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History

 Before 1950’s: analog signals/systems
 1950’s: Digital computer
 1960’s: Fast Fourier Transform (FFT) (turning 

point)
 1980’s: Real-time VLSI digital signal processor
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Typical Digital Signal Processing System

H1(s)

Equivalent 
analog filter

H2(s)A/D D/ADigital 
filter

x(t) y(t)

x(t) y(t)
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Discrete-Time Signals: Sequences

 Continuous-time signal
 Defined along a continuum of time: x(t)

 Continuous-time system
 Operates on and produces continuous-time signals

 Discrete-time signal
 Defined at discrete “times”, i.e. x[n] contains a sequence of numbers
 Anything in between the discrete times is undefined

 Discrete-time system
 Operates on and produces discrete-time signals

 Digital signals usually refer to the quantized discrete-time signals, i.e. 
the amplitude is only defined for certain values
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Sampling

 Very often, x[n] is obtained by sampling x(t)
 x[n] = x(nT), T: sampling period

 T is often not important in the discrete-time signal analysis 
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Unit Sample Sequence

 Unit sample sequence 
(Kronecker delta function)

It is often called the discrete-
time impulse or simply 
impulse (some books call it 
unit pulse sequence)
 Different from Dirac delta 

function, i.e. δ[0] is well-
defined.

[ ] 1, 0
0, 0

n
n

n
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Unit Step Sequence

 Unit step sequence

 Unlike u(t), u(0) is well-
defined

 Also,

[ ] 1, 0,
0, 0
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Exponential Sequence

 Exponential sequence

 Combining basic sequences

[ ] nx n Aα=

n
0

A

[ ]

[ ] [ ]

, 0,
0, 0

is equivalent to 

n

n

A n
x n
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Complex Exponential Sequences

[ ]
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Sinusoidal Sequences

 Sinusoidal sequences

 A: amplitude, ω0=2πf0, φ: phase
 It can be viewed as a sampled continuous-time sinusoidal.
 Condition for being periodic with period N, i.e. x[n] = 

x[n+N], that is,

 Or ω0(n+N) = ω0n + 2πk, where k, n are integers.  k is a 
fixed number while -∞ <n<∞ is a running index

[ ] ( )0cos ,    for all x n A n nω φ= +

( ) ( )( )0 0cos cosA n A n Nω φ ω φ+ = + +

0 0
22 kN k
N
πω π ω→ = → =
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Periodicity of  Sinusoidal Sequences

 Consider

N = 8 since x[n+8] = cos(π(n+8)/4) = cos(πn/4+2π) = x[n]
 Increasing the frequency of a DT sequence does not necessarily decrease the 

period of the signal.
Consider

which has higher frequency than x1[n].  However, it is not periodic with N = 8 
because x2[n+8] = cos(3π(n+8)/8)=cos(3πn/8 + 3π) = -x2[n].  N=16 is the 
period

 Some sinusoid sequences are not even periodic.  Consider

where x3[n+N] ≠ x3[n] for all N.
 All these problems are caused by the integer restriction on n, so that the 

discrete-time sequences are defined only for integer indices n.

[ ] ( )1 cos / 4x n nπ=

[ ] ( )2 cos 3 / 8x n nπ=

[ ] ( )3 cosx n n=
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Distinguishable Frequencies

 Since

and

are indistinguishable, therefore,

are indistinguishable.  From this, we see that there will be a total of N
distinguishable frequencies for which the corresponding sequences are 
periodic with period N.  One set is when k = 0, 1, …, N-1.  This is 
crucial in understanding complex exponential and sinusoidal sequences, 
which are also used in discrete-time Fourier analysis (shown later)

0
2 ,k
N
πω =

0 0 and 2 rω ω π+

0
2 and 2k r
N
πω π+
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Ambiguity of  Sinusoidal Sequences

 One discrete-time sinusoid corresponds to 
multiple continuous-time sinusoids of different 
frequencies

 Typically, we pick up the lowest frequency (r = 0) 
under the assumption that the original continuous-
time sinusoidal has a limited frequency value, 0 ≤
ω0 ≤ 2π

[ ] ( ) ( )( )0 0cos cos 2 ,   ,

where  is any integer

x n A n A r n n

r

ω φ ω π φ= + = + + ∀
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Low and High Frequency

