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Movations

Generalization of the DTFT

o Some sequences that do not converge for DTFT have
valid z-transforms

Better notation compared to FT in analytical
problems (complex variable theory)

Solving difference equation - algebraic equation

o similar to using Laplace transform in solving
differential equation
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‘ Figenfunction

Consider

x[n] —»  LTLAID L yn]

Letx[n]=z;. Whatisy[n]?
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z-transform

Two-sided z-Transform (bilateral z-Transform)
Forward: Z(x[n])= Y x[n]z " = X(2)

From DTFT viewpoint: Z {x[n]} = F {r"x[n]}
. 1 Ay _ -
Inverse: x[n]:gj X (z)z"dz=Z X (2)]
The integration is evaluated along a counterclockwise
circle on the complex z plane with a radius r.

Remark: X (Z)|z:eja’ = Z x[n]e "

N=—00

rel”=z

The DTFT can be viewed as a special case: z = el®

Single-sided z-Transform (unilateral) — for causal sequenes

o0

Forward: X (z)=)» x[n]z™
n=0
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Interpretation of the z-Transform

If z IS restricted to have unity magnitude, I.e. |z| = 1, the z-
Transform corresponds to the Fourier transform. That is we

can express z in polar form as z = el®
o The z-transform can be written as

X(re"“’):Zn:x[n](rej“’)_n
:Zn:(x[n]r‘”)e‘j“’”.

z-transform can now be interpreted as the Fourier transform of the

product of the original sequence x[n] and the exponential sequence
r. Forr =1, this reduces back to the Fourier transform of x[n].
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z-Plane

@ is the angle between the vector

to a point z on the unit circle and .
the real axis of the complex z- Unit cirele
plane

o Evaluate z = 1 corresponds to

Im z-plane
- = E)_;-"-U

s
. . ?/ A
evaluating the Fourier transform 1 oy
atw=20
. Evaluate z = j corresponds to
evaluating the Fourier transform

at w= 2

o Evaluate z = -1 corresponds to
evaluating the Fourier transform
Alo=rx

Continue evaluation of the Fourier

transformfromw =7 to w=2rx

IS equivalent to evaluation from o
=-7t0ow= 0 Figure 3.1 The unit circle in the
complex z-plane.
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Region ot Convergence (ROC)

The ROC is the set of values of z for which the z-transform converges

Uniform convergence

o If z=rel® (polar form), the z-Transform converges uniformly if x[n]r" is
absolutely summable; that is

X (2)= ‘X (re’)
zn:x[n]r‘”e‘j“’“

sZ‘x[n]r‘”
- i|x[n]r‘” <o

e—ja)n

o The exponential weight helps with the convergence

o E.g. u[n] is not absolutely summable, so FT does not converge absolutely. But
rhu[n] is absolutely summable if r > 1

o This implies the z-Transform for u[n] exists with a ROC of |z| > 1
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Region ot Convergence (ROC)

Since convergence of X(z2), i.e. |X(z)| < 0, means

X (2)|=2_x[n]z™"

n

<2|x[n]
<Y Ix[n]|z]" <o
o This implies that convergence of the z-transform depends on |z|. That is, the

ROC of X(z) consists of all values of z such that the above inequality holds

In general, if some value of z, say z = z,, is in the ROC, then all values
of z on the circle defined by |z| = |z,| are also in the ROC - ROC is a
“ring”.

If ROC contains the unit circle, |z| = 1, then the FT of this sequence
converges

By its definition, X(z) is a Laurent series (complex variable)
o X(z2) is an analytic function in its ROC, i.e. X(z) is complex differentiable in its ROC
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DTFT vs. z-Transtorm: Examples 1 &
2

sinw,n
x,[n] = , —0<N<oo
zn

Not absolutely summable but square summable (see Figure 2.11
In O&S), so DTFT converges in the mean-squared sense.

