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Outline

 Continuous-to-discrete (C/D)
 Discrete-to-continuous (D/C) – perfect 

reconstruction
 Frequency-domain analysis of sampling process
 Sampling rate conversion
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Periodic Sampling

C/Dxc(t) x[n]

Ideal continuous-to-discrete-time (C/D) converter

Continuous-time signal: xc(t)

Discrete-time signal: x[n] = xc(nT), -∞ < n < ∞, T: sampling period

In theory, we break the C/D operation in two steps:

1. Ideal sampling using “analog delta function (Dirac delta function)”

• Can be modeled by equations

2. Conversion from impulse train to discrete-time sequence

• Only a concept, no mathematical model

Conversion from 
impulse train to 

discrete-time 
sequence

xc(t) x[n] = xc(nT)
xs(t)

s(t)

In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D operation.  
This circuitry is one piece; it cannot be split up into two steps
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Ideal Sampling – Time Domain
Samplingxc(t) xs(t)
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Ideal Sampling – Frequency Domain

Remark:  :   analog frequency (radians/sec)
                :   discrete (normalized) frequency (radians/sample)
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Step 1 (contd)
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Step 2: Analog to Sequence (Analog to 
Discrete-Time)
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Aliasing

 Two cases
 No aliasing: Ωs > 2 ΩN
 Aliasing: Ωs < 2 ΩN, where ΩN is the highest nonzero frequency 

component of Xc(jΩ).
 After sampling, the replicas of  overlap (in frequency domain). That is, the 

higher frequency components of  overlap with the lower frequency 
components of .  
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Nyquist Sampling Theorem

 Let x(t) be a bandlimited signal with Xc(jΩ)=0 for |Ω| ≥
ΩN. (i.e., no components at frequencies greater than ΩN)  
Then xc(t) is uniquely determined by its samples 
x[n]=xc(nT), for n=0, ±1, ±2, …, if Ωs = 2π/T ≥ 2ΩN.  
(Nyquist, Shannon) 
 Nyquist frequency = ΩN, the bandwidth of signal 
 Nyquist rate = 2ΩN, the minimum sampling rate without 

distortion.  (In some books, Nyquist frequency = Nyquist rate.)
 Undersampling: Ωs < 2ΩN

 Oversampling: Ωs > 2ΩN
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Reconstruction of  Bandlimited Signals

 Perfect reconstruction
 Recovers the original continuous-time signal without distortion, 

e.g. ideal lowpass (bandpass) filter

 Based on frequency-domain analysis, if we can “clip” one 
copy of the original spectrum, Xc(jΩ), without distortion, 
we can achieve perfect reconstruction.  For example, ideal 
lowpass filter, hr(t), can be used as a reconstruction filter

 Note that xs(t) is an analog signal

Conversion 
from seqence 

to impulse 
train

x[n]
xs(t) Reconstruction 

filter
xr(t)
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Signal Reconstruction Derivation
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Ideal Lowpass Reconstruction Filter
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Discrete-Time Processing of  Continuous-
Time Signals (DTPCTS)

Discrete-time 
systemxc(t) yr(t)C/D

T

D/C

T

x[n] y[n]

H(ejω)

Heff(jΩ)
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DTPCTS
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Equivalency between H(ejω) and Heff(jΩ)

 In order to have the above equivalent relation between 
H(ejω) and Heff(jΩ), we need
 The system to be LTI
 The input to be bandlimited
 The input to be sampled without aliasing and the ideal impulse 

train to be used in sampling
 The ideal reconstruction filter to be used to produce the analog 

output
 In practice, the above conditions are only approximately 

valid at best.  However, there are methods in designing 
the sampling and the reconstruction processes to make the 
approximation better.
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Design of  Discrete-Time Filter H(ejω)

