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History

Before 1950’s: analog signals/systems
1950’s: Digital computer

1960’s: Fast Fourier Transform (FFT) (turning
point)
1980’s: Real-time VLSI digital signal processor
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Typical Digital Signal Processing System

X(t) = Hs) > AD [ [;'I?t'etf' > DIA [ Hys) —»Y(b)

—

X(t) —»! Equival_ent > y(t)
analog filter
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Discrete-Time Signals: Sequences

Continuous-time signal

o Defined along a continuum of time: x(t)

Continuous-time system

o Operates on and produces continuous-time signals

Discrete-time signal

o Defined at discrete “times”, i.e. X[n] contains a sequence of numbers
o Anything in between the discrete times is undefined

Discrete-time system

o Operates on and produces discrete-time signals

Digital signals usually refer to the quantized discrete-time signals, i.e.
the amplitude is only defined for certain values

/\L/= |HI|’...| |
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Sampling

Very often, x[n] Is obtained by sampling x(t)
o X[n] =x(nT), T: sampling period
T is often not important in the discrete-time signal analysis
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Unit Sample Sequence

Unit sample sequence
(Kronecker delta function)
1, n=0

5[n]:{o, n+0

1
It is often called the discrete- o o oo o
time impulse or simply Al

Impulse (some books call it ’
unit pulse sequence)
o Different from Dirac delta

function, i.e. J[0] is well-

defined.
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Unit Step Sequence

Unit step sequence

OIS A

n<0
o Unlike u(t), u(0) is well-
defined
o Also,

uln] :25[n—k],

s[n]=ul[n]-u[n-1]
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Exponential Sequence

Exponential sequence
x[n]=Ada"

o Combining basic sequences

Aa", n>0,
X[n]: 0 n<o0

is equivalent to x[n] = Aa"u[n]
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Complex Exponential Sequences

magnitude

x[n]=Aa", where A=|Ale”, and a =|ale'®.

Hence,

x[n] =|Al|a[" e/

_IA a”cos(won+¢)+ j‘AHa‘”sin(a}On+¢)
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Sinusoidal Sequences

Sinusoidal sequences
x[n]= Acos(aw,n+¢), foralln
A: amplitude, wy=27f,, ¢: phase

It can be viewed as a sampled continuous-time sinusoidal.

Condition for being periodic with period N, i.e. X[n] =
X[n+N], that is,

Acos(wgn +¢) = Acos(a, (n+N)+¢)

Or ay(n+N) = wyn + 27K, where k, n are integers. kis a
fixed number while -co <n<wis a running index

— aw, N =27rk—>a)0=2—ﬂk
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Periodicity of Sinusoidal Sequences

Consider

X, [n]=cos(zn/4)
N = 8 since X[n+8] = cos(x(n+8)/4) = cos(zan/4+27x) = x[n]
Increasing the frequency of a DT sequence does not necessarily decrease the
period of the signal.
Consider
X,|n]=cos(37zn/8)

which has higher frequency than x,[n]. However, it is not periodic with N = 8
becaudse X,[n+8] = cos(34(n+8)/8)=cos(32n/8 + 37;) = -X,[n]. N=16is the
perio

Some sinusoid sequences are not even periodic. Consider
X,[n]=cos(n)

where x;[n+N] = x;[n] for all N.

All these problems are caused by the integer restriction on n, so that the
discrete-time sequences are defined only for integer indices n.
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Distinguishable Frequencies

Since 2 7k
“IN
and

w, and o, + 27
are indistinguishable, therefore,

@, and 2T7Zk+27rr

are indistinguishable. From this, we see that there will be a total of N
distinguishable frequencies for which the corresponding sequences are
periodic with period N. One setiswhenk =0, 1, ..., N-1. This s
crucial in understanding complex exponential and sinusoidal sequences,
which are also used in discrete-time Fourier analysis (shown later)
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Ambiguity of Sinusoidal Sequences

One discrete-time sinusoid corresponds to
multiple continuous-time sinusoids of different
frequencies

x[n] = Acos(w,n+¢) = Acos((a, +2zT)n+4), ¥n,
where r IS any integer

Typically, we pick up the lowest frequency (r = 0)
under the assumption that the original continuous-
time sinusoidal has a limited frequency value, 0 <
Wy <27
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Low and High Frequency

Consider the analog signal

X(t) = Acos(Q,t+¢)
As (2 increases, X(t) oscillates more and more rapidly.
Consider the discrete-time signal

x[n]= Acos(w,n+¢)
As a, Increases from 0 to 7, x[n] oscillates more and

more rapidly. But as it increases from zto 27, the
oscillations become slower.

