potential to support error-free transmission Z o ' ‘ | ' |
(R, < C) from those that cannot support error-free 5 B 6 12 18 24 30 36
transmission (R, > C) | b gp
The diagram highlights trade-offs among E,/N,, L] Shannon °
R,/B, and probability of symbol error P, L
o Movement along a horizontal line as trading P, vs. L }
E,/N, for fixed R,/B (bandwidth-limited system) |
o Vertical movement: trading P, vs. R,/B for a fixed r |
E,/N, (power-limited system) |
0.1k
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Concluding Remarks

Proper modeling of (additive and convolutive) noise (incl.
Interference) Is important
o Probabilistic models are often used
Design
o Optimal design is crucial
Many “optimal” designs are not optimal — depends on objective

o How do we do it? (We are engineers, this is important!)

Statistical signal detection and estimation theory
0 Wiener optimum filter, matched filter, adaptive filter, and many more...

Information theory and coding
0 Shannon says it can be done, but didn’t tell us how it can be done
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