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Outline

 Continuous-to-discrete (C/D)
 Discrete-to-continuous (D/C) – perfect 

reconstruction
 Frequency-domain analysis of sampling process
 Sampling rate conversion
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Periodic Sampling

C/Dxc(t) x[n]

Ideal continuous-to-discrete-time (C/D) converter

Continuous-time signal: xc(t)

Discrete-time signal: x[n] = xc(nT), -∞ < n < ∞, T: sampling period

In theory, we break the C/D operation in two steps:

1. Ideal sampling using “analog delta function (Dirac delta function)”

• Can be modeled by equations

2. Conversion from impulse train to discrete-time sequence

• Only a concept, no mathematical model

Conversion from 
impulse train to 

discrete-time 
sequence

xc(t) x[n] = xc(nT)
xs(t)

s(t)

In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D operation.  
This circuitry is one piece; it cannot be split up into two steps
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Ideal Sampling – Time Domain
Samplingxc(t) xs(t)
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Ideal Sampling – Frequency Domain

Remark:  :   analog frequency (radians/sec)
                :   discrete (normalized) frequency (radians/sample)
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Step 1 (contd)

( ) ( )

( ) ( ) ( )

( ) ( )

The sampled signal spectrum is the sum of shifted copies of the original.
: In analog domain 

1 * ,   can also be expressed as:
2

                                          s

s

j t
s

Remark x t y

X j

t

X j Y j X j

x t e
π

− ΩΩ

⇔ Ω Ω Ω

= ( ) ( )

( ) ( )

( )

                                                      

                                                                                       

j t
c

nt t

j t
c t

n
j nT

c
n

dt x nT t nT e dt

x nT t nT e

x nT e

dt

δ

δ

−

Ω

Ω

Ω

−

−

= −

= −

=∑

∑∫ ∫

∑ ∫

( )
( ) [ ] ( )

    (**)

We also express  as:

                                                         (***)

j

j n

n

j jwn
c

n
X e x n

e

T e

X

x n e

ω

ωω − −= =∑∑



EEEC20034: Intro. to Digital Signal 
Processing 7

Step 2: Analog to Sequence (Analog to 
Discrete-Time)
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Aliasing

 Two cases
 No aliasing: Ωs > 2 ΩN
 Aliasing: Ωs < 2 ΩN, where ΩN is the highest nonzero frequency 

component of Xc(jΩ).
 After sampling, the replicas of  overlap (in frequency domain). That is, the 

higher frequency components of  overlap with the lower frequency 
components of .  

⇒ 
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Nyquist Sampling Theorem

 Let x(t) be a bandlimited signal with Xc(jΩ)=0 for |Ω| ≥
ΩN. (i.e., no components at frequencies greater than ΩN)  
Then xc(t) is uniquely determined by its samples 
x[n]=xc(nT), for n=0, ±1, ±2, …, if Ωs = 2π/T ≥ 2ΩN.  
(Nyquist, Shannon) 
 Nyquist frequency = ΩN, the bandwidth of signal 
 Nyquist rate = 2ΩN, the minimum sampling rate without 

distortion.  (In some books, Nyquist frequency = Nyquist rate.)
 Undersampling: Ωs < 2ΩN

 Oversampling: Ωs > 2ΩN
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Reconstruction of  Bandlimited Signals

 Perfect reconstruction
 Recovers the original continuous-time signal without distortion, 

e.g. ideal lowpass (bandpass) filter

 Based on frequency-domain analysis, if we can “clip” one 
copy of the original spectrum, Xc(jΩ), without distortion, 
we can achieve perfect reconstruction.  For example, ideal 
lowpass filter, hr(t), can be used as a reconstruction filter

 Note that xs(t) is an analog signal

Conversion 
from seqence 

to impulse 
train

x[n]
xs(t) Reconstruction 

filter
xr(t)
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Signal Reconstruction Derivation
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Ideal Lowpass Reconstruction Filter
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Ω
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Discrete-Time Processing of  Continuous-
Time Signals (DTPCTS)

Discrete-time 
systemxc(t) yr(t)C/D

T

D/C

T

x[n] y[n]

H(ejω)

Heff(jΩ)
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Equivalency between H(ejω) and Heff(jΩ)

