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EEEC20034: Intro. to Digital Signal
9 ' Processing



Periodic Sampling

Ideal continuous-to-discrete-time (C/D) converter

X:(t) —» C/D ——»X[Nn]
Continuous-time signal: x.(t)

Discrete-time signal: x[n] = x,(nT), -oo < n < oo, T: sampling period

In theory, we break the C/D operation in two steps:

1. ldeal sampling using “analog delta function (Dirac delta function)”
« Can be modeled by equations

2. Conversion from impulse train to discrete-time sequence
* Only a concept, no mathematical model

In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D operation.
This circuitry is one piece; it cannot be split up into two steps

s(t)

C_:onversion _from
Xc(t) impulse train to _>x[n] — xC(nT)

discrete-time
Xs(t)
= EEEC20034: Intro. to Digital Signal
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Ideal Sampling — Time Domain

X:(t) —»

Sampling

—> X(t)

Ideal sampling signal: impulse train (continuous-time signal)
= 5(t—nT), T:sampling period

Continuous - time signal: x, (t)

Sampled (continuous - time) signal: x, (t)

X (t)=x, (t)S(t) =

_Zx
:Zn:xc
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Ideal Sampling — Frequency Domain

Note that s(t)eS(jQ):z_I_—ﬂZﬂQ—kQS), where Q_ =2_|_—7T
k
Step L. Ideal sampling (all in analog domain)

Xs(jQ):%XC(jQ)*S(jQ):%XC(jQ)*Z(S(Q—kQS)

k

=%Z X, (jQ)*5(Q-k,)
k
sifting B:operty

= IXx(ie-ke) @

k

Remark: Q: analog frequency (radians/sec)
w: discrete (normalized) frequency (radians/sample)

Q=—; —r<w<r, —£<Q<Z
T T

®
=
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Step 1 (contd)

The sampled signal spectrum is the sum of shifted copies of the original.
Remark: In analog domain x(t) y (t)

< zi X (jQ)*Y (jQ), X, (j€) can also be expressed as:
T
XS(jQ)zjxS (t)e‘jmdt=IZxc(nT)5(t—nT)e‘jQ‘dt
t t n
. —jot
_Zn:xc(nT)_[té(t—nT)e‘ dt
=2 % (nT)e " (**)

We also express X (') as:

X(ej“’)=2x[n]e‘j”” =>"x,(nT)e " ()

n

EEEC20034: Intro. to Digital Signal
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Step 2: Analog to Sequence (Analog to
Discrete-Time)

Comparing (**) and (***), we see that X (e'”) is equivalent to X, (¢') if @ =QT, so that

X, (jQ)=X(e*) =Xx(e"T)

0=QT

- 3]

No mathematical model. The spectrum of x, (t), X, (jQ) has the same spectrum as

Finally, from (*) we have

x[n] and X ('), respectively.

X (') is a frequency-scaled version of X ( j<2)

X (jQ)=X(e)

0=QT
Since X(ejQT):TlZXC(j(Q—kQS)), thus

e

Remark: In time domain, x, (t) and x[n] are two very different signals but have similar spectra in frequency domain.

EEEC20034: Intro. to Digital Signal
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Aliasing

Two cases

o Noaliasing: Q. > 2 Q,

o Aliasing: Q. <2 Q,, where Q is the highest nonzero frequency
component of X_(j€2).

After sampling, the replicas of overlap (in frequency domain). That is, the
higher frequency components of overlap with the lower frequency

components of (0 R

Tt -
T
U FT U FT
+ X () 4 X(9Q)
— 5
Qn Qs
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Nyquist Sampling Theorem

Let x(t) be a bandlimited signal with X (j€2)=0 for |Q| >
Q. (1.e., no components at frequencies greater than Q)
Then x(t) 1s uniquely determined by its samples
X[n]=x.(nT), for n=0, £1, £2, ..., If Q.= 24T > 2Q),,.
(Nyquist, Shannon)

o Nyquist frequency = Q,, the bandwidth of signal

o Nyquist rate = 2Q,,, the minimum sampling rate without
distortion. (In some books, Nyquist frequency = Nyquist rate.)