• One way to design the discrete-time filter is by first obtaining the impulse 
response of the analog filter hc(t), then simply sample that in the time domain to 
obtain h[n].  However, from the expressions above, Heff(jΩ) = Hc(jΩ), for |Ω| ≤ π/T, 
and 0 otherwise.  The design problem becomes 
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Design of  Discrete-Time Filter H(ejω)
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Continuous-Time Processing of  Discrete-
Time Signals (CTPDTS)

Continuous-
time systemx[n] yc(t)D/C

T

C/D

T

xc(t) y[n]

H(ejω)

Hc(jΩ)
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System Equations for CTPDTS
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Example: Non-Integer Delay

 Let y[n] = x[n-∆], where ∆∈ .
No formal meaning in the time domain, but we can interpret this in the
frequency domain if we let

H(ejω) = e-jω∆, for |ω|<π, 
or equivalently,

H(ejΩT) = e-jΩ∆T=Hc(jΩ), for |Ω|<π/T.
Therefore, yc(t) = xc(t-∆T).  With this, then if ∆=1/2, then we can interpret y[n]
as a bandlimited interpolation halfway between the input sequence values since 
y[n] is just a sampled version of yc(t).
Since y[n] and x[n] are sampled version of yc(t) and xc(t), respectively, therefore, 
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Example: Non-Integer Delay
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Changing of  Sampling Rate Using 
Discrete-Time Processing

Idea:
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                ( )
' '[ ] ( ')

Original sampling period: 
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Sampling Rate Reduction By An Integer Factor
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Aliasing:  If the original signal BW is not small enough to meet the Nyquist rate 
requirement, prefiltering is needed.
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The downsampled spectrum = sum of shifted replica of the original (M=2)

( )

[ ]

[ ]

2Nyquist theorem:  2

2If 4   ( 2)

2

 Bandlimit  by  to avoid aliasin

In general, bandlimit  by a LPF with

cutoff frequency  and amplitude =
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Graphical illustration for M = 3 (no aliasing)
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Downsampling with aliasing
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How Do We Avoid Aliasing?
To avoid aliasing  =>  ωNM < π

x[n] ↓M[ ]x n [ ] [ ]dx n x nM= 
Lowpass filter,

Gain = 1
Cutoff = π/M

General System for Sampling Rate Reduction by M

[ ]

Convolution matrix
[0] 0 0 0 0 0

[ ] [ 1] 2 0 0 0
[2 ] [2 1] [2 2] [2 3] [2 4] 0

0 0 [2 ] [2 1] [2 2] [2 3]
0 0 0 0 [2 ] [2 1]
0 0 0 0 0 [2 ]

d

h
h M h M h M

h M h M h M h M h M
h M h M h M h M

h M h M
h M

 
 − − 
 − − − −

=  − − − 
 −
 
 

H

E.g.   2, [ ] [1  2  3  4  5] ,   10
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3 2 1 0 0 0 0 0 0 0
5 4 3 2 1 0 0 0 0 0
0 0 5 4 3 2 1 0 0 0
0 0 0 0 5 4 3 2 1 0
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M h n L= = =

 
 
 
 =
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[ ]  [ ] [ ] [ ]
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Is Decimation Time-Invariant?
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∑

From this, it is clear that the rate reduction system above is time-varying.  To see this, 
input the signal x[n-n0] into the above rate reduction system and you will see that the 
result does not match xd[n-n0], unless n0 is a multiple of M.
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Sampling Rate Enlargement By An Integer Factor

[ ]

:
           ' / ,    where  is an integer

           e c

T T L L
n Tx n x x n
L L

=

   = =      

Sampling rate expander

x[n] ↑L
[ ]ex n

[ ]ix n
Lowpass filter,

Gain = L
Cutoff = π/L

T T’ = T/L T’
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(1) shape is compressed; (2) replicas are removed
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Mathematical Representation

[ ] [ ]

1)  Increase samples  (Time-domain)

, 0, , 2 ,
                           [ ]

0,

                          

