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History

 Before 1950’s: analog signals/systems
 1950’s: Digital computer
 1960’s: Fast Fourier Transform (FFT) (turning 

point)
 1980’s: Real-time VLSI digital signal processor
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Typical Digital Signal Processing System

H1(s)

Equivalent 
analog filter

H2(s)A/D D/ADigital 
filter

x(t) y(t)

x(t) y(t)
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Discrete-Time Signals: Sequences

 Continuous-time signal
 Defined along a continuum of time: x(t)

 Continuous-time system
 Operates on and produces continuous-time signals

 Discrete-time signal
 Defined at discrete “times”, i.e. x[n] contains a sequence of numbers
 Anything in between the discrete times is undefined

 Discrete-time system
 Operates on and produces discrete-time signals

 Digital signals usually refer to the quantized discrete-time signals, i.e. 
the amplitude is only defined for certain values
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Sampling

 Very often, x[n] is obtained by sampling x(t)
 x[n] = x(nT), T: sampling period

 T is often not important in the discrete-time signal analysis 
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Unit Sample Sequence

 Unit sample sequence 
(Kronecker delta function)

It is often called the discrete-
time impulse or simply 
impulse (some books call it 
unit pulse sequence)
 Different from Dirac delta 

function, i.e. δ[0] is well-
defined.

[ ] 1, 0
0, 0

n
n

n
δ

=
=  ≠

n
0

1
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Unit Step Sequence

 Unit step sequence

 Unlike u(t), u(0) is well-
defined

 Also,

[ ] 1, 0,
0, 0

n
u n

n
≥

=  <

n
0

1

[ ] [ ]

[ ] [ ] [ ]
0

,

1
k

u n n k

n u n u n

δ

δ

∞

=

= −

= − −

∑
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Exponential Sequence

 Exponential sequence

 Combining basic sequences

[ ] nx n Aα=

n
0

A

[ ]

[ ] [ ]

, 0,
0, 0

is equivalent to 

n

n

A n
x n

n

x n A u n

α
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<
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n
0

A

|α| < 1
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Complex Exponential Sequences

[ ]

[ ] ( )

( ) ( )
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Sinusoidal Sequences

 Sinusoidal sequences

 A: amplitude, ω0=2πf0, φ: phase
 It can be viewed as a sampled continuous-time sinusoidal.
 Condition for being periodic with period N, i.e. x[n] = 

x[n+N], that is,

 Or ω0(n+N) = ω0n + 2πk, where k, n are integers.  k is a 
fixed number while -∞ <n<∞ is a running index

[ ] ( )0cos ,    for all x n A n nω φ= +

( ) ( )( )0 0cos cosA n A n Nω φ ω φ+ = + +

0 0
22 kN k
N
πω π ω→ = → =



EEEC20034: Intro. to Digital Signal 
Processing 11

Periodicity of  Sinusoidal Sequences

 Consider

N = 8 since x[n+8] = cos(π(n+8)/4) = cos(πn/4+2π) = x[n]
 Increasing the frequency of a DT sequence does not necessarily decrease the 

period of the signal.
Consider

which has higher frequency than x1[n].  However, it is not periodic with N = 8 
because x2[n+8] = cos(3π(n+8)/8)=cos(3πn/8 + 3π) = -x2[n].  N=16 is the 
period

 Some sinusoid sequences are not even periodic.  Consider

where x3[n+N] ≠ x3[n] for all N.
 All these problems are caused by the integer restriction on n, so that the 

discrete-time sequences are defined only for integer indices n.

[ ] ( )1 cos / 4x n nπ=

[ ] ( )2 cos 3 / 8x n nπ=

[ ] ( )3 cosx n n=
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Distinguishable Frequencies

 Since

and

are indistinguishable, therefore,

are indistinguishable.  From this, we see that there will be a total of N
distinguishable frequencies for which the corresponding sequences are 
periodic with period N.  One set is when k = 0, 1, …, N-1.  This is 
crucial in understanding complex exponential and sinusoidal sequences, 
which are also used in discrete-time Fourier analysis (shown later)

0
2 ,k
N
πω =

0 0 and 2 rω ω π+

0
2 and 2k r
N
πω π+
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Ambiguity of  Sinusoidal Sequences