Undersampling: Q, < 2Q),
Oversampling: Q> 2Q),

' EEEC20034: Intro. to Digital Signal
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Reconstruction of Bandlimited Signals

Perfect reconstruction
o Recovers the original continuous-time signal without distortion,

e.g. ideal lowpass (bandpass) filter

Conversion

from segence | Xs(Y) | Reconstruction
X[n] —» . EEEARAIN —»
[n] to impulse filter %)

train

Based on frequency-domain analysis, if we can “clip” one
copy of the original spectrum, X.(j€2), without distortion,
we can achieve perfect reconstruction. For example, ideal
lowpass filter, h.(t), can be used as a reconstruction filter

Note that x(t) Is an analog signal

' EEEC20034: Intro. to Digital Signal
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Signal Reconstruction Derivation

X, (t) > sampling — X (1) = Z X(nT)o(t—nT) — sequence conversion — x[n]

X[n] — impulse conversion — X (t) = Z X[n]o(t —nT) — reconstruction — X, (t)

X (t) = X, () *h (t) = j{ i X[N]S(A—nT)h (t —ﬂ)}di

N=—o0

- z{x[n]j(su —nT)h,(t —/’t)dl} = x[nlh.(t-nT)

n

Taking the Fourier transform of x, (t), we have

X, (j) = 3 X[JH, (j)e ™ = Hr(jQ){Zx[n]ejm”}

n

=H, (jQ)X (&)

=H, (jQ)X (! )=H, (jQ)X (jQ)

o=QT

EEEC20034: Intro. to Digital Signal
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‘ Ideal LLowpass Reconstruction Filter

T —x/T<Q<x/T
0 otherwise

Then: x, (t)Zx[n]S'nr(tTnT)}

z(t—nT)
T

_ sin(zt/T)

< h() 7t/T

Given: H () :{

n

B t[5)» EEEC20034: Intro. to Digital Signal
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Discrete-Time Processing ot Continuous-

Time Signals (DTPCTY)

X[n] | Discrete-time n
X,(t)—»{ CID |—>» system il ]+ DIC —— V(1)

. LHW)J P

Heff(j Q)
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DTPCTS

If this is an LTI system
@ x[n]->y[n]: ¥(e")=H(e")X (e*)

@ x>0} x(e)- 2312224

3 y[n] - v, (1): Y, (iQ)=H,(jQ)Y (")
@) x. (1) > >, (1)
Y, (JQ)=H, (JQ)H (e"7) X ()

27k
=H, (JQ)H ()= ZX(Q— ?j
If H, (jQ) is an ideal lowpass reconstruction filter, then
Yr(jQ)_{H(ejQT)XC(jQ), |Q|<7z_/T
0, otherwise
If other words, if x, (t) is bandlimited and is ideally sampled at a rate above the Nyquist rate,
and the reconstruction filter is the ideal lowpass filter, then the equivalent analog filter has the
same spectrum shape of the discrete-time filter.
HE""), |Q<z/T
0, otherwise

Heff (JQ) _{

EEEC20034: Intro. to Digital Signal
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Equivalency between H(el®) and H «(jQ2)

In order to have the above equivalent relation between
H(el®) and H_x(j€2), we need

Q

Q

Q

Q

The system to be LTI
The input to be bandlimited

The input to be sampled without aliasing and the ideal impulse
train to be used in sampling

The ideal reconstruction filter to be used to produce the analog
output

In practice, the above conditions are only approximately
valid at best. However, there are methods in designing
the sampling and the reconstruction processes to make the
approximation better.