    (Frequency-domain)
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   :  Essentially, the horizontal frequency axis is compressed.
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                 The shape of the spectrum is not changed.
   :  At this point, we only insert zeros into the original signal.
                  In time domain, this signal doesn't look like the o

Remark
riginal. 
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Mathematical Representation
( )

[ ]

1)  Let assume ideal lowpass filtering (frequency-domain)
1, / / , sin( )       [ ]     (this is an interpolator)
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Is Interpolator Time-Invariant?
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[ ] [ ]
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Matrix Representation
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Linear Interpolation

1 | | / , | |
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Changing Sampling Rate By a Rational Factor
interpolation decimation:  Sampling period       T MIdea T T

L L
→ →

Remark: In general, 
if the factor is not 
rational, go back to 
the continuous 
signals.
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Summary

Time-domain Frequency-domain

Prefiltering Limit bandwidth  Ωs>2ΩN

Analog sampling (impulse train) Duplicate and shift Ω

Analog to discrete δ(t)  δ[n] Ω ω

Sampling

Time-domain Frequency-domain

Analog to discrete δ[n] δ(t) ω Ω

Interpolation Remove extra copies (Ω)

Reconstruction

Time-domain Frequency-domain

Prefiltering Limit bandwidth

Drop samples (rearrange index) Expand (by a factor M) and duplicate (insert (M-1) copies)

Decimation

Time-domain Frequency-domain

Insert zeros Shrink (by a factor of L)

Interpolation Remove extra copies in a 2π period

Interpolation
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Digital Processing of  Analog Signals

Ideal C/D converter  (approximation) analog-to-digital (A/D) converter

Ideal D/C converter  (approximation) digital-to-analog (D/A) converter
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Prefiltering
Ideal antialiasing filter:  Ideal lowpass filter (difficult to implement sharp cutoff 
analog filters)

Solution:  simple prefilter and oversampling followed by sharp antialiasing 
filters in discrete-time domain

Remark: 

• Sharp cutoff analog filters are expensive and difficult to implement.

• Passband of sharp cutoff analog filter is often non-linear phase because IIR is required.
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Discrete-Time Solution To Avoid Aliasing

 To reduce cost, an antialiasing filter is designed to have a gradual cutoff at Ωc = MΩN (instead of π/T) 
so that this can be easily implemented using analog circuitry

 xa(t) is sampled at T such that                         .  In fact, we want to implement the C/D block at 
sampling rate ΩS >> 2ΩN, e.g. at ΩS =2MΩN so that 

This makes sure that only the “noise” portion of the signal (or unwanted high frequency component) 
is corrupted, but not the actual signal

 This then is followed by a rate reduction by a factor of M that includes a sharp antialiasing filter at ω
= π/M.  This is done because we can easily implement digital filters with sharp cutoff (see Ch. 7). 

 Now we can downsample by M to obtain xd[n].  T and T’ are chosen such that T’= MT and π/T = ΩN.  
This makes it possible for  to be filtered with a cutoff frequency at ω = π/M

 Note that the “noise” is aliased but won’t affect the signal band |ω| < ωN = ΩNT

2
c NT

π −Ω > Ω 
 

2 2 1
2s N N

T
M M

π π π 
= = =  Ω Ω Ω 

Oversample by M: 
T=2π/ΩN vs. 
T=2π/2MΩN
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Oversample by M: 
T=2π/ΩN vs. 
T=2π/2MΩN

When T=2π/ΩN : 
aliasing

ω

( )ˆ jX e ω
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A/D Conversion
Digital: discrete in time and discrete in amplitude

0

Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T seconds.  This is used
because the A/D process is not instantaneous.

                                          ( ) [ ]x t x n= 0

0

0 0

( )

1, 0
                                         ( )

0,

                                         ( ) ( ) ( )

                                                 

n

a
n

h t nT

t T
h t

otherwise

x t x nT h t nT

x

∞

=−∞

∞

=−∞

−

< <
= 


= −

=

∑

∑

( )

0

0

( ) ( ) ( )

Thus, the sample and hold can be regarded as an impulse train modulation followed by filtering with .