 In order to have the above equivalent relation between 
H(ejω) and Heff(jΩ), we need
 The system to be LTI
 The input to be bandlimited
 The input to be sampled without aliasing and the ideal impulse 

train to be used in sampling
 The ideal reconstruction filter to be used to produce the analog 

output
 In practice, the above conditions are only approximately 

valid at best.  However, there are methods in designing 
the sampling and the reconstruction processes to make the 
approximation better.
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Design of  Discrete-Time Filter H(ejω)

• One way to design the discrete-time filter is by first obtaining the impulse 
response of the analog filter hc(t), then simply sample that in the time domain to 
obtain h[n].  However, from the expressions above, Heff(jΩ) = Hc(jΩ), for |Ω| ≤ π/T, 
and 0 otherwise.  The design problem becomes 
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Design of  Discrete-Time Filter H(ejω)
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Continuous-Time Processing of  Discrete-
Time Signals (CTPDTS)

Continuous-
time systemx[n] yc(t)D/C

T

C/D

T

xc(t) y[n]

H(ejω)

Hc(jΩ)
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System Equations for CTPDTS
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Example: Non-Integer Delay

 Let y[n] = x[n-∆], where ∆∈ .
No formal meaning in the time domain, but we can interpret this in the
frequency domain if we let

H(ejω) = e-jω∆, for |ω|<π, 
or equivalently,

H(ejΩT) = e-jΩ∆T=Hc(jΩ), for |Ω|<π/T.
Therefore, yc(t) = xc(t-∆T).  With this, then if ∆=1/2, then we can interpret y[n]
as a bandlimited interpolation halfway between the input sequence values since 
y[n] is just a sampled version of yc(t).
Since y[n] and x[n] are sampled version of yc(t) and xc(t), respectively, therefore, 


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Example: Non-Integer Delay
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Changing of  Sampling Rate Using 
Discrete-Time Processing

Idea:
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                ( )
' '[ ] ( ')

Original sampling period: 
New sampling period:  ',            '
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T x n x nT
x t
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Sampling Rate Reduction By An Integer Factor

[ ] [ ] ( )

:
           ' ,    where  is an integer
           d c

T MT M
x n x nM x nMT

=

= =

Sampling rate compressor

x[n] ↓M xd[n] = x[nM] = xc(nMT)
 

t 

T1 

⇓ 

Ω 

1

2
T
π

 

Downsampling 

Ω 

)(1
1

ΩjX
T c  

2

2
T
π

 

)(1
2

ΩjX
T c  

⇒ 

⇒ 

FT 

t 

T2 = MT1 

FT 

Aliasing:  If the original signal BW is not small enough to meet the Nyquist rate 
requirement, prefiltering is needed.
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The downsampled spectrum = sum of shifted replica of the original (M=2)

( )

[ ]

[ ]

2Nyquist theorem:  2

2If 4   ( 2)

2

 Bandlimit  by  to avoid aliasin

In general, bandlimit  by a LPF with

cutoff frequency  and amplitude =

g
2

    or  by 
2

 1
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Graphical illustration for M = 3 (no aliasing)
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Downsampling with aliasing
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How Do We Avoid Aliasing?
To avoid aliasing  =>  ωNM < π

x[n] ↓M[ ]x n [ ] [ ]dx n x nM= 
Lowpass filter,

Gain = 1
Cutoff = π/M

General System for Sampling Rate Reduction by M

[ ]

Convolution matrix
[0] 0 0 0 0 0

[ ] [ 1] 2 0 0 0
[2 ] [2 1] [2 2] [2 3] [2 4] 0

0 0 [2 ] [2 1] [2 2] [2 3]
0 0 0 0 [2 ] [2 1]
0 0 0 0 0 [2 ]

d

h
h M h M h M

h M h M h M h M h M
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h M h M
h M

 
 − − 
 − − − −

=  − − − 
 −
 
 

H

E.g.   2, [ ] [1  2  3  4  5] ,   10
1 0 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0
5 4 3 2 1 0 0 0 0 0
0 0 5 4 3 2 1 0 0 0
0 0 0 0 5 4 3 2 1 0

H
x

d

M h n L= = =

 
 
 
 =
 
 
  