= EEEC20034: Intro. to Digital Signal
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Figure 413 (a) Fourier transform of a bandlimited input signal. (b} Fourier
transform of sampled input plotted as a function of continuous-time frequency
€. (c) Fourier transform X (&/**) of sequence of samples and frequency response
H (e!®) of discrete-time system plotted vs. w. (d) Fourier transform of output of
discrete-time system. () Fourier transform of output of discrete-time system and

frequency response of ideal reconstruction filter plotted vs. 2. (f) Fourier transform
of output.
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Design of Discrete-Time Filter H(¢/%)

» One way to design the discrete-time filter is by first obtaining the impulse
response of the analog filter h (t), then simply sample that in the time domain to
obtain h[n]. However, from the expressions above, H(j<2) = H (), for |Q| < AT,
and 0 otherwise. The design problem becomes

Desire: H,, (jQ)=H_(jQ) (because we want the entire DTPCTS system to
approximate H ( jQ)) or specifically

H (eja’) =H, (J—a)j, ‘a)‘ <
T
and with further requirement that T be chosen such that

H, (jQ)=0, ‘Q‘Z%. (1)

EEEC20034: Intro. to Digital Signal
F  Processing
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Design of Discrete-Time Filter H(¢/%)

But, what we actually have:
In the time domain, from sampling, we know that

h[n]=h,(nT) (t1)
So in the frequency domain, we have

Then from (1), we have

o 1 jo
A(er)=2r (2] jolse
However, we want
H(ejw):Hc(j$j, for |e| < 7
Then modifying (1) and (T11) to account for the scale factor T
H(ejw):Hc(j$j, for |e|< 7

h[n]=Th,(nT)

Therefore, the impulse response of the discrete-time system is a scaled, sampled version of h, (t)

EEEC20034: Intro. to Digital Signal
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Continuous-Time Processing ot Discrete-

Time Signals (CTPDTYS)

X.(t) | Continuous- y.()
X[N]—> DIC | {ime system —» CD [—yn]

. LWJ P

H(el®)

Eilsyy EEEC20034: Intro. to Digital Signal
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System Equations for CTPDTS

X (jQ) =TX ("), for |0 <$
Y_(jQ) = H, (jQ)X.(j). for | <$
Yy =1y (jﬂj, for |o|< 7
T olT
SN | . @ . @ . @ i
= Y(e ):?Hc(j?jxc[j?jzHc(j?j)((e] ), for || < 7
= H(e")=H (jgj for |o| <7z
T
: 1 jo o
since =X, | = |=X(e')
Tl T
or equivalently H (e ) =H,(jQ), for |Q <$

EEEC20034: Intro. to Digital Signal
F  Process ing

21



Example: Non-Integer Delay

Let y[n] = x[n-4], where AeR.
No formal meaning in the time domain, but we can interpret this in the
frequency domain if we let

H(el?) = ele4 for |o|<r,
or equivalently,
H(el") = ed14T=H (jQ), for | A<T.
Therefore, y(t) = x(t-AT). With this, then if A=1/2, then we can interpret y[n]

as a bandlimited mterpolatlon halfway between the mput sequence values since
y[n] is just a sampled version of y,(t).

Since y[n] and x[n] are sampled version of y (t) and x.(t), respectively, therefore,

y[n]=y,(nT)=x,(nT —AT)
sin| 7 (t—AT —KkT)/T |
2= A sy
sin[;:(n—k—A)l

:;X[ ] z(n-k-A)

= EEEC20034: Intro. to Digital Signal
F Processing 22
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‘ Example: Non-Integer Delay

So

_ sin 7Z'(n_A)
z(n-A)

h[n]

Xc(t)

Ye(t) = Xc(t-4T)

y[n] \

.............. \

T

> n

, for —o<n<ow,ne’Z.

Hielsy EEEC20034: Intro. to Digital Signal
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Changing of Sampling Rate Using

Discrete-Time Processing

ldea:

X, (1)

(T —  x[n]=x.(nT)

| 5T = xn]=x(nT")

Original sampling period: T
New sampling period: T, T#T'

EEEC20034: Intro. to Digital Signal
F  Processing
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Sampling Rate Reduction By An Integer Factor

Sampling rate compressor:
T'=MT, where M is an integer

Xq [n]=x[nM |=x, (nMT)

X[N]—» M —— X4[n] = x[nM] = x,(hMT)

Tl 2 AN
e 2 1
I T
/\/ D li
‘ U ownsampling Tixt(jﬁ)
( """" ‘[ ______ - /1’ N ; /
Sy AN
T,=MT; 27 1

Aliasing: If the original signal BW is not small enough to meet the Nyquist rate
requirement, prefiltering is needed.