0 oy = (7 + 27K) for any Integer k is referred to as high frequency
0w, = 27K for any integer Kk is referred to as low frequency

EEEC20034: Intro. to Digital Signal
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Discrete Systems

A discrete-time system Is defined mathematically
as a transformation or operator that maps an input
sequence with values of x[n] Into an output
sequence with values y[n]

y[n]=T {x[n]}

' EEEC20034: Intro. to Digital Signal
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Ideal Delay

y[n]=x[n-n,], —o<n<oo,
where n, is a fixed positive integer called the delay of the system.

- - 0
x[0] 0]
Given the input vector x =| x[1] | , Dx = <[] is a delayed signal vector,
.0
where D= | O
0
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Moving Average

M,

1
n| = x[n—k
yIn] M1+M2+1K_ZM1[ ]

(X[n+M, ]+ x[n+M, =1]+---+x[n]+X[n=1]+---+x[n=M,])

s ol
TN

o n=7
Figure 2,7 Sequence values involved in computing a causal moving average.

M+ M, 11

x[]

The system computes the nth sample of the output sequence as the average of (Ml +M, +1)
samples of the input sequence around the nth sample. The figure shows an input sequence
plotted as a function of a dummy index k and the samples involved in the computation of
the output sample y[n] forn=7, M, =0, M, =5. The output sample y[7] is equal to
one-sixth of the sum of all the samples between the vertical dotted lines. To compute y[8]
both dotted lines would move one sample to the right

= EEEC20034: Intro. to Digital Signal
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Memoryless, and Linear

Memoryless

o If the output y[n] at every value of n depends only on
the input x[n] at the same value of n

Linear: has to satisfy the principle of

superposition

o Additivity: T{x,[n]+x,[n]} = T{X,[n]}+T{x,[n]}

o Scaling: T{ax[n]} = aT{x[n]}

' EEEC20034: Intro. to Digital Signal
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Time/Shift Invariant

A time shift or delay of the input sequence causes
a corresponding shift in the output sequence

X[n]

EEEC20034: Intro. to Digital Signal
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‘ Shift-Invariant Example

1) y[n]=x[an]

2) y|[n]=x[n]+c, where c is a constant

EEEC20034: Intro. to Digital Signal
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Causality

o For any n,, the output sequence value at the index n =
n, depends only on the input sequence values for n <
n,, 1.€. output of a causal system does not depend on
future values of the input

BIBO Stability

o If and only If every bounded input sequence produces a
bounded output sequence.

. EEEC20034: Intro. to Digital Signal
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BIBO Stability Examples

1) y[n]=nx[n]
Given |x[n]|<B,. Then
T(x[n])‘:‘nx[n]‘s\on[n]‘znBX

As N — oo, ‘T (x[n])‘ will be unbounded, therefore, the system is not BIBO stable

2) y[n]=x[Mn]

Given |x[n] <B,. Then

T (x[n])‘ =|x[Mn] <B,

The inequality is true because x| Mn] is equal to x[n], but only retaining every M™ sample.

Therefore, the system is BIBO stable

EEEC20034: Intro. to Digital Signal
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Linear Time-Invariant (I.TT) Systems

A linear time-invariant system is completely
characterized by its impulse response.

o Seqguence as a sum of delayed impulses
x[n]= > x[m][n—m]
o An LTI system due to J[n] as an input, i.e.
x[n]=¢[n] yields y[n]=h[n] (impulse response)
o From the above, we have

x[n]=> x[m]5[n—m] yields y[n]=> x[m]h[n—m]
Convolution stim '

f,[n]= Zm: f,[m]f,[n—m]= f [n]*f,[n]

EEEC20034: Intro. to Digital Signal
Processing
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Procedure of Convolution

Time reverse: hfm] = h[-m]

Choose as n value

Shift h[-m] by n: h[n-m]