 One discrete-time sinusoid corresponds to 
multiple continuous-time sinusoids of different 
frequencies

 Typically, we pick up the lowest frequency (r = 0) 
under the assumption that the original continuous-
time sinusoidal has a limited frequency value, 0 ≤
ω0 ≤ 2π

[ ] ( ) ( )( )0 0cos cos 2 ,   ,

where  is any integer

x n A n A r n n

r

ω φ ω π φ= + = + + ∀
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Low and High Frequency

 Consider the analog signal

As Ω0 increases, x(t) oscillates more and more rapidly.
 Consider the discrete-time signal

As ω0 increases from 0 to π, x[n] oscillates more and 
more rapidly.  But as it increases from π to 2π, the 
oscillations become slower.
 ω0  = (π + 2πk) for any integer k is referred to as high frequency
 ω0  = 2πk for any integer k is referred to as low frequency

( ) ( )0cosx t A t φ= Ω +

[ ] ( )0cosx n A nω φ= +
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Discrete Systems

 A discrete-time system is defined mathematically 
as a transformation or operator that maps an input 
sequence with values of x[n] into an output 
sequence with values y[n]

[ ] [ ]{ }y n T x n=
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Ideal Delay

[ ] [ ],   ,
where  is a fixed positive integer called the delay of the system.

d
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y n x n n n
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= − −∞ < < ∞

[ ]
[ ] [ ]

[ ]
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Memoryless, and Linear 

 Memoryless
 If the output y[n] at every value of n depends only on 

the input x[n] at the same value of n
 Linear: has to satisfy the principle of 

superposition
 Additivity: T{x1[n]+x2[n]} = T{x1[n]}+T{x2[n]}
 Scaling: T{ax[n]} = aT{x[n]}
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Time/Shift Invariant

 A time shift or delay of the input sequence causes 
a corresponding shift in the output sequence
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Shift-Invariant Example

21

[ ] [ ]1) y n x nα=

[ ] [ ]2)  ,  where  is a constanty n x n c c= +
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 Causality
 For any n0, the output sequence value at the index n = 

n0 depends only on the input sequence values for n ≤ 
n0, i.e. output of a causal system does not depend on 
future values of the input

 BIBO Stability
 If and only if every bounded input sequence produces a 

bounded output sequence.
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BIBO Stability Examples

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]
[ ]( )

1) 

Given .  Then

                          

As ,   will be unbounded, therefore, the system is not BIBO stable

x

x

y n nx n

x n B

T x n nx n n x n nB

n T x n

=

<

= ≤ =

→∞

[ ] [ ]
[ ]

[ ]( ) [ ]
[ ] [ ]

2) 

Given .  Then

                          

The inequality is true because  is equal to , but only retaining every  sample.
Therefore, the system is BIBO stable

x

x
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y n x Mn

x n B

T x n x Mn B

x Mn x n M

=

<
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Linear Time-Invariant (LTI) Systems

 A linear time-invariant system is completely 
characterized by its impulse response.
 Sequence as a sum of delayed impulses

 An LTI system due to δ[n] as an input, i.e.

 From the above, we have

 Convolution sum

[ ] [ ] [ ]
m

x n x m n mδ= −∑

[ ] [ ] [ ] [ ]  yields    (impulse response)x n n y n h nδ= =

[ ] [ ] [ ] [ ] [ ] [ ]  yields  
m m

x n x m n m y n x m h n mδ= − = −∑ ∑

[ ] [ ] [ ] [ ] [ ]3 1 2 1 2*
m

f n f m f n m f n f n= − =∑
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Procedure of  Convolution

1) Time reverse: h[m]  h[-m]
2) Choose as n value
3) Shift h[-m] by n: h[n-m]
4) Multiplication: x[n] h[n-m]
5) Summation over m:

6) Choose another n value, go to Step 3)
[ ] [ ] [ ] 

m
y n x m h n m= −∑
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Convolution Example

[ ] [ ] [ ] [ ] [ ]1Determine  for 2   and  .
2

n

y n x n u n h n u n = − + =  
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Convolution Using Matrices and 
Vectors

[ ]