 Consider the analog signal

As Ω0 increases, x(t) oscillates more and more rapidly.
 Consider the discrete-time signal

As ω0 increases from 0 to π, x[n] oscillates more and 
more rapidly.  But as it increases from π to 2π, the 
oscillations become slower.
 ω0  = (π + 2πk) for any integer k is referred to as high frequency
 ω0  = 2πk for any integer k is referred to as low frequency

( ) ( )0cosx t A t φ= Ω +

[ ] ( )0cosx n A nω φ= +
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Discrete Systems

 A discrete-time system is defined mathematically 
as a transformation or operator that maps an input 
sequence with values of x[n] into an output 
sequence with values y[n]

[ ] [ ]{ }y n T x n=
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Ideal Delay

[ ] [ ],   ,
where  is a fixed positive integer called the delay of the system.

d
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0
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Memoryless, and Linear 

 Memoryless
 If the output y[n] at every value of n depends only on 

the input x[n] at the same value of n
 Linear: has to satisfy the principle of 

superposition
 Additivity: T{x1[n]+x2[n]} = T{x1[n]}+T{x2[n]}
 Scaling: T{ax[n]} = aT{x[n]}
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Time/Shift Invariant

 A time shift or delay of the input sequence causes 
a corresponding shift in the output sequence
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Shift-Invariant Example

21

[ ] [ ]1) y n x nα=

[ ] [ ]2)  ,  where  is a constanty n x n c c= +
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 Causality
 For any n0, the output sequence value at the index n = 

n0 depends only on the input sequence values for n ≤ 
n0, i.e. output of a causal system does not depend on 
future values of the input

 BIBO Stability
 If and only if every bounded input sequence produces a 

bounded output sequence.
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BIBO Stability Examples

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]
[ ]( )

1) 

Given .  Then
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Linear Time-Invariant (LTI) Systems

 A linear time-invariant system is completely 
characterized by its impulse response.
 Sequence as a sum of delayed impulses

 An LTI system due to δ[n] as an input, i.e.

 From the above, we have

 Convolution sum

[ ] [ ] [ ]
m

x n x m n mδ= −∑

[ ] [ ] [ ] [ ]  yields    (impulse response)x n n y n h nδ= =

[ ] [ ] [ ] [ ] [ ] [ ]  yields  
m m

x n x m n m y n x m h n mδ= − = −∑ ∑

[ ] [ ] [ ] [ ] [ ]3 1 2 1 2*
m

f n f m f n m f n f n= − =∑
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Procedure of  Convolution

1) Time reverse: h[m]  h[-m]
2) Choose as n value
3) Shift h[-m] by n: h[n-m]
4) Multiplication: x[n] h[n-m]
5) Summation over m:

6) Choose another n value, go to Step 3)
[ ] [ ] [ ] 

m
y n x m h n m= −∑
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Convolution Example

[ ] [ ] [ ] [ ] [ ]1Determine  for 2   and  .
2

n

y n x n u n h n u n = − + =  
 
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Convolution Using Matrices and 
Vectors

[ ]

Suppose 3 and 4 :
[0] [0] 0 0 0
[1] [1] [0] 0 0 [0]
[2] [2] [1] [0] 0 [1]
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[5] 0 0 0 [2]
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Properties of  LTI Systems

 Commutative
 x[n]*h[n] = h[n]*x[n]

 Distributive
 x[n]*(h1[n]+h2[n]) = x[n]*h1[n]+ x[n]*h2[n]

 Cascade connection
 h[n] = h1[n] * h2[n]

 Parallel connection
 h[n] = h1[n] + h2[n]

 BIBO stability
 If h[n] is absolutely summable, i.e.