However, z-Transform does not converge uniformly because 2. x[n]r”
IS not absolutely summable for any value of r ”

X,[n] =cosaw,n, —oo<n<oo

Not absolutely summable nor square summable. z-
Transform does not converge uniformly because 2.%[nr" s
not absolutely summable for any value of r. However, a
“useful” DTFT (impulses) exists (using Dirac delta) since
substituting X,(e!®) into the synthesis equation of the DTFT
results in xz[nf
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DTFT vs. z-Transtorm: Example 3

x,[n]=a"u[n], |al>l, —-w<n<ow

X3(z)=zn:a”u[n]z‘”
Sary

For the z-Transform to exist, we require n=0
0 1 n
Z(az ) < oo
n=0

For this to be true, we require [azl| < 1, or |a] < |z]. In this ROC, and using the relationship

N, an:aNll——f;Nzﬂ, X,(2) is

n=N,; -
= _ 1 Z
Z(;(az 1)” T for |z| >|a|
n=

Note: For sequences that are zero when n < 0, X(z) involves only negative powers of z. Therefore, it
is more convenient to express X(z) as a function of z1, rather than z. However, note that factors such
as (1-az'1)? has both a pole and a zero.
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DTFT vs. z-Transtform: Example 4

x,[n]=-a"u[-n-1]

The z-Transform IS x,(z)=-Yau[-n-1]z"

:1—2(a‘1z)n
The sequence will converge when |az| <1 or
lz| < |a]. SO «x, (=11 L _ 2 |J<pa

l-alz 1-az' z-a

DTFT for x,[n] will not exist unless |a| >1.
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Some Common g-Transform Pairs

e 5[N]l S[n-mle>z™, m>0, |z/>0

s[n+m]<>z", m>0, |z|<w

e U[N] <>

=y z|>1, —u[-n-1]« _—

T [d<1

e a"u[n] & . 7> 4]

l1-az™

—a"u[-n-1] <

L |d<fa
. -1
1-[rcosam, |z >

o T COS[O)On]U[n]H1_[2rcosa)0]z‘1+r Z

1-[rsinw,|z™

1-[2rsinw, |zt +r°z

e r"sin[w,n]uln] < z|>r
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Properties of ROC for z-Transform

Most important and useful z-transforms are
those in which X(z) iIs a rational function inside
the ROC.

P(2)

Rational functions x@=5:

o Poles — roots of the denominator, the z such that
X(z) 2

a Zeroes — roots of the numerator, the z such that
X(z) >0

EEEC20034: Intro. to Digital Signal
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Properties of the ROC

(1) The ROC is aring or disk in the z-plane centered at the origin
(2) The F.T. of x[n] converges absolutely <> its ROC includes the unit circle

(3) The ROC cannot contain any poles
4) If x[n] Is finite —duration, then the ROC is the entire z-plane except possiblyatz=0 orz =0
Since the sequence is finite in length, it will always converge for any value of z. However, assuming the sequence starts from

a negative value of n, then when z =, z™" will explode.
When the sequence is located in interval n > 0, x[n] 2" will explode when z =0. Therefore, z=0 might not be included in the ROC

() If x[n] is right —sided, the ROC, if exists, must be of the form |z| > .. except possibly z = oo, where r_. is the magnitude of the
largest pole
N
In general, if X (z) is rational, its inverse has the following form (assuming N poles: {d, }) x[n]=>_A (d,)". (This can be seen
k=1
later when we discussed using partial fraction expansion to compute the inverse z-transform of rational functions.) For a right-

n

N
sided sequence, it means n > N,, where N, is the first nonzero sample. The n” term in the z-transform is x[n]r™" = Z A (dkr‘l)
k=1

This sequence converges if > |dkr*1|n <o, |dkr*1| <tor |r|>|d,|, for every pole k =1,...,d, is the outermost pole (which means
n=N

that as n increases, the exponential above will grow the fastest), and d,, is the one with the largest absolute value, therefore, the ROC

is outside d,, and extending to infinity
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Properties of the ROC (contd) and
System Stability