This is shown in Fig. 4.46a below.  Thus the frequency response re

a
n

nT t nT h t

h t

δ
∞

=−∞

 − ∗ 
 
∑

( ) ( )
[ ] ( )

0lationship between  and  is

similar to the one between  and t  in the previous section on sampling.
a

c

x t x t

x n x
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Sample and hold
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Quantization

 Transform the input sample x[n] (continuous in amplitude) into 
one of a discrete variable in a finite set of prescribed values
 Quantization is an non-linear operation
 Figure 4.45 can now be represented by Figure 4.47 where the ideal C/D 

converter represents the sampling performed by the sample-and-hold
 The C/D, quantizer, and coder together represent the operation of the 

sample and hold, and A/D converter
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1

Example:  3-bit uniform quantizer
2Figure 4.48 shows a 3-bit quantizer, where 1 3.  
2 2

is defined as the distance between the transition levels

m m
B B

X XB ++ = ∆ = =
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Quantizer Parameters

 Parameters
 Decision/transition levels
 Partition the dynamic range of input signal
 Define as tk, for k = 1, 2, …L/2-1 (using the example in 

Fig. 4.48), L = 8.  Considering only the positive side as 
negative side is identical

 Quantization/reconstruction levels
 The output values of a quantizer; a quantization level 

represents all samples between two nearby decision 
levels

Note: It is actually more precise to express          as           .
[ ] [ ]( ) [ ] [ ]1ˆ ˆ,    if ,  where  is the quantized samplek kx n Q x n t x n t x n+= ≤ ≤

[ ]x̂ n [ ]ˆkx n

t1 t2 t3 t4

L=4

[ ]1̂x n

[ ]2x̂ n

[ ]3x̂ n

[ ]4x̂ n
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Quantization Error for the Uniform 
Quantizer 
 Quantized samples  and the true sample x[n] are different due to the use 

of the quantizer.  This difference can be expressed as the quantization 
error
For the case of the 3-bit quantizer as shown in Fig. 4.48, i.e. B+1 = 3, if 
∆/2 < x[n] ≤ 3∆/2, then  it is clear that                   .  This will hold for 
the 3-bit quantizer with a dynamic range of -9∆/2 < x[n] ≤ 7∆/2

 This implies                     (at most)
 Statistical characteristics of :

 e[n] is stationary (probability distribution unchanged)
 e[n] is uncorrelated with x[n]
 e[n], e[n+1], … are uncorrelated (white)
 e[n] has a uniform distribution

 The preceding characteristics are (approximately) valid if the signal is 
sufficiently complex and the quantization steps are sufficiently small

[ ]
2 2

e n∆ ∆
− < <

ˆ[ ] [ ] [ ]e n x n x n= −

ˆ[ ] [ ]
2

x n x n ∆
= +
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Example • x[n] = 0.99cos(n/10)

• using 3-bit and 8-bit quantizer
(B+1 = 3 and 8).  Xm = 1.

• scale of the quantization error is
adjusted so that the range ±∆/2 is
indicated by the dashed lines

• for 3-bit quantizer, the error is
highly correlated with the quantized
signal. Also the intervals around the
positive peaks, the error is greater
than ∆/2 in magnitude because the
signal level is too large for this
setting of the quantizer parameters.

• For 8-bit quantizer, the error is not 
correlated with the unquantized 
signal.  The range of the error is 
kept between –∆/2 and +∆/2.
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Error Analysis: Mean-Square Error

 MSE of e[n] (= variance if zero-mean)

 Since ∆=Xm/2B, then

 SNR (signal-to-noise) ratio due to quantization

σ2 is the RMS value of the signal amplitude
Xm is a parameter of the ADC and it would be fixed in a practical system