EEEC20034: Intro. to Digital Signal
F Processing 25
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‘ Frequency-Domain Representation

1, n=0,tM,12M,...

i , SO
0, otherwise

Since x, [n]=x[nM]. Define a sampling sequence s, [n] :{

that x, [n] = x[n]s,, [n]:{;‘[”]’ n=0,+M,£2M,...,

, otherwise
1960 ' yarez)]
11l
1 SOOO0 A
0 10 20 30 40 50
|G i G i i Gt
s
':E 0.5
O e S a s s Lo o L c e S cnd s e cead
0 10 20 30 40 50
10— T I 4
<, ommTw?memmmmmm%emmﬂ
% o) J) l (L (1_, V)
-1 2—o—3
0 10 20 30 40 50
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‘ Frequency-Domain Representation

e =X [n]=x[nM]=x[nM]
So the downsampling operation involves zeroing out samples in x[n] AND compressing
the resulting sequence x, [nM | into x, [n]

e We like to express X, (z) to X (z) by using the intermediate signal X, (z)

e SoX,(z)=> x[nM]z™". We want to express right-hand side in terms of X (z). Can

n

use the relation x, [nM | = x[nM | to do that.

Xq(z)=> x[nM]z" :Zn:xs [nM]z™"

n

1o . . ; : . . X
% 0 T T T o [ T
1 ; :

YR

) 2 4 6 8 10 12 14 16

EEEC20034: Intro. to Digital Signal
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Frequency-Domain Representation

e Since zero values of x, [n] are going to be discarded:

Zx nM | Zx [k]z ™™
_XS( 1/|v|)

0]2° =x,[0], k=0
1] 27 =0.27"=0, k=1
2]z 27?7 =0.272"=0, k=2
3]27%° =x,[3]z, k=3
corresponds to only correct nonzero sample of x, [n] which are also the same samples in
x[n]

e Since x,[n]=x[n]s,, [n], we can express X (z) in terms of X (z) as

z):zn:sM [n]x[n]z

EEEC20034: Intro. to Digital Signal
F Processing 28
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Frequency-Domain Representation

Xs(z):zn:s,v, [n]x[n]z™"
Xd(z):zn:xs[nM]z‘” =Zk:xs[k]z""“" =X, (2™

e Note that s, [m]=> &[m—pM |. Define the DFT of s, [m] as

EEEC20034: Intro. to Digital Signal
F Process ing 29



Frequency-Domain Representation

This implies X, (ej“’) =X, (ejw/M )
ML 27k M — (a) Zﬂk)
Z (ejw/M JM j Z [ ]
k=

e X, [n] is identical to the sequence that would be obtained from x, (t) by using the

sampling period T'= MT.

o If X, (jQ)=0, for |Q > Q,, then x, [n] is an exact representation of x_ (t) if % v Q,

l.e. sampling rate is reduced by a factor of M without aliasing if the original rate was at
least M times the Nyquist rate of if the bandwidth of the sequence is first reduced by a
factor of M by DT filtering

* X, (ej“’) Is equal to M copies of X (ej“’) scaled by factor M and shifted

by 27. That is, first we stretched the x-axis by a factor of M, then to produce the copies,
we modulate the stretched signal by an integer multiple of 2.

= EEEC20034: Intro. to Digital Signal
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‘ Frequency-Domain Representation

<
[REY

i . 1 M -1 o _JLﬂk 1 — j w—-27k
Xd(ej ):Xs(e‘ /M)Zﬁzgx(e’ Mg "M ]zﬁkox(e( v jJ

S =22 then Xd(e"“’):iZXC j( @ —27rkj
T MT MT < MT MT

EEEC20034: Intro. to Digital Signal
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The downsampled spectrum = sum of shifted replica of the original (M=2)

X.(j0)
1

—Oy Oy o

{a)

(jO) = X (e - 272-
J[Fumme Nyquist theorem: Q, = T >2Q),
1
1 I . _ 27
-? —Qy [ ? i3 If QS = — = 4QN (M = 2)
(b) T
X{eiw) T
o[ = oy =QT ==
T 2
J, L - 1 ’I — . . T . . .
~. Bandlimit x_ (t) by — to avoid aliasing
2T
: d“_,jmlz;l[_ (em2) 4 X(eitw-22)2)) 7T
(=2 A orx[n] by =
L 2
MT
- . = In general, bandlimit x[n] by a LPF with
(d)
T .
cutoff frequency @, = — and amplitude = 1
(M=12) . M
1
1
i|1 l | 7 | -
-z - = =T 0=

{e)

Figure 4.21  Frequency-domain illustration of downsampling.