(6) If x[n] is left —sided, the ROC, if exists, must be of the form |z| <., except possibly z =0,
where r_. . is the magnitude of the smallest pole
Since the sequence is now extending to —oo, that means ‘dkr‘l‘ >1, or |r|<|d,|, in order for the
sequence to converge. Therefore, the ROC is inside d, and extends inward toward zero

(7) If x[n] is two—sided, the ROC must be of the form r, <|z| <, if exists, where r, and r, are

the magnitudes of the interior and exterior poles, respectively
(8) The ROC must be a connected region

Stability and ROC

o Systems that are stable are systems whose impulse responses are
absolutely summable. This implies that the DTFT of the system will
converge uniformly. In other words, the ROC has to include the unit
circle because Y |p[n]<= < X |r[n]z"|<w for [|=1. Therefore, for causal and
stable systems, all the poles have to be inside the unit circle

EEEC20034: Intro. to Digital Signal
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‘ Pole LLocation and Time-Domain
Behavior tor Causal Signals
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Figure 3.12  Time-domain behavior of causal signals corresponding to a double (m = 2) real

Figure 3.11  Time-domain behavior of a single-real pole causal signal as a function - " .
. pole. as a function of the pole location.

of the location of the pole with respect to the unit circle.

EEEC20034: Intro. to Digital Signal
Processing 16




‘ Pole L.ocation and Time-Domain
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Figure 3.13 A pair of complex-conjugate poles corresponds o causal signals with
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Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle.
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Inverse z-Transtorm

Recall: inverse: x[n]:%jcjicx(z)z”‘ldzEZ‘l[X(z)}
This formula can be proved using Cauchy
Integral theorem (complex variable theory)

Methods of evaluating the inverse z-transform
1. Table lookup or inspection (from entries in table)
2. Partial fraction expansion

3. Power series expansion

EEEC20034: Intro. to Digital Signal
Processing
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Partial Fraction Expansion

-1 —M
X(z):b°+blz_1+ +sz_N L X(2)
8, +a,2 +---+a,z

2V (2™ +-+-+by,)
2" (a,z" ++--+a,)

M N
Hence, it has M zeros (roots of Zbkz“"‘k), N poles (roots of ZakzN"‘),
k=0 k=0

and (M —N) poles at zero if M > N (or (N —M ) zeros at zero if N > M)
b(l-cz™")---A-c,z7)
a,(1-d,z™")---(1-d,z")’

c, honzero zeros; d, nonzero poles

— X(2) =

EEEC20034: Intro. to Digital Signal
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Partial Fraction Expansion

e Casel: M < N, strictly proper
Simple (single) poles:

__A A A _(1-d. 2"
X(Z)_(1—dlz‘1)+(1—d22‘1)+ +(1—sz‘1)’ where A =(1-d,z") X (z)

Multiple poles: Assume d. is the s™ order pole (repeated s times)

Z:dk

N
X(2)= Z A T Cl T (:2—12—"”'+ Cs—l ’
k=1k=i (1_dkz ) (1_diz ) (1_diz ) (1_diz )S
ksingle—[;z)le termJ ) muItipIe—BoIe terms ’
1 d" Sy (ra-L
where C_ = - —[(@—d.w)> X (w)]
(s—m)I(—d.)*™ | dw"™" gt

e Case2: M >N

M -N . N S Cm
X@=382" 3 Prerye

kl #i =1

. . Vv
impulse single- pole terms multiple-poles terms

EEEC20034: Intro. to Digital Signal
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‘ Non-Repeated Poles Example

1

1
Example: X (z)= 7> =
i)

—Z
2

A,
1—1zlj
2




‘ Repeated Poles Example

-1
Example: H(z)= 1+§Z 2> la
(1+227) (1+527)
H(z)= (1+227%) ' (1+ 22_1)2 ) (s7) ‘Z‘>‘a‘
_ “1)\? _ 1+3z7 _E
Az_(l-l-zz ) H(Z)z=—2_(1+52_1) o
7= 2
1 1+3z7 X0
=(1+5z")H ) N
ANy T

