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Movations

 Generalization of the DTFT
 Some sequences that do not converge for DTFT have 

valid z-transforms
 Better notation compared to FT in analytical 

problems (complex variable theory)
 Solving difference equation  algebraic equation

 similar to using Laplace transform in solving 
differential equation
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Eigenfunction

Consider
LTI, h[n]x[n] y[n]
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z-transform
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Interpretation of the z-Transform

 If z is restricted to have unity magnitude, i.e. |z| = 1, the z-
Transform corresponds to the Fourier transform.  That is we 
can express z in polar form as z = ejω

 The z-transform can be written as

z-transform can now be interpreted as the Fourier transform of the 
product of the original sequence x[n] and the exponential sequence  
r-n.  For r = 1, this reduces back to the Fourier transform of x[n].
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z-Plane

 ω is the angle between the vector 
to a point z on the unit circle and 
the real axis of the complex z-
plane
 Evaluate z = 1 corresponds to 

evaluating the Fourier transform 
at ω = 0

• Evaluate z = j corresponds to 
evaluating the Fourier transform 
at ω = π/2

 Evaluate z = -1 corresponds to 
evaluating the Fourier transform 
at ω = π

 Continue evaluation of the Fourier 
transform from ω = π to ω = 2π
is equivalent to evaluation from ω
= -π to ω = 0
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Region of Convergence (ROC)

 The ROC is the set of values of z for which the z-transform converges
 Uniform convergence

 If z=rejω (polar form), the z-Transform converges uniformly if x[n]r-n is 
absolutely summable; that is

 The exponential weight helps with the convergence
 E.g. u[n] is not absolutely summable, so FT does not converge absolutely.  But 

r-nu[n] is absolutely summable if r > 1
 This implies the z-Transform for u[n] exists with a ROC of |z| > 1
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Region of Convergence (ROC)

 Since convergence of X(z), i.e. |X(z)| < ∞, means 

 This implies that convergence of the z-transform depends on |z|.  That is, the 
ROC of X(z) consists of all values of z such that the above inequality holds

 In general, if some value of z, say z = z1, is in the ROC, then all values 
of z on the circle defined by |z| = |z1| are also in the ROC  ROC is a 
“ring”.

 If ROC contains the unit circle, |z| = 1, then the FT of this sequence 
converges

 By its definition, X(z) is a Laurent series (complex variable)
 X(z) is an analytic function in its ROC, i.e. X(z) is complex differentiable in its ROC 
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DTFT vs. z-Transform: Examples 1 & 
2

 Not absolutely summable but square summable (see Figure 2.11 
in O&S), so DTFT converges in the mean-squared sense.  
However, z-Transform does not converge uniformly because          
is not absolutely summable for any value of r

 Not absolutely summable nor square summable.  z-
Transform does not converge uniformly because                is 
not absolutely summable for any value of r.  However, a 
“useful” DTFT (impulses) exists (using Dirac delta) since 
substituting X2(ejω) into the synthesis equation of the DTFT 
results in x2[n].
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DTFT vs. z-Transform: Example 3

For the z-Transform to exist, we require

For this to be true, we require |az-1| < 1, or |a| < |z|.  In this ROC, and using the relationship                                     

X3(z)  is

Note: For sequences that are zero when n < 0, X(z) involves only negative powers of z.  Therefore, it 
is more convenient to express X(z) as a function of z-1, rather than z.  However, note that factors such 
as (1-az-1)-1 has both a pole and a zero.
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DTFT vs. z-Transform:  Example 4

 The z-Transform is

The sequence will converge when |a-1z| < 1 or 
|z| < |a|.  So
DTFT for x4[n] will not exist unless |a| ≥1. 
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Some Common z-Transform Pairs
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Properties of ROC for z-Transform

 Most important and useful z-transforms are 
those in which X(z) is a rational function inside 
the ROC.

 Rational functions
 Poles – roots of the denominator, the z such that 

X(z)  ∞
 Zeroes – roots of the numerator, the z such that 

X(z)  0
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Properties of the ROC
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Properties of the ROC (contd) and 
System Stability

 Stability and ROC
 Systems that are stable are systems whose impulse responses are 

absolutely summable.  This implies that the DTFT of the system will 
converge uniformly.  In other words, the ROC has to include the unit 
circle because                                                  Therefore, for causal and 
stable systems, all the poles have to be inside the unit circle
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Pole Location and Time-Domain 
Behavior for Causal Signals

EEEC20034: Intro. to Digital Signal 
Processing 16



Pole Location and Time-Domain 
Behavior for Causal Signals
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Inverse z-Transform

 Recall:
 This formula can be proved using Cauchy 

integral theorem (complex variable theory)
 Methods of evaluating the inverse z-transform

1. Table lookup or inspection (from entries in table)
2. Partial fraction expansion
3. Power series expansion
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Partial Fraction Expansion
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Partial Fraction Expansion
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Non-Repeated Poles Example
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Repeated Poles Example
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Power Series Expansion
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Power Series Expansion
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Power Series Expansion
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z-Transform Properties
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z-Transform Properties
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z-Transform Solutions of Linear 
Difference Equations
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