= EEEC20034: Intro. to Digital Signal
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Graphical illustration for M = 3 (no aliasing)

X(e!®)
"N A A é A A
: : R N : :
-6 —4x 2 4x Bx

L L]
—2x —:—%u % T

(b) /\ i xte'3) /\

.4
(d) A{a‘ 3 )
+ ; —»
-2 ix "
Adding (b), (c) and (d)
(&)

b 1
- 4 6n

Figure 4.1-5 Demonstrat ing the frequency-domain effect of decimation with
M=3

e
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Downsampling with aliasing

X (o)
1
L Qy o
(@)
X(efw)
1
T
/|\ | |
=2 —1r —tuy we=T 2w w=0T
=K
2
(b)

Hale™)
1
| 1 | 1
=2 - i w =T T 2w w= 0T
M M
(d)
L | Fe) = Hyte™)xier)
T
1 m | 1 | 1 | | m |
2w —r _m m_w L 2w w=0T
i OM 3
(2)
(M=3)
| | | 1
27 —T w 2w w=0T"

Figure 4.22 (a)—(c) Downsampling with aliasing. (d}-(f) Downsampling with
prefiltering to avoid aliasing.
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How Do We Avoid Aliasing?

To avoid aliasing => gM <«

s mea™ KL s x, 0] = %[ ]
Cutoff = #/M

General System for Sampling Rate Reduction by M
X[n]= X, x[k]n[n-k]

= X, [n]=X[Mn] =3 x[K]h[Mn K]

Convolution matrix Eg.M = 2 h[n]=[1 2 3 4 5], L, =10
h[O] 0 0 0 0 0 _ -
hM] hM-1 h[M-2] 0 0 0 1000000000
L _|N2M] h2M -1 h2M -2] h2M-3] h2M-4] 0 3210000000
N 0 h[2M]  h[2M -1] h[2Mm-2] h[2M-3]| H,=|5 4 3 2 1 0 0 0 0 O
0 0 0 0 h[2M]  h[2M -1] 0054321000
Lo 0 0 ° o heMI 0000543210

EEEC20034: Intro. to Digital Signal
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Is Decimation Time-Invariant?

x, [n]= %[nM ] =¥ x[K]h[nM —K]

k

Suppose we delay x[n] by ny = X[n]=> x[k—ny]h[n-k],

k

letp=k-n, = k=p+n,, X[n]=> x[p]h[n-n,-p]
:xd[n]:zk:x[p]h[nM —n, —K]

Suppose we delay after: = x,[n—n,]=> x[k]h[nM —n,M —K]

k
-.Unless n, on top equals integer multiple of M (n,M at the bottom), else decimation is

time-varying (it is block-invariant)

From this, it is clear that the rate reduction system above is time-varying. To see this,
input the signal x[n-n,] into the above rate reduction system and you will see that the
result does not match xy[n-n,], unless n, is a multiple of M.

EEEC20034: Intro. to Digital Signal
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Sampling Rate Enlargement By An Integer Factor

Sampling rate expander:
T'=T/L, wherelL isan integer

X, [n] Lowpass filter,
X[n]—’ TL —> Gain=L —> X [n]
Cutoff = #/L
T T =T/L T

| ) - — S
~__ " | Tl
. U Upampling
I N
~ Q
T,=Ty/L %r

EEEC20034: Intro. to Digital Signal
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(1) shape is compressed; (2) replicas are removed

X.(j9)

(a)

X(em)

=

(b)

X.(e™) = x(e™k)

1
? (L=2)
] l l l
_A= izm = z I= 4w _ 4 w=0T
L L L L L L~
(c)
Hylek)
L
| | |
27 - _m - T 2w w= 0T
L L
(d)
Xle)
1L
T
] l
27 - = K ™ 2w w=0T
L L