Suppose 3 and 4 :
[0] [0] 0 0 0
[1] [1] [0] 0 0 [0]
[2] [2] [1] [0] 0 [1]
[3] 0 [2] [1] 0 [2]
[4] 0 0 [2] [1] [3]
[5] 0 0 0 [2]

h xL L
y h
y h h x
y h h h x
y h h h x
y h h x
y h

= =

   
               = ⇔ =                  
   

y Hx

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ]
( ) [ ] [ ] [ ]

Suppose we are only interested in a single output sample,
* ( ) ,

where

0 1 1

1 1

T

k

T
h

T
x

y n h n x n h k x n k n

h h h L

n x n x n x n L

= = − =

 = − 

 = − − + 

∑ h x

h
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Properties of  LTI Systems

 Commutative
 x[n]*h[n] = h[n]*x[n]

 Distributive
 x[n]*(h1[n]+h2[n]) = x[n]*h1[n]+ x[n]*h2[n]

 Cascade connection
 h[n] = h1[n] * h2[n]

 Parallel connection
 h[n] = h1[n] + h2[n]

 BIBO stability
 If h[n] is absolutely summable, i.e.

 Causal system
 h[n]  = 0, for n<0

 Memoryless LTI
 h[n] = kδ[n]

[ ] h
k

h k B= < ∞∑



EEEC20034: Intro. to Digital Signal 
Processing 30

Frequently Used Systems

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2

1

1 2
1 2

1 2

Ideal Delay
             

Moving Average
1 , 11             

1
0, otherwise

Accumulator

            

d d

M

k M

n

k

h n n n y n x n n

M n M
M Mh n y n x n k

M M

h n u n y n x k

δ

=−

=−∞

= − ⇒ = −

 − ≤ ≤ + += ⇒ = − + +

= ⇒ =

∑

∑



EEEC20034: Intro. to Digital Signal 
Processing 31

Different Types of  LTI Systems

 Finite-duration impulse response (FIR)
 Its impulse response has only a finite number of non-zero 

samples
 Always stable

 Infinite-duration impulse response (IIR)
 Its impulse response is infinite in duration

 Inverse system
 System g[n] is the inverse of h[n]: h[n]*g[n] = δ[n]

h[n] g[n]x[n] y[n]



Linear Constant-Coefficient 
Difference Equation
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[ ] [ ] [ ]
[ ] [ ] [ ]

0 0

 Analogous to LCCDE

                                                 [ ] [ ]

 E.g. first-order system 1

 General solution: 
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:     
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• = +

•

•

− = −

•

−

∑ ∑

[ ]

[ ] [ ]

[ ]

1

0 1 1

0

0 0

1

0

] 0   (
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N
n

N

N

k

h m m

k

m

k
k x n

n A z y n

a A z A z a a

n A z

y a y n k

z z

y

=
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assume that all  roots of polynomial  are distinct.

    Have  undetermined coefficients.  (Multiple roots is considered in Prob. 2.38)
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[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

0

0 1 1

0 1

To obtain 2 , 3 , ,  we need to set 1 in (***).  Express the diff. eqn as

                                       1 .    (****)
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[ ]
[ ]

[ ] [ ]

[ ]
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1

 ,    for 0

,                 for  1

 Note we computed solution forward and backward in time, starting with 1
   procedure is noncausal
 When 0, 

 ,  

0 

 

 

n n

n n

n

y n a c a K n

y n a c n
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    This is the homogeneous solution.
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   yourself).   Hence, this system is not linear
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[ ] [ ]

 Note that for LCCDE, with additional condition that the system is linear, time-invariant
   and causal, the solution is unique.
 If the auxiliary cond 1 , 2 ) are stateitions (e.g. d as initial-rest  y y
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• − −
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Summary of  Linear Constant-Coefficient 
Diff  Eqn
 Output for a given input is not unique.  Auxiliary 

conditions are required
 If aux. info is in the form of N sequential values of 

the output, later values can be obtained by 
rearranging the diff eqn as a recursive relation 
running forward in n, and prior values can be 
obtained by rearranging the diff eqn as a recursive 
relation running backward in n

 Linearity, time invariance, causality of the system 
will depend on the aux. conds.  If an additional 
condition is that the system is initially at rest, then the 
system will be linear, time invariant, and causal
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[ ] [ ] [ ] that the impulse response   ( 0 for 0).  This is 
consistent with the causality imposed by the assumption of initial rest
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0 0
                                             [ ] [ ]                 (*)