Multiplication: x[n] h[n-m]

Summation over m:
y[n]=2_x[m]h[n—m]

Choose another n vaniue, go to Step 3)

EEEC20034: Intro. to Digital Signal

Processin
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hiln]

x_g[m] =x[-2}5[n + 2] yoln] =x-2a[n + 2]

I valn) = x{0}n[n]

M

x3ln] = x{3]5{n - 3] yaln] = x[3}[a - 3]

3 3

xln] = x_5[n] + xgln] + x5ln] ¥la] = y_glnl + woln] + yalnl

"

Figure 2.8 Representation of the output of a linear time-invariant system as the
superposition of responses to individual samples of the input.
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‘ Convolution Example

Determine y[n| for x[n]=u[-n+2] and h[n]:(%jnu[n].

EEEC20034: Intro. to Digital Signal
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Convolution Using Matrices and

x[0] |
X[1]
x[2]

X[3].

<Yy =HXx

Suppose we are only interested in a single output sample,

=h(n

Vectors

Suppose L, =3and L =4:

y[o]] [h[0] 0O 0 0 ]

y[I1| | h[] hjo] 0 0 |[

y[2]| |h[2] h[] h[0] O

yi31| | 0 h[2] h[ h[0]

y[4] 0 0 h2] hQj ||

'y[51] | 0 0 0 h[2]
y(n)
where

EEEC20034: Intro. to Digital Signal
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h=[h[0] h[1] - h[L,-1]]

x(n)=x[n] x[n-1] - x[n—LX+l]]T
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Properties ot LT1 Systems

Commutative

o X[n]*h[n] = h[n]*X[n]

Distributive

a  x[n]*(h,[n]+h,[n]) = x[n]*h,[n]+ x[n]*h,[n]
Cascade connection

o h[n] =hy[n] * hy[n]

Parallel connection

o h[n] =hy[n] + hy[n]

BIBO stability

o If h[n] is absolutely summable, i.e. 2. |n[k]|=B, <o
Causal system ‘

o h[n] =0, for n<0

Memoryless LTI

2 h[n] = kd[n]

EEEC20034: Intro. to Digital Signal
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Frequently Used Systems

Ideal Delay
h[n]=6[n-n,] = y[n]=x[n—n,]

Moving Average

1

, —M,.<n<M M,

h[n]{Ml+M2+1 ' * = y[n]= 1 > x[n-kK]

_ M, +M,+1,
0, otherwise '

Accumulator

n

h[n]=u[n] = y[n]= 2 x[K]

k=—o0

EEEC20034: Intro. to Digital Signal
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Ditterent Types of LTI Systems

Finite-duration impulse response (FIR)

o Its impulse response has only a finite number of non-zero
samples

o Always stable

Infinite-duration impulse response (IIR)

o Its impulse response is infinite in duration
Inverse system

o System g[n] is the inverse of h[n]: h[n]*g[n] = J[n]

x[n]=» h[n] =¥ g —»YIn

EEEC20034: Intro. to Digital Signal
Processing
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ILinear Constant-Coetficient
Ditterence Equation

¢ Analogous to LCCDE
> a,y{n-k1= 20,
= ay[n-1)+ (1]
o [N]

e Homogeneous equation: Z a, y[n—-k]=0 (x[n]=0)

k=0

e E.g. first-order system:  y[n]
[n]+y

e General solution: y[n]=y

N N
Family of soln: 'y, [n]=) A,z Why? Substitute y, [n] into > a,y[n—k] =0 gives us
m=1 k=0

iakiﬁ\nz;"‘ :ZN:Aﬂzgleakz;k =0 = ZN:akzr;k =0
k=0 m=1 k=0
N

This shows y, [n] = ZAnz assume that all N roots of polynomial Zak are distinct.

m=1 k=0
Have N undetermined coefficients. (Multiple roots is considered in Prob. 2.38)

EEEC20034: Intro. to Digital Signal
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ILinear Constant-Coetficient
Ditterence Equation

>,y -K1=> b,x[n-m] *

N

< y[n]= Z—y[n k]+Z—x[n k] (**)

k_1o k00

Ifx[n], y[-1], y[-2]...., y[-N], are specified, then y[0] can be determined from
(**). Then withy[0],y[-1],..., y[-N +1], then y[1] can be found. This is a recursion