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k
nn x k h nM k

n M n M

M= − −

∴

∑

From this, it is clear that the rate reduction system above is time-varying.  To see this, 
input the signal x[n-n0] into the above rate reduction system and you will see that the 
result does not match xd[n-n0], unless n0 is a multiple of M.
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Sampling Rate Enlargement By An Integer Factor

[ ]

:
           ' / ,    where  is an integer

           e c

T T L L
n Tx n x x n
L L

=

   = =      

Sampling rate expander

x[n] ↑L
[ ]ex n

[ ]ix n
Lowpass filter,

Gain = L
Cutoff = π/L

T T’ = T/L T’
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(1) shape is compressed; (2) replicas are removed
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Mathematical Representation

[ ] [ ]

1)  Increase samples  (Time-domain)

, 0, , 2 ,
                           [ ]

0,

                          

    (Frequency-domain)

                          ( ) [

e

k

j
e

nx n L L
x n L

otherwise

x k n kL

X e xω
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   = ± ±  =  
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
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   Note that  [ ]

   :  Essentially, the horizontal frequency axis is compressed.
 

j kL

j n

n k

j n j L

k n

e
j n j Lk

n

k n kL e
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 
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∑ ∑

∑ ∑

∑
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                 The shape of the spectrum is not changed.
   :  At this point, we only insert zeros into the original signal.
                  In time domain, this signal doesn't look like the o

Remark
riginal. 
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Mathematical Representation
( )

[ ]

1)  Let assume ideal lowpass filtering (frequency-domain)
1, / / , sin( )       [ ]     (this is an interpolator)
0, ( )
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Matrix Representation

[ ]
[ ]
[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

Upsample following by filtering by 

0 0 0 0
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1 0 0 0 0
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3 1 0 0 0
4 2 0 0 0
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Linear Interpolation

1 | | / , | |
[ ]

0,lin
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=−∞
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Changing Sampling Rate By a Rational Factor
interpolation decimation:  Sampling period       T MIdea T T

L L
→ →

Remark: In general, 
if the factor is not 
rational, go back to 
the continuous 
signals.
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Summary

Time-domain Frequency-domain

Prefiltering Limit bandwidth  Ωs>2ΩN

Analog sampling (impulse train) Duplicate and shift Ω

Analog to discrete δ(t)  δ[n] Ω ω

Sampling

Time-domain Frequency-domain

Analog to discrete δ[n] δ(t) ω Ω

Interpolation Remove extra copies (Ω)

Reconstruction

Time-domain Frequency-domain

Prefiltering Limit bandwidth

Drop samples (rearrange index) Expand (by a factor M) and duplicate (insert (M-1) copies)

Decimation

Time-domain Frequency-domain

Insert zeros Shrink (by a factor of L)

Interpolation Remove extra copies in a 2π period

Interpolation
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Digital Processing of  Analog Signals

Ideal C/D converter  (approximation) analog-to-digital (A/D) converter

Ideal D/C converter  (approximation) digital-to-analog (D/A) converter
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Prefiltering
Ideal antialiasing filter:  Ideal lowpass filter (difficult to implement sharp cutoff 
analog filters)

Solution:  simple prefilter and oversampling followed by sharp antialiasing 
filters in discrete-time domain

Remark: 

• Sharp cutoff analog filters are expensive and difficult to implement.

• Passband of sharp cutoff analog filter is often non-linear phase because IIR is required.
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Discrete-Time Solution To Avoid Aliasing

 To reduce cost, an antialiasing filter is designed to have a gradual cutoff at Ωc = MΩN (instead of π/T) 
so that this can be easily implemented using analog circuitry

 xa(t) is sampled at T such that                         .  In fact, we want to implement the C/D block at 
sampling rate ΩS >> 2ΩN, e.g. at ΩS =2MΩN so that 

This makes sure that only the “noise” portion of the signal (or unwanted high frequency component) 
is corrupted, but not the actual signal

 This then is followed by a rate reduction by a factor of M that includes a sharp antialiasing filter at ω
= π/M.  This is done because we can easily implement digital filters with sharp cutoff (see Ch. 7). 