 Causal system
 h[n]  = 0, for n<0

 Memoryless LTI
 h[n] = kδ[n]

[ ] h
k

h k B= < ∞∑
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Frequently Used Systems

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
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1 2
1 2
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Ideal Delay
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1 , 11             

1
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M M
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=−∞

= − ⇒ = −

 − ≤ ≤ + += ⇒ = − + +
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Different Types of  LTI Systems

 Finite-duration impulse response (FIR)
 Its impulse response has only a finite number of non-zero 

samples
 Always stable

 Infinite-duration impulse response (IIR)
 Its impulse response is infinite in duration

 Inverse system
 System g[n] is the inverse of h[n]: h[n]*g[n] = δ[n]

h[n] g[n]x[n] y[n]



Linear Constant-Coefficient 
Difference Equation
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 When 0, 

 ,  

0 

 

 

n n

n n

n

y n a c a K n

y n a c n

n
y n a c Ka u n

x

n

K n

+

+

+⇒ =

= + ≥

= ≤ −

• = −

•

+

⇒

= =

∀

[ ]

[ ] [ ]

1

0

    This is the homogeneous solution.
 For system to be linear, output should be zero when input is zero  (you can try this

   yourself).   Hence, this system is not linear
 When ,   

ny n a c

x n K n n yδ

+⇒ =

•

• = − [ ] [ ] [ ]01
0 0

     system is also not time-invariant

n nnn a c Ka u n n y n n−+= + − ≠ −

⇒



Linear Constant-Coefficient Diff  Eqn

EEEC20034: Intro. to Digital Signal 
Processing 37

[ ] [ ]

 Note that for LCCDE, with additional condition that the system is linear, time-invariant
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Summary of  Linear Constant-Coefficient 
Diff  Eqn
 Output for a given input is not unique.  Auxiliary 

conditions are required
 If aux. info is in the form of N sequential values of 

the output, later values can be obtained by 
rearranging the diff eqn as a recursive relation 
running forward in n, and prior values can be 
obtained by rearranging the diff eqn as a recursive 
relation running backward in n

 Linearity, time invariance, causality of the system 
will depend on the aux. conds.  If an additional 
condition is that the system is initially at rest, then the 
system will be linear, time invariant, and causal
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<




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0 0
                                             [ ] [ ]                 (*)

In Ex. 2. 1 in (*).  Suppose 0, no recursion is required 
to use the difference

16, we had assumed that 
 eq

N M

k m
k m

N N

a y n k b x n m
= =

≥ =

− = −∑ ∑

[ ]

[ ] [ ] [ ]

0

0
0 0

0
                                  

uation to compute the output, and so no

      

 auxiliary conditions
are requires.  (*) becom

          [ ].

es

, 0
,  tLet [e  ]h n

n

M
k

k

M
k

k

by x n kn

b
a

b n
n

ax n n h n k
a

δ δ

=

=

= −

= −= =
≤ ≤

∑

∑
,

0, otherwise.
This is a causal finite impulse response (FIR) system and its output can be computed
nonrecursively

M


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Eigenfunction

Consider
LTI, h[n]x[n] y[n]

[ ] [ ]

[ ] [ ]0

Let .  What is ?  What is the relation to eigenvalues and eigenvectors?

In general, let .  What is ?

n

j

j

nx n e

x n e y n

y nω φ

ω

+=

=
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[ ] ( ) [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

( )

0 0

0 0

0

1 2 1 2

cos  is LTI.
2 2

,   ,    
2 2

Let .  Suppose system 

 *  *

Compute total response in terms of amplitude  and c

 

os

j n j nj j

j n j nj j

A Ax n A n e e e e h n

A Ay n e e n y n e e n y n y n y

A

h nh

ω ωφ φ

ω ωφ φ

ω φ − −

− −

= + = +

= = ⇒ = +

⋅
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Discrete-Time Fourier Transform (DTFT)

 Main idea: Decomposing a signal into its sinusoidal 
components

 A specific case of projection of vectors.
 Sinusoidal/exponential functions (of different ω’s) form the basis 

vectors. 
 Signal to be decomposed is the vector

( ) [ ]

[ ] ( )

Analysis:  

1Synthesis: 
2

j j n

n

j j n

X e x n e

x n X e e d

ω ω

π ω ω

ω π
ω

π

−

=−

=

=

∑

∫

0j ne

1j ne

2j ne

( )0jX e ( )1jX e

( )2jX e

  

1 1 2 2 3 3
analysis analysis analysis

synthesis synthesis synthesis

Recall the projection matrix: .