A :djl (1+ 22‘1)2 H (z)}

7=-2

(1+ 52‘1)3—(1+ 32‘1)5

__ d 1+3z%°
- dz” (1+527)

(1+ 52‘1)2

7=-2

8

9
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‘ Power Series Expansion

Casel: Right-sided sequence, ROC: |z|>T,.,,

Eg. X(@)=1——. IzPal
l+az ' +a’z " +---
1—az‘1) 1
l1—az™
az™
azt—-a’z?
a’z™

Therefore, x[n|=a"u|n]

EEEC20034: Intro. to Digital Signal
£ Processing
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Power Series Expansion

Case 2: Left-sided sequence, ROC: |z|<T,,,
It Is expanded in powers of z

1
E.g. X(2)= — 1 | z|<|a]
—a'z—-a’z° —---
—a+z>z
7—a ‘7z’
atz’

Therefore, x[n|=-a"u[-n—1].

EEEC20034: Intro. to Digital Signal
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Power Series Expansion

Case 3: Two-sided sequence, ROC: 1, <|z| <,
X(z)= X, (z) + X_(z)

— —

converges for |z|>r,  converges for |z|<r,
—x[n]= x.[n] + x[n]
| S — e

casual sequence  anti-causal sequence

EEEC20034: Intro. to Digital Signal
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‘ z-Transform Properties

Ifx[n]< X(z) andy[n] <Y (z), ROC:R,R,

Linearity:

ax[n]+by[n]«> aX (z)+bY (z)

ROC:R o R, nR, -- At least as large as their intersection;

larger if pole/zero cancellation occurs
Time Shifting:

x[n—ny]«> 27X (2) ROC:R =R, £{0 or =}
Multiplication by an exponential sequence:

a"x[n]«> X (z/a) ROC: R =|a|R, --expands or contracts
Differentiation of X (z):

nx[n] <>~z dxdiz) , ROC:R =R,

Conjugation of a complex sequence:
X' [n]e X7 (2), ROC:R =R,

EEEC20034: Intro. to Digital Signal
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‘ z-Transform Properties

Time Reversal:
< [-n] o x*(i*j
z
ROC: R =1/R, (Meaning: If R, :1/r, <|z|<1/r_, thenR :1/r, <|z|<Y/r,

Corollary: x[-n] > X (EJ
z

Convolution:

x[n]*y[n] > X (2)Y (2) ROC:R >R, NR, (=, if no pole/zero cancellation)
Initial Value Theorem:

If x[n]=0, n<0

then x[0] = lim X (z)
Final Value Theorem:

If (1) x[n]=0, n<0, and

(2) all singularities of (1-z) X (z) are inside the unit circle,

—lim(1— 7t

then x[o0] = Izm(l ) X (2)

Remarks: (1) If all poles of X (z) are inside the unit circle, x[n] > 0asn—
(2) If there are multiple poles at "1", x[n] > asn —

(3) If poles are on the unit circle but not at "1", x[n] = cos wyn

EEEC20034: Intro. to Digital Signal
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‘ z-Transtorm Solutions of Linear
Ditterence Equations

Using single - sided z-transform:
Z{yln-1}=2"Y (2) + y[-1]
Z{yln-2}=z%Y (2) + 2 y[-1]+ y[-2]
Z{yln-3}=2"Y (2) + 2 *y[- 1+ 2 'y[-2]+ y[-3]
For causal signals, their single-sided z-transforms are identical to their two-sided z-transforms
E.g. Find y[n] of the difference equation
y[n]-0.5y[n—1] = x[n] with x[n] =1, n>0, and y[-1] =1

Take the single-sided z-transform of the above equation, we get

=Y (2)-05{zY (z)+y[-1]} =X (2) = 1_121
1 1 0.5 -
o e e

2 B 0.5
1-z' 1-05z*1
Take the inverse z-transform

= y[n]=2-05(0.5)", n>0

=Y(z)=

EEEC20034: Intro. to Digital Signal
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