 Remarks
 One bit buys a 6dB SNR improvement
 If the input is Gaussian, a small percentage (0.064%) of the input samples would have an 

amplitude greater than 4σx.  If σx is chosen to be Xm/4, SNR ≈ 6B-1.25 dB.  Then we can avoid 
clipping the peaks of the signal

 For example, a 90 to 96 dB SNR requires a 16-bit quantizer 

{ }
2/ 22 2 2

/ 2

1( )
12e E e e e deσ

∆

−∆

∆
= − = =

∆∫

2 2
2 2

12

B
m

e
Xσ

−

=

2 2 2

10 10 102 2

12 210log 10log 10.8 6.02 20log
B

x x m

e m x

XSNR B
X

σ σ
σ σ

⋅
= = = + −
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Design and Error Analysis of  Quantizers

 Quantizer design
 Optimal quantizer design requirement PDF of data
 Choice of quantizer:

 Uniform
 Popular – easily to do
 Good if the signal PDF is uniform (most likely not optimal in any sense)

 Non-uniform
 Lloyd-max (optimal mean-squared error design) (uniform is a special 

case)
 Given L and pX(x[n]), we desire

[ ]
[ ] [ ]( ) [ ]( )

1
2

ˆ, 1

ˆmin  
k

k k
k

tL

k Xt x n k t

x n x n p x n dxε
+
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= −∑ ∫



EEEC20034: Intro. to Digital Signal 
Processing 60

Lloyd-Max Quantizer (Optimal in MSE sense)

[ ] [ ]( ) [ ] [ ]( ) [ ]( )
[ ]

[ ] [ ]
[ ]

2 2

ˆ ˆ, ,

 Note that

ˆ ˆ                              
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Lloyd-Max Quantizer
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Decision Level for Lloyd-Max Quantizer 
(Gaussian Distribution)

x[n]

1̂[ ]x n
2ˆ [ ]x n 3ˆ [ ]x n 4ˆ [ ]x n 5ˆ [ ]x n

x[n]

5-level Lloyd-Max quantizer for Gaussian-distributed signal x[n]

Note:  The decision levels are closer together in areas of higher probability



EEEC20034: Intro. to Digital Signal 
Processing 63

Uniform Quantizer (Special case of  Lloyd Max)

[ ]( ) [ ]1 ˆSuppose .  Compute  using the relationships derived above for the Lloyd-Max quantizer.X kp x n x n
L

=
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D/A Conversion

 Previously, we’ve discussed how a bandlimited signal can 
be reconstructed using an ideal D/C converter from a 
sequence of samples using ideal lowpass filtering.  The 
reconstruction is represented as:  Xr(jΩ) = X(ejΩT)Hr(jΩ), 
where Hr(jΩ) is our ideal lowpass filter.

 A physically realizable counterpart of to the D/C 
converter is the D/A converter followed by a realizable 
lowpass filter

 Examples of practical filters: zero-order hold and first-
order hold.

( ) ( ), sin /
/0,

r

T t TTH j
t T

T

π
π

π π

 Ω <Ω = ⇔
 Ω >
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Mathematical Model for D/A

 The D/A takes a sequence of binary 
code words as its input and produces a 
continuous-time output of the form

 Using the additive-noise model above, 
we can represent the effect of the 
quantization as

 Purpose: Find a compensation filter to 
compensate for the distortion caused by 
the non-ideal        so that its output  is 
close to the analog original .   e0(t) can 
only be reduced by increasing the 
number of bits we used for the quantizer. 
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quantized input * impulse response of
  zero-order hold (see p. 52)
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D/A Reconstruction Filter
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If  is not an ideal lowpass filter, we design a compensated reconstruction filter,

                                             ,

where  is the ideal lowpass filter.
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D/A Reconstruction Filter
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Then the output of the filter will be  if the input is 
:
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:  A "practical filter cannot achieve this approximation
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Overall System
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The frequency response of the effective filter is
                                        ( ) ( ) ( ) ( ) ( ).

The power spectrum density of the quantization error at the output of t
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filter is (from stochastic processes)
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