In Ex. 2. 1 in (*).  Suppose 0, no recursion is required 
to use the difference

16, we had assumed that 
 eq

N M

k m
k m

N N

a y n k b x n m
= =

≥ =

− = −∑ ∑

[ ]

[ ] [ ] [ ]

0

0
0 0

0
                                  

uation to compute the output, and so no

      

 auxiliary conditions
are requires.  (*) becom

          [ ].

es

, 0
,  tLet [e  ]h n

n

M
k

k

M
k

k

by x n kn

b
a

b n
n

ax n n h n k
a

δ δ

=

=

= −

= −= =
≤ ≤

∑

∑
,

0, otherwise.
This is a causal finite impulse response (FIR) system and its output can be computed
nonrecursively
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Eigenfunction

Consider
LTI, h[n]x[n] y[n]

[ ] [ ]

[ ] [ ]0

Let .  What is ?  What is the relation to eigenvalues and eigenvectors?

In general, let .  What is ?

n

j
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nx n e
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y nω φ
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+=
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Eigenfunction Example
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cos  is LTI.
2 2

,   ,    
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Let .  Suppose system 

 *  *

Compute total response in terms of amplitude  and c
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Discrete-Time Fourier Transform (DTFT)

 Main idea: Decomposing a signal into its sinusoidal 
components

 A specific case of projection of vectors.
 Sinusoidal/exponential functions (of different ω’s) form the basis 

vectors. 
 Signal to be decomposed is the vector

( ) [ ]

[ ] ( )

Analysis:  

1Synthesis: 
2

j j n

n

j j n

X e x n e

x n X e e d

ω ω

π ω ω

ω π
ω

π

−

=−

=

=

∑

∫

0j ne

1j ne

2j ne

( )0jX e ( )1jX e

( )2jX e

  

1 1 2 2 3 3
analysis analysis analysis

synthesis synthesis synthesis

Recall the projection matrix: .

If  is orthonormal(rewrite as ), then
                                  

H

H

i
H H H

=

= + +

vvP
v v

v q
a q q a q q a q q a
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DTFT

 Fourier transform is also called Fourier spectrum
 Magnitude spectrum: |X(ejω)|
 Phase spectrum: ∠X(ejω)
 X(ejω) is continuous in ω
 X(ejω) is periodic with period 2π
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DTFT Example

( ) ( )
0 0

1     if 1  or  1.
1

nj n j n j

n n

j
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X e a e ae

ae a
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ω ω ω

ω
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∞ ∞
− −

= =

−
−

= =

= < <
−

∑ ∑

[ ] [ ]Compute the Fourier transform of nx n a u n=

( ) ( )
0 0 0

The last equality is obtained because for the series to converge, i.e.

,  therefore, 1

or 1 is sufficient.

n n nj j j j

n n n

j

ae ae ae ae

a e

ω ω ω ω

ω

∞ ∞ ∞
− − − −
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Convergence of  the DTFT

 Not all sequences have DTFT.  If the sequence satisfy the following 2 conditions, 
then the sequence will have a DTFT

1) Absolutely summable sequence

[ ]        (uniform convergence)
n

x n < ∞∑

( ) [ ]

[ ]

[ ]      (since 1)

<

j j n

n

j n

n

j n

n

X e x n e

x n e

x n e

ω ω

ω

ω

−

−

−

=

≤

= =

∞

∑

∑

∑

It is clear from the example in the last slide that as long as |a|<1, then x[n] = 
anu[n] is absolutely summable.  In fact,

[ ]Therefore,  is sufficient condition to guarantee that the Fourier transform exists (converges)
n

x n < ∞∑
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Convergence of  DTFT

 All finite sequences are absolutely summable
 Absolute summability guarantees uniform 

convergence of the Fourier transform
 If a sequence is not absolutely summable, the 

Fourier transform can still be written under a 
more relaxed condition of mean-square 
convergence
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Convergence of  DTFT

2) If the sequence is square-summable, i.e.

then the sequence will have mean-square 
convergence.  Let

2[ ] ,
n

x n < ∞∑

( ) [ ]

