Digital Signal Processing Final Exam

Spring, 2004

$$H(z) = \frac{(1+0.5z^{-1})(1-0.5z^{-1})(1+5z^{-1})}{(1+4z^{-1})}$$

Problem Set I: Assume this is a causal system.

- (a) Find the impulse response h[n] of this system. (3 pts)
- (b) Find the frequency response $H(e^{jw})$ of this system. (3 pts)
- (c) Draw a direct form II implementation of this system. (3 pts)
- (d) Find the system function of a causal, BIBO-stable system, which has the same magnitude function as H(z).(3 pts)

Problem Set II: Assume this is a BIBO stable system.

- (e) Find the impulse response h[n] of this system. (3 pts)
- (f) Find the frequency response $H(e^{jw})$ of this system. (3 pts)
- (g) Assume the input is $x[n] = (0.5)^n u[n]$. Find the output y[n]. (3 pts)
- (h) Assume there is another system $H_1(z)$, whose impulse response is defined as $h_1[n] = \cos(\alpha n)h[n]$. Could you find a proper range of α such that $H_1(z)$ is a minimum-phase system? (3 pts)
- (i) Assume there is another system H₂(z), whose impulse response is defined as h₂[n] = (α)ⁿ h[n]. Could you find a proper range of α such that H₂(z) is a minimum-phase system?
 (3 pts)

(24%) 2. Consider the following system.

Assume $X(j\Omega) = \Lambda(\frac{\Omega}{100\pi})$ and $H(e^{jw}) = \begin{cases} 1 & 0 \le |\omega| \le 0.5\pi \\ 0 & 0.5\pi \le |\omega| \le \pi \end{cases}$.

- (a) If $T_1 = 0.01$, $T_2 = 0.01$, L = 2, and M = 3, find the spectrums of x[n], p[n], q[n], y[n], and y(t). (12 pts)
- (b) If $T_1 = 0.015$, $T_2 = 0.015$, L = 3, and M = 2, find the spectrums of x[n], p[n], q[n], y[n], and y(t). (12 pts)

(24%) 3. Assume the 8-point DFT's of $x_1[n]$ and $x_2[n]$ are expressed as

$$X_{1}[k] = \begin{cases} 5-k & 0 \le k \le 5\\ 0 & \text{otherwise} \end{cases} \text{ and } X_{2}[k] = \begin{cases} k & 0 \le k \le 5\\ 0 & \text{otherwise} \end{cases}$$
(a) Is x₁[n] a real-valued sequence? Why? (6 pts)
(b) Find the relationship between x₁[n] and x₂[n]. (6 pts)
(c) If x₃[n] is defined as $x_{3}[n] = x_{1}[n]x_{2}[n]$, find the 8-point DFT of x₃[n]. (6 pts)
(d) In terms of x₁[n] and x₂[n], can you find a sequence x₄[n] whose 8-point DFT is
 $X_{4}[k] = \begin{cases} 5-k & 0 \le k \le 4\\ k-3 & 5 \le k \le 7 \end{cases}$. (6 pts)

(25%) 4. An optimal equiripple FIR **Type-IV** linear-phase filter was designed by the Parks-McClellan algorithm. The magnitude response is shown as below.

- (a) What is the length of the impulse response of the system? (6 pts)
- (b) If this system is causal, what is the smallest delay that it can have? (6 pts)

(6 pts)

- (c) Draw roughly the pole-zero plot of this system.
- (d) How can you convert the above system to a low-pass system whose magnitude response is as shown below? (7 pts)

