Final Exam Topics

- 1) Discrete-Time Signals: Sequence
 - Memoryless, LTI, Causality, BIBO Stability
 - Properties of LTI
 - Linear difference equations
 - Eigenfunctions for LTI Systems
 - Transform domain representation: DTFT
 - Properties of the DTFT: linearity, Time/Frequency shifting, time reversal, differentiation in frequency, Parseval's theorem, convolution theorem, modulation/windowing theorem
 - Symmetry properties of DTFT
 - Common DTFT pairs
- 2) *z*-Transform
 - Region of convergence
 - Common z-transform pairs
 - Properties of ROC for the z-transform
 - Pole location and time-domain behavior for causal signals
 - Inverse *z*-transform
 - table lookup or inspection
 - partial fraction expansion
 - power series expansion
 - *z*-transform properties: linearity, time shifting, multiplication by an exponential sequence, differentiation, conjugation of a complex sequence, time reversal, convolution, initial value theorem, final value theorem
 - Solving linear difference equations
- 3) Sampling of Continuous-Time Signals
 - Periodic sampling
 - Frequency-domain representation of sampling
 - Nyquist sampling theorem: $\Omega_s \geq 2\Omega_N$
 - Reconstruction of bandlimited signal from its samples
 - Discrete-time processing of continuous-time signals
 - Continuous-time processing of discrete-time signals
 - Change of sampling rate using discrete-time processing
 - Integer factor
 - Non-integer factor
 - Digital processing of analog signal
- 4) Transform Analysis of LTI Systems
 - Frequency response LTI systems
 - Magnitude, phase, and group delay
 - System functions for systems characterized by linear constant-coefficient difference equations
 - Frequency response for rational system functions
 - single zero or pole
 - second-order IIR
 - second-order FIR
 - Relationship between magnitude and phase
 - If H(z) is causal and stable, then all its poles are inside the unit circle
 - Allpass systems
 - phase of allpass systems is non-positive for $0 \le \omega < \pi$

- Poles and zeros form conjugate reciprocal pair
- Minimum phase system
 - system factorization: $H(z) = H_{min}(z)H_{ap}(z)$
 - stable and causal inverse systems
 - minimum phase lag, minimum group delay, minimum energy-delay properties
 - maximum phase system all zeros outside the unit circle
- Generalized linear phase
 - symmetry: even and odd order
 - antisymmetry: even and odd order
- Causal generalized linear phase FIR systems

 - even order: $H(e^{j\omega}) = A_e(e^{j\omega}) e^{\frac{-j\omega M}{2}}$, $A_e(e^{j\omega})$ is even and real odd order: $H(e^{j\omega}) = A_o(e^{j\omega}) e^{\frac{-j\omega M+j\pi}{2}}$, $A_o(e^{j\omega})$ is odd and real
 - Type I IV systems
 - zeros form reciprocal pair: $z_0 = re^{j\theta} \Longrightarrow z_0^{-1} = r^{-1}e^{-j\theta}$
 - for real h[n], zeros come in conjugate pairs: $z_0^* = re^{-j\theta} \Longrightarrow (z_0^*)^{-1} = r^{-1}e^{j\theta}$
- Linear system factorization: $H_{linp}(z) = H_{min}(z)H_{uc}(z)H_{max}(z)$
- 5) Structures For Discrete-Time Systems
 - Basic Structures for IIR Systems
 - Direct Form I and II
 - Cascade Form
 - Parallel Form
 - Transpose Form
 - Basic Structure for FIR Systems
 - Direct Form
 - Cascade Form
 - Linear Phase FIR Systems
 - Type I, II, III and IV
 - Effects of Coefficient Quantization
 - effect of poles/zeros location
 - reducing quantization effect by using cascade and parallel structures
- 6) Filter Design Techniques
 - Analog design techniques for IIR filter design
 - Butterworth, Chebyshev I and II, Elliptic
 - * impulse Invariance
 - * bilinear Transform
 - FIR filter design using windowing techniques
 - Rectangular (boxcar), Barlett (triangular), Hanning, Hamming, Blackman
 - Kaiser
 - * trade-off between mainlobe width and sidelobe attenuation
 - optimization technique
 - * least-squares criterion
 - minimax criterion
 - * Least-squares filter design
 - * Filter design via linear programming
 - comparison between IIR and FIR filters
- 7) Discrete Fourier Transform
 - Discrete Fourier Series (DFS)
 - Sampling of the unit circle

- DFT
 - properties of DFS and DFT
- circular convolution
- linear convolution using DFT
- block convolution
 - overlap-add
 - overlap-save
 - * vector-matrix equation
 - * interblock interference
 - * diagonalization of circulant matrices
- 8) Computation of the DFT: Fast Fourier Transform (FFT)
 - Decimation-in-time (radix-2)
 - Decimation-in-frequency (radix-2)
 - in-place computation, storage, access
 - Cooley-Tukey algorithm (Composite N algorithm)
 - inverse DFT