 Now we can downsample by M to obtain xd[n].  T and T’ are chosen such that T’= MT and π/T = ΩN.  
This makes it possible for  to be filtered with a cutoff frequency at ω = π/M

 Note that the “noise” is aliased but won’t affect the signal band |ω| < ωN = ΩNT

2
c NT

π −Ω > Ω 
 

2 2 1
2s N N

T
M M

π π π 
= = =  Ω Ω Ω 

Oversample by M: 
T=2π/ΩN vs. 
T=2π/2MΩN
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Oversample by M: 
T=2π/ΩN vs. 
T=2π/2MΩN

When T=2π/ΩN : 
aliasing

ω

( )ˆ jX e ω
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A/D Conversion
Digital: discrete in time and discrete in amplitude

0

Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T seconds.  This is used
because the A/D process is not instantaneous.

                                          ( ) [ ]x t x n= 0

0

0 0

( )

1, 0
                                         ( )

0,

                                         ( ) ( ) ( )

                                                 

n

a
n

h t nT

t T
h t

otherwise

x t x nT h t nT

x

∞

=−∞

∞

=−∞

−

< <
= 


= −

=

∑

∑

( )

0

0

( ) ( ) ( )

Thus, the sample and hold can be regarded as an impulse train modulation followed by filtering with .

This is shown in Fig. 4.46a below.  Thus the frequency response re

a
n

nT t nT h t

h t

δ
∞

=−∞

 − ∗ 
 
∑

( ) ( )
[ ] ( )

0lationship between  and  is

similar to the one between  and t  in the previous section on sampling.
a

c

x t x t

x n x
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Sample and hold
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Quantization

 Transform the input sample x[n] (continuous in amplitude) into 
one of a discrete variable in a finite set of prescribed values
 Quantization is an non-linear operation
 Figure 4.45 can now be represented by Figure 4.47 where the ideal C/D 

converter represents the sampling performed by the sample-and-hold
 The C/D, quantizer, and coder together represent the operation of the 

sample and hold, and A/D converter
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1

Example:  3-bit uniform quantizer
2Figure 4.48 shows a 3-bit quantizer, where 1 3.  
2 2

is defined as the distance between the transition levels

m m
B B

X XB ++ = ∆ = =
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Quantizer Parameters

 Parameters
 Decision/transition levels
 Partition the dynamic range of input signal
 Define as tk, for k = 1, 2, …L/2-1 (using the example in 

Fig. 4.48), L = 8.  Considering only the positive side as 
negative side is identical

 Quantization/reconstruction levels
 The output values of a quantizer; a quantization level 

represents all samples between two nearby decision 
levels

Note: It is actually more precise to express          as           .
[ ] [ ]( ) [ ] [ ]1ˆ ˆ,    if ,  where  is the quantized samplek kx n Q x n t x n t x n+= ≤ ≤

[ ]x̂ n [ ]ˆkx n

t1 t2 t3 t4

L=4

[ ]1̂x n

[ ]2x̂ n

[ ]3x̂ n

[ ]4x̂ n
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Quantization Error for the Uniform 
Quantizer 
 Quantized samples  and the true sample x[n] are different due to the use 

of the quantizer.  This difference can be expressed as the quantization 
error
For the case of the 3-bit quantizer as shown in Fig. 4.48, i.e. B+1 = 3, if 
∆/2 < x[n] ≤ 3∆/2, then  it is clear that                   .  This will hold for 
the 3-bit quantizer with a dynamic range of -9∆/2 < x[n] ≤ 7∆/2

 This implies                     (at most)
 Statistical characteristics of :

 e[n] is stationary (probability distribution unchanged)
 e[n] is uncorrelated with x[n]
 e[n], e[n+1], … are uncorrelated (white)
 e[n] has a uniform distribution

 The preceding characteristics are (approximately) valid if the signal is 
sufficiently complex and the quantization steps are sufficiently small

[ ]
2 2

e n∆ ∆
− < <

ˆ[ ] [ ] [ ]e n x n x n= −

ˆ[ ] [ ]
2

x n x n ∆
= +
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Example • x[n] = 0.99cos(n/10)

• using 3-bit and 8-bit quantizer
(B+1 = 3 and 8).  Xm = 1.

• scale of the quantization error is
adjusted so that the range ±∆/2 is
indicated by the dashed lines

• for 3-bit quantizer, the error is
highly correlated with the quantized
signal. Also the intervals around the
positive peaks, the error is greater
than ∆/2 in magnitude because the
signal level is too large for this
setting of the quantizer parameters.