If  is orthonormal(rewrite as ), then
                                  

H

H

i
H H H

=

= + +

vvP
v v

v q
a q q a q q a q q a
  
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DTFT

 Fourier transform is also called Fourier spectrum
 Magnitude spectrum: |X(ejω)|
 Phase spectrum: ∠X(ejω)
 X(ejω) is continuous in ω
 X(ejω) is periodic with period 2π
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DTFT Example

( ) ( )
0 0

1     if 1  or  1.
1

nj n j n j

n n

j
j

X e a e ae

ae a
ae

ω ω ω

ω
ω

∞ ∞
− −

= =

−
−

= =

= < <
−

∑ ∑

[ ] [ ]Compute the Fourier transform of nx n a u n=

( ) ( )
0 0 0

The last equality is obtained because for the series to converge, i.e.

,  therefore, 1

or 1 is sufficient.

n n nj j j j

n n n

j

ae ae ae ae

a e

ω ω ω ω

ω

∞ ∞ ∞
− − − −

= = =

≤ ≤ < ∞ <

< =

∑ ∑ ∑
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Convergence of  the DTFT

 Not all sequences have DTFT.  If the sequence satisfy the following 2 conditions, 
then the sequence will have a DTFT

1) Absolutely summable sequence

[ ]        (uniform convergence)
n

x n < ∞∑

( ) [ ]

[ ]

[ ]      (since 1)

<

j j n

n

j n

n

j n

n

X e x n e

x n e

x n e

ω ω

ω

ω

−

−

−

=

≤

= =

∞

∑

∑

∑

It is clear from the example in the last slide that as long as |a|<1, then x[n] = 
anu[n] is absolutely summable.  In fact,

[ ]Therefore,  is sufficient condition to guarantee that the Fourier transform exists (converges)
n

x n < ∞∑
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Convergence of  DTFT

 All finite sequences are absolutely summable
 Absolute summability guarantees uniform 

convergence of the Fourier transform
 If a sequence is not absolutely summable, the 

Fourier transform can still be written under a 
more relaxed condition of mean-square 
convergence
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Convergence of  DTFT

2) If the sequence is square-summable, i.e.

then the sequence will have mean-square 
convergence.  Let

2[ ] ,
n

x n < ∞∑

( ) [ ]

( ) [ ]

,j j n

n
M

j j n
M

n M

X e x n e

X e x n e

ω ω

ω ω

−

−

=−

=

=

∑

∑

[ ]

( ) ( ) 2

The mean-square convergence of the corresponding sequence, ,  can then be written as

                                      lim 0j j
MM

x n

X e X e d
π

ω ω

ω π

ω
→∞

=−

− =∫
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Example of  Mean-Square Convergence

( )

Let the frequency response of an ideal lowpass filter be

1,            ,
                 

0,      ,

then the impulse response is

cj
p

c

H e ω ω ω
ω ω π

 <=  < ≤

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2
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2
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[ ]
( )

Note that  is not absolutely summable because the sequence approaches 0 as

sin10, but only at a rate of .  Therefore,  does not converge

uniformly for all 's.  However, evaluating 

p

c j n

n
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h n

n
n e

n n
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ωω
π

ω
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( ) ,  where it is equal toje ω
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∫

( ) ( )
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shows that  does not approach  due to the oscillation around .

sin
Therefore, it is indeed true that  does not converge uniformly.  

However,                  lim

j j
M c

c j n

n

j j
MM

H e H e

n
e

n

H e H e d

ω ω

ω

ω ω

ω

ω

ω
π

ω

−

→∞
=

−

∑

[ ]
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Thus,  is square summable.ph n

π

π−
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Gibbs Phenomenon
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DTFT of  Special Functions
[ ]
[ ]

( )

0
0

Impulse:
                                     

Constant:
                                 

1

                                    

1 2      (This is a periodic i2 mpulse train

          

j n

r

n

n n e

r

ω

δ

δ

πδ ω π

−

↔

− ↔

↔ +∑
                                                                 using Dirac delta function)

Note:  This sequence is neither absolutely nor square summable.  However, it is
possible and useful to define the Fourier transform of the sequence to be the
periodic impulse train.  The impulses here are functions of a continuous variable
and therefore are of "infinite height, zero width, and unit area", cons

( )

( )