(e}
Figure 4.25 Frequency-domain illustration of interpolation.
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Mathematical Representation

1) Increase samples (Time-domain)

x{ﬂ] n=0,+L,+2L,---
X.[n] = L

O, otherwise

=> x[k]s[n—kL]

k
(Frequency-domain)

X, (e)) = Z(Z X[k]S[n kL] |e "

:Zk:x[k]gznld[n—kL: ej“’”j =X (ej“’L)

_/

S
—e jokL

NOte that 25[n - kL]e_Ja’n — e—ja)Lk

Remark: Essentially, the horizontal frequency axis is compressed.
The shape of the spectrum is not changed.

Remark: At this point, we only insert zeros into the original signal.

In time domain, this signal doesn't look like the original.

EEEC20034: Intro. to Digital Signal
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Mathematical Representation

1) Let assume ideal lowpass filtering (ffrequency-domain)
Hi(ej”)z{l' —rlL<w<rxlL, sin(zn/L)

< hi[n]:

_ (this is an interpolator)
0, otherwise (zn/L)

2) Many ways to develop relationship between x, [n] and x|n]

1stway: x[n]=x,[n]*h[n] and xe[n]:x[%}, forn=0,%+1,+2,...

0] X, [k [n-K] - 2,1 £ | n—k)
=2, x[p]h [n—pL]
2nd way: er[n—p]hi:p:—Z(z [k]6[n-p- kL]jh[p]

p

=;x[k1[ga[n—p—kuhi[p] -Sufe| Zolp-(r-w)]n (]

) ) n[z(n—kL)/L]
_Zk:x[k h[n—kL]= Zx[ ] RV

EEEC20034: Intro. to Digital Signal
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Is Interpolator Time-Invariant?

xi[n]zsz[p]hi[n— pL]
Delay first then transform: x,[n]=> x[p—n,]h[n—pL] letk=p-n,= p=k+n,
= xi[n]zlozlx[k]hi [n—n,L—kL]
Transform first then delay:  x.[n] =ka[ p]h[n-pL]
p
:xi[n—no]:zp:x[p]hi[n—no— pL]

. Similar to the decimator, the interpolator is not time-invariant nnless n, is an integer
multiple of L (n,L at the top). It is block-invariant.
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Linear Interpolation

1-|n|/L, |n|KL
hlin[n] — i
0, otherwise
! hyialn)
‘ 4i5 's s
s ’
T ! I ] ‘ [ I IIT — Figure 4.26 Impulse response for
0 n linear interpolation.

o 1[sin(l/2) |
(&)= | sin(w/2) }

Xl = 3 X[KIh,[n—KL]

k=—0

EEEC20034: Intro. to Digital Signal
Processing

n

n

(b}

Figure 4.27 (a) lustration of linear
interpolation by filtering. (b) Frequency
response of linear interpolator compared
with ideal lowpass interpolation filter.
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Changing Sampling Rate By a Rational Factor

interpolation I decimation M T

Idea: Sampling period T > >
plng p ] 3

Interpolator Decimator
r~————————————————= | r—————————————————— 1
| o |
I Lowpass filter I I Lowpass filter I
I = L = Gain =L ' I »| Gain=1 - M
x[] I x ] | Cutoff = w/L I x;[n] I Cutoff = w/M | %[n] I-Td[”]
| |
i L |
Sampling
period: . T T T ™
L I L L
(a)
Lowpass filter
Gain = L
—_— ff_ > = — J,M —
x[n] x,[n] l]li]lfql-rlf'?ij,::_.}f} ¥i[n] x4[n]
Sampling
period: T r r ™
I L I Remark: In general,
(b) If the factor is not

rational, go back to

the continuous

Figure 4.28 (a) System forchanging the sampling rate by a noninteger factor. (b) Si gnalsl
Simplified system in which the decimation and interpolation filters are combined.
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X (i)
1
=y Ly 0
(a)
Xieh)
1
T
/l\/ \/\
27 -7 T 2w w =0T
(k)
X, (eM)
1 (L=2)
T
| | | |
_dz _im @ n Iz A _a, w=0TL
L L L L L L -
(c)
Hyiei)
¢ (M=3)
L
| 1 1 1
2w -7 o w =T T 2w w =0T/
M M
(d)