To gety[n] for n <—N assuming y[-1], y[-2],..., y[-N] are available, can rearrange

N 1

(*) into y[n-N]= Z—y[n k]+Z—x[n k] (***)

k=0 Ay k=0 Ay

so that y[-N —1], y[-N —2],... can be computed recursively

EEEC20034: Intro. to Digital Signal
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Ex 2.16: Recursively Computing Solution
ot Diftf Egn

Suppose y[n]|=ay[n—1]+x[n], x[n]=K&[n], where K is an arbitrary number, and
y[-1]=c. Then

y[0]=ay[-1]+x[0]=ac+ K& [0]=ac+K
y[1]=ay[0]+x[1]=a’c+aK + K& [1]=a’c+aK

y[2]=ay[1]+x[2]=a’c+a’K
y
=

3]=ay[2]+x[3]=a’c+a’K

y[n]=a""c+a"K, forn>0

EEEC20034: Intro. to Digital Signal
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Ex 2.16: Recursively Computing Solution
ot Diftf Egn

To obtain y[-2], y[-3],..., we need to set N =1 in (***). Express the diff. eqn as

y[n—l]:—kzo(;gy[n k]+ :E:] (Frxx)

Fromy[n|=ay[n-1]+x|n] < y|[n]-ay[n-1]=x[n] = &,=1a =-a. Then
]

(****) becomes  y[n-1 =—_iay[n]+_iaX[n]=a‘l(v[n]-x[”])

-2]=a(y[-1]-x[-1])=a"c (n=-1)
-3]=a(y[-2]-x[-2])=a"c (n=-2)
—4]=a"(y[-3]-x[-3])=a"c (n=-3)
n-1]=a"c = y[n|]=a"c, for n<-1

EEEC20034: Intro. to Digital Signal
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Ex 2.16: Recursively Computing Solution
ot Diftf Egn

y[n]=a""c+a"K, forn>0
y[n]=a
= y[n]=a""c+Ka"u[n], V¥n

n+1

C, for n<-1

e Note we computed solution forward and backward in time, starting with n=-1
— procedure is noncausal

e WhenK =0, x[n]=0 = y[n]=a""c This is the homogeneous solution.

e For system to be linear, output should be zero when input is zero (you can try this
yourself). Hence, this system is not linear

e When x[n]=Ké&[n—-n,], y[n]=a""c+Ka"™u[n—n,]=y[n-n,]
= system is also not time-invariant

EEEC20034: Intro. to Digital Signal
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Linear Constant-Coetficient Ditt Eqn

¢ Note that for LCCDE, with additional condition that the system is linear, time-invariant
and causal, the solution is unique.

e If the auxiliary conditions (e.g. y[—1], y[-2]) are stated as initial-rest condition, i.e. If
input x[n] =0 for n less than some time n,, then the output y[n] Is constrained to be zero
N M
for n<n,. This allows us to use (**) Zi y[n—k]= Zb—k x[n—k] to obtain y[n],
k=1 %o k=0 &

n>n,

EEEC20034: Intro. to Digital Signal
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Summary of Linear Constant-Coetticient
Ditt Eqgn

Output for a given input is not unique. Auxiliary
conditions are required

If aux. info Is In the form of N sequential values of
the output, later values can be obtained by
rearranging the diff eqn as a recursive relation
running forward in n, and prior values can be
obtained by rearranging the diff eqn as a recursive
relation running backward in n

Linearity, time invariance, causality of the system
will depend on the aux. conds. If an additional
condition is that the system is initially at rest, then the
system will be linear, time invariant, and causal

' EEEC20034: Intro. to Digital Signal
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Linear Constant-Coetficient Ditt Eqn

Consider Ex. 2.16, with x|n] = K&[n], buty[-1]=0 (NOT c anymore)

Old solution: y[n]=a""c+Ka"u[n], ¥n

Now:

y
y
y

0]=a-y[0-1]+x][0]=K
1]=a-y[1-1]+x[1]]=Ka+0=aK

2]=ay[2-1]+x[2] = Ka®

= New solution: y[n]=Ka"u[n]