[ ]

istent with
the fact that 2 2  does not converge.  The Fourier transform is

justisfied in principle because substitution of 2 2  into the synthesis

equation leads to 1.

r

r

r

r

x n

πδ ω π

πδ ω π
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+

=

∑

∑
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DTFT of  Special Functions

( )0

0

0

Complex exponential:
                                                        

Note:  This is a more general example of the above.  Assumes that .  Using the synthesis equation 

2 2j n

r
e rω πδ ω ω

π ω π

π

− < <

↔ − −∑

[ ] ( )

0 0

0

0

of the
DTFT, we can write

1                                                        2
2
1                                                               2

2
For 0,  this re

j n
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x n e d

e e

π
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π

ω ω

πδ ω ω ω
π

π
π
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−

= −

= =

=

∫

[ ]

( ) ( ) ( )0 0 0

duces back to 1 (the example above).

Cosine sequence:

                                                       cos 2 2

Unit step:

                                      

j j

k

x n

n e k e kθ θω θ π δ ω ω π δ ω ω π−
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 + ↔ − + + + + ∑

[ ] ( )             1 2    
1 j

r
u n r

e ω π δ ω π−↔ + +
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DTFT of  Special Functions

[ ]
( )

( )

0

0
0

In summary, when sequences  such as  is not absolutely sumable nor square summable,

and  is not finite for all ,  the statement

                                    2
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j n

j

j n j n
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x n e

X e

e e k

ω

ω

ω ω

ω

δ ω ω π= − +∑
e interpreted in a special way using generalized functions.  Using this, we can extend the

concept of a Fourier transform representation to the class of sequences that can be expressed as
a sum of discr

[ ]

( ) ( )

ete frequency components, such as
                                    ,   for - .
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is a consistent Fourier transform representat
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Symmetry Properties of  the DTFT

 Any (complex) x[n] can be decomposed into
x[n] = xe[n] + xo[n]

where
xe[n] = (x[n] + x*[-n])/2 is the conjugate symmetric part
xo[n] = (x[n] - x*[-n])/2 is the conjugate antisymmetric 
part
Remark: x[n] is conjugate symmetric if x[n] = x*[-n]

x[n] is conjugate antisymmetric if x[n] = -x*[-n]
 On the other hand,

X(ejω) = Re{X(ejω)} + jIm{X(ejω)}
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Symmetry Properties of  the DTFT

 xe[n]  Re{X(ejω)},  xo[n]  jIm{X(ejω)}
Similarly, X(ejω) can be decomposed into

X(ejω) = Xe(ejω) + Xo(ejω)
where Xe(ejω) is the conjugate symmetric part and

Xo(ejω) is the conjugate antisymmetric part
 Re{x[n]}  Xe(ejω),   jIm{x[n]}  Xo(ejω)

Special case 1: If x[n] is real, then X(ejω) is conjugate 
symmetric (magnitude is even, phase is odd)
Special case 2: If x[n] is conjugate symmetric, then X(ejω) 
is real. 



EEEC20034: Intro. to Digital Signal 
Processing 58



EEEC20034: Intro. to Digital Signal 
Processing 59

[ ] [ ] ( ) 1 ,  if 1
1

n j
jx n a u n X e a

ae
ω

ω−= ⇔ = <
−

( ) ( )
( ) ( ) ( ) ( )

*

2 2

                                                                Property 7:  

1 cos sinProperty 8:                 Property 9:  
1 2 cos 1 2 cos

Property 

j j

j j j j
R R I I

X e X e

a aX e X e X e X e
a a a a

ω ω

ω ω ω ωω ω
ω ω

−

− −

=

− −
= = = = −

+ − + −

( )
( )

( ) ( ) ( )1
1/ 22

1 sin10:       Property 11:  tan
1 cos1 2 cos

j j j jaX e X e X e X e
aa a

ω ω ω ωω
ωω

− − −− = = ∠ = = −∠ − + −



EEEC20034: Intro. to Digital Signal 
Processing 60

Fourier Transform Theorems
[ ] ( ) [ ] ( )

[ ] [ ] ( ) ( )

Linearity:
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Fourier Transform Theorem

[ ] ( ) [ ] ( )
[ ] [ ] ( ) ( )

Convolution:
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