—2a - w = {1 TM/L

Figure 4.29 lllustration of changing the sampling rate by a noninteger factor.
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Summary

Sampling
Time-domain Frequency-domain
Prefiltering Limit bandwidth Q.>2Q
Analog sampling (impulse train) Duplicate and shift Q
Analog to discrete &t) 2 Jn] Q2w
Reconstruction
Time-domain Frequency-domain
Analog to discrete d[n] 2 1) > Q

Interpolation

Remove extra copies ()

Decimation

Time-domain

Frequency-domain

Prefiltering

Limit bandwidth

Drop samples (rearrange index)

Expand (by a factor M) and duplicate (insert (M-1) copies)

Interpolation

Time-domain

Frequency-domain

Insert zeros

Shrink (by a factor of L)

Interpolation

Remove extra copies in a 2z period

' EEEC20034: Intro. to Digital Signal
9 ' Processing
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‘ Digital Processing of Analog Signals

Ideal C/D converter = (approximation) analog-to-digital (A/D) converter

Ideal D/C converter = (approximation) digital-to-analog (D/A) converter

D - D]s;:r:iee:llme - e
x (r) x[n] ¥ ¥[n] WA}
T T
(a)
Anti- Samiple , : ; Compensated
I - - Ay .| Discrete-time - DA - :
] a?&fmg - ]?nﬁ.l converter [ ~ system - converter | o Eoonstruetion e
x(1) ET | %) | e Xolr) x|n] ¥ln] Yo (1) flter ¥el1)
H (1) t t f H( j0)
T T T
(b)

Figure 4.41 (a) Discrete-time filtering of continuous-time signals. (b) Digital processing of
analog signals.
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Prefiltering

Ideal antialiasing filter: Ideal lowpass filter (difficult to implement sharp cutoff

analog filters)

=>» Solution: simple prefilter and oversampling followed by sharp antialiasing

filters in discrete-time domain

Anti-

—| aliasing »
x.(1) filter x,(1)

H,,(j{})

i

Diﬂ_n:r:: te-
_rD - time
x[n] system
T

Figure 4.42 Use of prefiltering to

avoid aliasing.

Remark:

¥ [”]r

o

v, (1)

» Sharp cutoff analog filters are expensive and difficult to implement.

» Passband of sharp cutoff analog filter is often non-linear phase because IIR is required.

EEEC20034: Intro. to Digital Signal
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Discrete-Time Solution To Avoid Aliasing

To reduce cost, an antialiasing filter is designed to have a gradual cutoff at Q. = MQ,, (instead of #/T)
so that this can be easily implemented using analog circuitry

X,(t) is sampled at T such that 2?—9 >Qy ., In fact, we want to implement the C/D block at
sampllng rate Qg >>2Q,, e.g. at Q. =2MQ, so that

2t 2z 1[7[

0, 2MQ, M|Q,

This makes sure that only the “noise” portion of the signal (or unwanted high frequency component)
Is corrupted, but not the actual signal

This then is followed by a rate reduction by a factor of M that includes a sharp antialiasing filter at @
= 71M. This is done because we can easily implement digital filters with sharp cutoff (see Ch. 7).

Now we can downsample by M to obtain x,[n]. T and T” are chosen such that T’= MT and AT = Q,,.
This makes it possible for to be filtered with a cutoff frequency at w = #/IM

Note that the “noise” is aliased but won’t affect the signal band || < @ = QT

Sampling rate reduction by M

—_————— e e e —

| |
. har
Simple I amialhfhm I
—| antialiasing > C/D > s
|
|

Y
-—
=

Oversample by M:
T=24Q, Vs.
T=272MQ

x:(1) filter Xalt) x[n] mmtf]t]'[:rw-"-‘Lf I
T |

|
r=5 (a0

Figure 4.43 Using oversampled A/D conversion to simplify a continuous-time
antialiasing filter.