This implies also that the impulse response h[n|=a"u[n] (h[n]=0 forn<0). This s

consistent with the causality imposed by the assumption of initial rest

EEEC20034: Intro. to Digital Signal
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Linear Constant-Coetficient Ditt Eqn

If x|n]=K&[n—n,], with y[-1] =0, following the same procedure:
y[0]=a-y[0-1]+x[0]=0
n,|=a-y[n, —1]+x[n,]=0+K

y
y[n, +1]=a-y[n, |+ x[n, +1] =aK
y

n,+2]=a-y[n, +1]+x[n, +2] =a’K

= y[n]=Ka"™u[n—-n,]
So, thismeans y[n, —1]=---=y[n,—N]=0if x[n]=0 forn<n,

EEEC20034: Intro. to Digital Signal
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Linear Constant-Coetficient Ditt Eqn

> a,y[n k1= b,x[n-m] *

In EX. 2.16, we had assumed that N >1in (*). Suppose N =0, no recursion is required
to use the difference equation to compute the output, and so no auxiliary conditions

are requires. (*) becomes

y[n]=3 21—k
M b b—” 0<n<M
Letx[n]=6[n], thenh[n]=> Lsn-kl=4a,

0, otherwise.
This is a causal finite impulse response (FIR) system and its output can be computed
nonrecursively

EEEC20034: Intro. to Digital Signal
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Figenfunction

Consider

x[n] —» LThhIl Ly yin]

Let x[n]=e"". Whatisy[n]? What is the relation to eigenvalues and eigenvectors?

In general, let x[n]=¢'*"**. What is y[n]?

EEEC20034: Intro. to Digital Signal
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Figenfunction Example

Let x[n]= Acos(w,n+¢)= ge"“’one” +§e“'“’°”e‘j"’. Suppose system h[n] is LTI.

A jopn A A —JogNA—j¢ %
yl[n]:Ee“"0 e *h[n], yz[n]:ze o™ % h[n], = y[n]=y,[n]+Y,[n]

Compute total response in terms of amplitude A and cos(-)

EEEC20034: Intro. to Digital Signal
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Discrete-Time Fourter Transtform (DTEFT)

Main idea: Decomposing a signal into its sinusoidal
COMPONENTS  Analysis: X (e!)=>" x[n]e”"

Synthesis: x[n] = Zir X (e)e dw
P P

o Aspecific case of projection of vectors.

Sinusoidal/exponential functions (of different @’s) form the basis
vectors.

Signal to be decomposed is the vector

H
Recall the projection matrix: P =

viv'

If v is orthonormal(rewrite as g, ), then _
_q oM H I X (e”)
a_ql ql a+q2 q2a+q3 q3a
— — —— .
analysis analysis analysis jon
N S e — — e

synthesis synthesis synthesis

EEEC20034: Intro. to Digital Signal
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DTFT

Fourier transform Is also called Fourier spectrum
Magnitude spectrum: |X(e!%)|

Phase spectrum: £X(e!®)

X(e'?) is continuous in @

X(e)?) is periodic with period 27

EEEC20034: Intro. to Digital Signal
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DTFT Example

Compute the Fourier transform of x[n| =a"u[n]

X(e)=Jate =3 (ae )

n=0
B 1
1—ae™ @

if ‘ae‘j”‘<1 or |a|<1.

The last equality is obtained because for the series to converge, i.e.

CS)

n=0

> (ee ) <

n=0

<Z‘ae ‘”‘ < oo, therefore, ‘ae "‘" <1

or |a| < ‘e"‘" =1 is sufficient.

EEEC20034: Intro. to Digital Signal
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Convergence of the DTFT

Not all sequences have DTFT. If the sequence satisfy the following 2 conditions,
then the sequence will have a DTFT

Absolutely summable sequence

Z‘x[n]‘ <o  (uniform convergence)

It is clear from the example in the last slide that as long as |a|<1, then x[n] =
a"u[n] is absolutely summable. In fact,

‘X (e) :‘Zx:n:ej‘”"
n
sZ‘x:n:He‘j“’”
n

- Z‘x n‘ (since ‘e‘j“’”
n

=1

<00

Therefore, Z‘x[n]‘ < oo 1S sufficient condition to guarantee that the Fourier transform exists (converges)

EEEC20034: Intro. to Digital Signal
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Convergence of DTEFT

All finite sequences are absolutely summable

Absolute summability guarantees uniform
convergence of the Fourier transform

If a sequence is not absolutely summable, the
Fourier transform can still be written under a
more relaxed condition of mean-square
convergence

EEEC20034: Intro. to Digital Signal
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Convergence of DTEFT

If the sequence Is square-summable, I.e.