( ) [ ]

,j j n

n
M
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M

n M

X e x n e
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ω ω
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=−

=

=

∑

∑

[ ]

( ) ( ) 2

The mean-square convergence of the corresponding sequence, ,  can then be written as

                                      lim 0j j
MM

x n

X e X e d
π

ω ω

ω π

ω
→∞

=−

− =∫
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Example of  Mean-Square Convergence

( )

Let the frequency response of an ideal lowpass filter be

1,            ,
                 

0,      ,

then the impulse response is
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[ ]
( )

Note that  is not absolutely summable because the sequence approaches 0 as

sin10, but only at a rate of .  Therefore,  does not converge

uniformly for all 's.  However, evaluating 

p

c j n

n
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h n

n
n e

n n
H

ωω
π

ω

−→ ∑



( ) ,  where it is equal toje ω
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( ) ( )
( )
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shows that  does not approach  due to the oscillation around .

sin
Therefore, it is indeed true that  does not converge uniformly.  

However,                  lim
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Thus,  is square summable.ph n

π

π−
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Gibbs Phenomenon
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DTFT of  Special Functions
[ ]
[ ]

( )

0
0

Impulse:
                                     

Constant:
                                 

1

                                    

1 2      (This is a periodic i2 mpulse train

          

j n
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πδ ω π

−

↔

− ↔

↔ +∑
                                                                 using Dirac delta function)

Note:  This sequence is neither absolutely nor square summable.  However, it is
possible and useful to define the Fourier transform of the sequence to be the
periodic impulse train.  The impulses here are functions of a continuous variable
and therefore are of "infinite height, zero width, and unit area", cons

( )

( )

[ ]

istent with
the fact that 2 2  does not converge.  The Fourier transform is

justisfied in principle because substitution of 2 2  into the synthesis

equation leads to 1.

r

r
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πδ ω π
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DTFT of  Special Functions

( )0

0

0

Complex exponential:
                                                        

Note:  This is a more general example of the above.  Assumes that .  Using the synthesis equation 

2 2j n

r
e rω πδ ω ω

π ω π

π

− < <

↔ − −∑

[ ] ( )

0 0

0

0
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DTFT, we can write
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2
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duces back to 1 (the example above).

Cosine sequence:

                                                       cos 2 2

Unit step:
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DTFT of  Special Functions

[ ]
( )

( )

0

0
0

In summary, when sequences  such as  is not absolutely sumable nor square summable,

and  is not finite for all ,  the statement
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e interpreted in a special way using generalized functions.  Using this, we can extend the

concept of a Fourier transform representation to the class of sequences that can be expressed as
a sum of discr
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is a consistent Fourier transform representat

kj n
k

k

j
k

r k

x n a e n

X e r

ω

ω πδ ω ω π

= ∞ < < ∞

= − −

∑

∑∑
[ ]ion of .kj n

k
k

x n a e ω=∑
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Symmetry Properties of  the DTFT

 Any (complex) x[n] can be decomposed into
x[n] = xe[n] + xo[n]

where
xe[n] = (x[n] + x*[-n])/2 is the conjugate symmetric part
xo[n] = (x[n] - x*[-n])/2 is the conjugate antisymmetric 
part
Remark: x[n] is conjugate symmetric if x[n] = x*[-n]

x[n] is conjugate antisymmetric if x[n] = -x*[-n]
 On the other hand,

X(ejω) = Re{X(ejω)} + jIm{X(ejω)}
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Symmetry Properties of  the DTFT

 xe[n]  Re{X(ejω)},  xo[n]  jIm{X(ejω)}
Similarly, X(ejω) can be decomposed into

X(ejω) = Xe(ejω) + Xo(ejω)
where Xe(ejω) is the conjugate symmetric part and

Xo(ejω) is the conjugate antisymmetric part
 Re{x[n]}  Xe(ejω),   jIm{x[n]}  Xo(ejω)

Special case 1: If x[n] is real, then X(ejω) is conjugate 
symmetric (magnitude is even, phase is odd)
Special case 2: If x[n] is conjugate symmetric, then X(ejω) 
is real. 
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Fourier Transform Theorems
[ ] ( ) [ ] ( )
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Fourier Transform Theorem
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Convolution:
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