• For 8-bit quantizer, the error is not 
correlated with the unquantized 
signal.  The range of the error is 
kept between –∆/2 and +∆/2.
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Error Analysis: Mean-Square Error

 MSE of e[n] (= variance if zero-mean)

 Since ∆=Xm/2B, then

 SNR (signal-to-noise) ratio due to quantization

σ2 is the RMS value of the signal amplitude
Xm is a parameter of the ADC and it would be fixed in a practical system

 Remarks
 One bit buys a 6dB SNR improvement
 If the input is Gaussian, a small percentage (0.064%) of the input samples would have an 

amplitude greater than 4σx.  If σx is chosen to be Xm/4, SNR ≈ 6B-1.25 dB.  Then we can avoid 
clipping the peaks of the signal

 For example, a 90 to 96 dB SNR requires a 16-bit quantizer 

{ }
2/ 22 2 2

/ 2

1( )
12e E e e e deσ

∆

−∆

∆
= − = =

∆∫

2 2
2 2

12

B
m

e
Xσ

−

=

2 2 2

10 10 102 2

12 210log 10log 10.8 6.02 20log
B

x x m

e m x

XSNR B
X

σ σ
σ σ

⋅
= = = + −
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Design and Error Analysis of  Quantizers

 Quantizer design
 Optimal quantizer design requirement PDF of data
 Choice of quantizer:

 Uniform
 Popular – easily to do
 Good if the signal PDF is uniform (most likely not optimal in any sense)

 Non-uniform
 Lloyd-max (optimal mean-squared error design) (uniform is a special 

case)
 Given L and pX(x[n]), we desire

[ ]
[ ] [ ]( ) [ ]( )

1
2

ˆ, 1

ˆmin  
k

k k
k

tL

k Xt x n k t

x n x n p x n dxε
+

=

= −∑ ∫
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Lloyd-Max Quantizer (Optimal in MSE sense)
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Lloyd-Max Quantizer
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The optimal MSE quantizer should design  such that it is halfway in between two adjacent
quantization levels
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Decision Level for Lloyd-Max Quantizer 
(Gaussian Distribution)

x[n]

1̂[ ]x n
2ˆ [ ]x n 3ˆ [ ]x n 4ˆ [ ]x n 5ˆ [ ]x n

x[n]

5-level Lloyd-Max quantizer for Gaussian-distributed signal x[n]

Note:  The decision levels are closer together in areas of higher probability
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Uniform Quantizer (Special case of  Lloyd Max)

[ ]( ) [ ]1 ˆSuppose .  Compute  using the relationships derived above for the Lloyd-Max quantizer.X kp x n x n
L

=
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D/A Conversion

 Previously, we’ve discussed how a bandlimited signal can 
be reconstructed using an ideal D/C converter from a 
sequence of samples using ideal lowpass filtering.  The 
reconstruction is represented as:  Xr(jΩ) = X(ejΩT)Hr(jΩ), 
where Hr(jΩ) is our ideal lowpass filter.

 A physically realizable counterpart of to the D/C 
converter is the D/A converter followed by a realizable 
lowpass filter

 Examples of practical filters: zero-order hold and first-
order hold.
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/0,
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T t TTH j
t T
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π
π

π π
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Mathematical Model for D/A

 The D/A takes a sequence of binary 
code words as its input and produces a 
continuous-time output of the form

 Using the additive-noise model above, 
we can represent the effect of the 
quantization as

 Purpose: Find a compensation filter to 
compensate for the distortion caused by 
the non-ideal        so that its output  is 
close to the analog original .   e0(t) can 
only be reduced by increasing the 
number of bits we used for the quantizer. 
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D/A Reconstruction Filter

xDA(t
)[ ]x̂ n D/A 

converter
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In frequency domain
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If  is not an ideal lowpass filter, we design a compensated reconstruction filter,
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where  is the ideal lowpass filter.
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D/A Reconstruction Filter
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Overall System

Compensated 
reconstruction

Xa(jΩ) H(ejΩT)
Digital 
filter

Ho(ejΩT)
zero-order 

hold

Ya(jΩ)Haa(jΩ)
Antialiasing 

filter
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The frequency response of the effective filter is
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