> XIn]|" <o,
then the sequence will have mean-square

convergence. Let
X (&)= x[n]e" ",

n
M

Xy (€)= x[n]e

n=-M

The mean-square convergence of the corresponding sequence, x[n], can then be written as

lim __T_ ‘X (ej“’)—XM (ej“’)

= EEEC20034: Intro. to Digital Signal
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Example of Mean-Square Convergence

Let the frequency response of an ideal lowpass filter be

oy |1 M4<a%,
FMKGJ)_{Q a%<kﬂsﬂ,

then the impulse response is

1 e jon
hgp [n] = E-’.—wc eJ do

_ 1_ glon|™
27 |n %
— l. (eja)cn _e_ja’cn)
27 |n
sin(aw.n
= (.n) -0 < N < oo,
n

EEEC20034: Intro. to Digital Signal
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Note that h, | [n] Is not absolutely summable because the sequence approaches 0 as
sin(a,n)

7N

1 _
n— 0, but only at a rate of —. Therefore, Z e 1" does not converge

N
uniformly for all w's. However, evaluating H,, ("), where it is equal to

1 e Sin[(2M +1)(0-0)/2]
2z Loc sin (0-6)]/2

shows that H,, (') does not approach H (e*”) due to the oscillation around a,.

L sin(w.n) . _
Therefore, it is indeed true that Z ( - )e"“’” does not converge uniformly.
~ 7n
~ . 2
: jo\ jo _
However, lim | ‘H(e )-Hy (") dw=0.

Thus, h, [n] is square summable.

EEEC20034: Intro. to Digital Signal
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‘ (Gibbs Phenomenon

Hy ey, M =1 Hyy(el®), M =3
N N N

~t

/ \ ~ \ -
- —tw, 0 W, \1_1'_ N -, 0 @, N T ow
(a) (b)
Hy (™), M =7 Hy(e?®), M =19
Jlr\ ™ = ﬂ rll o NN P Y Aﬂ
LN = T e \ I"ACE S A Y
=, P / P = = P . \ o -
—7~ V-, 0 .V “rme -wm @ V-w 0 oVl mw
(©) (d)

Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at
w = w, 1S 0ften called the Gibbs phenomenon.
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DTFT ot Special Functions

Impulse:
s[nje1
S[n—-ny] e

—joong

Constant:
1> ) 275(w+2xr) (This is a periodic impulse train

using Dirac delta function)
Note: This sequence is neither absolutely nor square summable. However, it is
possible and useful to define the Fourier transform of the sequence to be the
periodic impulse train. The impulses here are functions of a continuous variable
and therefore are of "infinite height, zero width, and unit area", consistent with

the fact that »_ 275 (w+ 271 does not converge. The Fourier transform is
justisfied in principle because substitution of » 275 (@ + 27r) into the synthesis

equation leads to x[n]=1.
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‘ DTFT ot Special Functions

Complex exponential:
' > > 275 (w— w, — 27T)

Note: This is a more general example of the above. Assumes that —z < @, < 7. Using the synthesis equation of the
DTFT, we can write

x[n] :i I 275 (0 -, )e*"dw
_ L oqpian _glan
2r

For @, =0, this reduces back to x[n]=1 (the example above).

Cosine sequence:
cos(ayn+0) > > 7| e’5 (-, +27K)+e 5 (w+ my +27K) |

k

Unit step:

u[n]«

o +7Z'Z5(a)+272'r)
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DTFT ot Special Functions

In summary, when sequences x[n] such as /™" is not absolutely sumable nor square summable,
Is not finite for all w, the statement

D el*el = §(w—aw, +27k)

must be interpreted in a special way using generalized functions. Using this, we can extend the
concept of a Fourier transform representation to the class of sequences that can be expressed as
a sum of discrete frequency components, such as

and ‘X (ej“’)

=Y ae"™", for -oo<n<oo,

Then
(e‘”) ZZZﬂéa) W, —27r)

is a consistent Fourier transform representation of x| n Z a e,
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Symmetry Properties of the DTTFT

Any (complex) x[n] can be decomposed into
X[n] = %,[n] + x,[n]
where
X.[n] = (X[n] + x"[-n])/2 is the conjugate symmetric part

X,[N] = (X[n] - X"[-n])/2 is the conjugate antisymmetric
part

Remark: x[n] is conjugate symmetric if x[n] = x"[-n]
x[n] is conjugate antisymmetric if x[n] = -x"[-n]
On the other hand,
X(e'?) = Re{X(e!*)} + jim{X(e)*)}
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Symmetry Properties of the DTTFT

X[n] & Re{X(e1“)}, X,[n] < jim{X(el“)}
Similarly, X(e/¢) can be decomposed into
X(e19) = X (el?) + X (el)

where X (e/¢) is the conjugate symmetric part and

X,(e'9) is the conjugate antisymmetric part
Re{x[n]} < Xc(e1°), jim{X[n]} & X (el)
Special case 1: If x[n] is real, then X(e/%) is conjugate
symmetric (magnitude Is even, phase is odd)

Special case 2: If x[n] is conjugate symmetric, then X(e!®)
IS real.
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TABLE2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Transform
x[n] X(e/®)
1. x*[n] X*(e™/®)
2. x*[—n] X*(e/®)
3. Relx[n]} X(e/”) (conjugate-symmetric part of X (e/®))
4. jTmix[n]} Xo(e/”) (conjugate-antisymmetric part
of X(e/®))
5. xe[n] (conjugate-symmetric part Xg(e/®) = Re{ X (e/®))
of x[n])

6. xp[n] (conjugate-antisymmetric  jXj(e/®) = jTm{X(e/*))
part of x[n])

The following properties apply only when x[n] is real:

7. Any real x[n] X(e/”) = X*(e"/®) (Fourier transform is
conjugate symmetric)

8. Any real x[n] Xr(e’”) = Xg(e /®) (real part is even)

9. Any real x[n] Xi(e!”) = —X;(e~/*) (imaginary part is odd)
10. Any real x[n] . |X(e/*) = |X (e 7®)| (magnitude is even)
11. Any real x[n] aX(e/”)=—<X(e /™) (phaseisodd)

12. x¢[n] (even part of x[n]) Xr(e/®)
13. x,[n] (odd part of x[n]) jXi(el™”)

EEEC
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x[n]=a"u[n] < X (ej”):l T if |a <1
Property 7: X (e”)=X"(e™)
Property 8: X, (e )= 1+;f(2:c;8£5a, = Xe(e7) Property 9: X, (') = 1+a:a—8;_r;i)osw =-X,(e)
Property 10: ‘x ()= e _2lacos w)m :‘x (e7) Property 11: £X (e*)= tan—l(%j =—2X(e7)

N
1

5
g T 3
2 3 2 3
= | =
g -
" - <
0 I L | 0 l I I
—T w T w - T T
53 o5 03
Radian frequency (w) Radian frequency (w)
(a) (c)
2 1.0
= B = 05k ——
= - — = - R
= 0 N '1% 0 - hY
5 A =
' _1 | Ty 3 ~ \ -
= —ID 5 = \n___,...""
[
-2 | | ] —1.0 | L |
—ar _T 0 g w —ar T 0 T .
2 2 Z 2
Radian frequency (w) Radian frequency {w)
(b) (d)
Figure 2.22 Frequency response for a system with impulse response A[n] = Figure 2.22 (Continued) (c) Magnitude. a = 0; a = 0.9 (solid curve) and
a"u[n)]. (a) Real part. 2 = 0; a = 0.2 (solid curve) and a = 0.5 (dashed curve). a = (.5 (dashed curve). (d) Phase.

(b) Imaginary part.
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Fourier Transtorm Theorems

Linearity:

Ifx[n] <> X (') andy[n] <> Y (&)

then ax[n]+by[n] <> aX (e’ )+bY (')
Time Shift:

Ifx[n] > X (')

then x[n—n, ] <> e " X (e)
Frequency Modulation:

Ifx[n] > X (')

then e *"x[n] <> X (ej(“”“"’))
Time Reversal:

If x[n] <> X (&)

then x[-n] <> X (&)
Differentiation in frequency:

If x[n] <> X (&)
dX (e

dw

then nx[n] <> j
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Fourier Transtorm Theorem

Convolution:

Ifx[n] <> X (e'*) and h[n]«> H (e**)

then x[n]*h[n]«> X (e’ )H (&)
Multiplication:

Ifx[n]«> X (") and w[n] «>W (e**)

then x[n]w[n] <> %j:__ﬂ X (e )w (ej(”‘a))de
Parseval's Theorem:

If x[n] <> X (ej“’)

then E = Z‘x[n]‘ _—J.

dw
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TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform
x[n] X (e’)
yln] Y(e’)
1. ax[n] + by[n] aX(e!”) + bY(e/®)
2. x[n—ng] (ng an integer) e~ Jond X (e/®)
3. e/®0x[n] X (el(@—0))
4. x[—n] X(e“j"“’)
X*(e’®) if x[n] real.
dX(el?)
5. nx|n] =
6. x[n] * y[n] X(e/®)Y(e!®)
I ¥ e .
7. x[n]y[n] = / X(e?)Y(e!“)de

Parseval’s theorem:

8. Z x[n]? = % /: ] 1 X (e/®)Pdw

n=—00

9. Z x[n]y*[n] = %/ X(e/?)Y*(e!*)dw

EEEC2 e
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TABLE 2.3

FOURIER TRANSFORM PAIRS

Sequence Fourier Transform

1. &[n] 1
2. 8[n — np) e~ Jong
3.1 (—o0c <= n < ) Z 2né(w + 2nk)

k=—co
4 amuln) (lal <1) :

. a"uln al < —
= M[H] ﬁ 4= Z Jfa(w'f‘zl'fk}
k=—oc
1

6. (n + I)R"H[ﬂ.] (lﬂi = 1] m

7 r'sinwp(n+1)

8.

9.

uln] (jrl < 1)

sin wp,

sin wen

mn

il = l, O<n<M
~ ] 0, otherwise

1
1 — 2r coswpe— /@ 4 rle—i2w

X(ei®) = { L, o] <,

0, w.<|lwl=<nm

sin[w(M + l)f’zle_;w.wz
sin(w/2)

Z 28(w — wo + 2k)

10. efwon
k=—o0
o0
11. cos(won + ¢) Z [me?§(w — wo + 27k) + e 1 5(w + wo + 27K)]
k=-—o00
EEEC20. = oo — g o

Processing

63



CONTINUOUS-TIME SIGNALS DISCRETE-TIME SIGNALS
TIME-DOMAIN FREQUENCY-DOMAIN TIME-DOMAIN FREQUENCY -DOMAIN
x..-(f] f* || r[”:l ct
i ¥
" 1 »
gg N N Lol _Pitldiig "'TIT_IITIMT'" "'TI]TTI Lelliy -
|8 -7, 0 w4 0— F -N 0 N n ~N 0 N ¢
7] : F 1
o =
= |- 1 ~f2mkFpt A N-1 i
=) == x (e b= < =5 T
g E LA T el . € =p I, xlne # :.,'1)
612 i pEIS
- ; 3 s N-1
(;: X lr) = 5 T cpeliniFol d.:—— x(n) = izu cke'fyk"
CONTINUOUS AND PERIODIC DISCRETE AND APERIODIC DISCRETE AND PERIODIC DISCRETE AND PERIODIC
x,(1 . X,(F - xi(n) Xie)
@ [
2 = W B T
| i 1111 I_I._I I
- i 0 t 0 F ~3-2-1012 n g e SR % T
=2
| - -
= = =iinF1 - -
5 E Xo(B)=f ™ xy(ne~12Ft gt ? X@)= E_x(me/un e
— ]
G| & | oT{E T
] = O KR E o x(n) =5 S, X(wleknde
CONTINUOUS AND APERICDMC | (ANTINUOUS AND APERIODIC DISCRETE AND APERIODIC SONTINUOH TS 4ND PERIODIC
- —— L — ] — — — P

FIGURE 3.31 Summary of analysis and synthesis formulas.
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