EEEC20034: Intro. to Digital Signal
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Oversample by M:
T=24Q, vs.
T=272MQ

When T=24Q, :
liasing

X_(j1) Simple anti-

aliasing filter
o High-frequency

EEEC20034: Intro. to Digital Signal
Processing

T 1 T~ noise
_—""" Signal - T /
P —]
-0 —Opy O . 0
(a)
Filtered
noise
| |
- -y Ly 0 Q
(b)
L | Xed) e
—_— T = TT.-"-{ﬁr'le\" )
Sharp cutoff T 1
———————— decimation filter —__ Aliased noise  ————————
/|\ \4 |
-2 —wy wy =0T = % 2w w=0T
(c)
X(e™)
T'=MT
l l
—2qr - T 2w w=0T"
(d)
p (VU
Figure 4.44  Use of oversampling followed by decimation in C/D conversion.
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A /D Conversion

Digital: discrete in time and discrete in amplitude

Sample A/D
—| and e
x, (1) hold -"-'.jj.{f,] converter -i\'B[”]
r T

Figure 4.45 Physical configuration for

analog-to-digital conversion.
Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T seconds. This is used
because the A/D process is not instantaneous.

00

X, (t)= 2 x[n]h,(t-nT)

1, O<t<T
ho (t) = .
0, otherwise

0

X, (t) = D X, (NT)hy(t-nT)

N=—o00

- { 3 xa(nT)a(t—nT)}* h (t)

N=—o0

Thus, the sample and hold can be regarded as an impulse train modulation followed by filtering with h, (t)
This is shown in Fig. 4.46a below. Thus the frequency response relationship between x, (t) and x, (t) is

similar to the one between x[n] and x_(t) in the previous section on sampling.

EEEC20034: Intro. to Digital Signal
F  Processing
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‘ Sample and hold

—_——

|
|
|
|
i % Fero-order I
haold ——
X000 Xl apli)

Sample and hold

8(i—nT)

hglt)

-
(a)
xglf)
i x40
< -
| | | | T 12T /
AT 2T aT

Figure 4.46 (a) Representation of an
ideal sample-and-hold.

(b) Representative input and output
signals for the sample-and-hold.

EEEC20034: Intro. to Digital Signal
Processing
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Quantization

I

x,if)

1
Anti- |}

aligsing H— = and |——s=
filter X, (1) hold X0

Sample

H,, (/) |

—

B0

1
1
1
i i Y Compensated
cmi'cfter — Djssrﬂjnt:me mn?r:iter reconstruction
x[n] ¥ ¥[n] ¥l filter
t 1‘ H,( ji1)
T T

Transform the input sample x[n] (continuous in amplitude) into
one of a discrete variable in a finite set of prescribed values
o Quantization is an non-linear operation

o Figure 4.45 can now be represented by Figure 4.47 where the ideal C/D
converter represents the sampling performed by the sample-and-hold

o The C/D, quantizer, and coder together represent the operation of the
sample and hold, and A/D converter

i C/D

f——|

x[n]

Xq(l)
f

T

Quantizer

_h-

x|n]

Coder

Figure 4.47 Conceptual representation
of the system in Figure 4.45.

EEEC20034: Intro. to Digital Signal
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r=00x)
Two's-complement Offset binary
code code
A 011 111
2A 010 110
A ol 101
_a
| | | L2 | | | | 00 100
94 _7A _5A  3A A 34 A 7A 9A &
2 2 2 2 2 2 2 2 2
— A 111 011
—2A- 110 010
—3A 101 0o
e i 100 00
- 2X,, .

Example: 3-bit uniform quantizer

Figure 4.48 shows a 3-bit quantizer, where B+1=3. A= ZET = Xé“
2°" 2

is defined as the distance between the transition levels

Figure 4.48 Typical quantizer for A/D conversion.
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|

L=4

Quantizer Parameters A o

Parameters Al
o Decision/transition levels

Partition the dynamic range of input signal

Define as t,, fork =1, 2, ...L/2-1 (using the example in
Fig. 4.48), L = 8. Considering only the positive side as
negative side is identical

o Quantization/reconstruction levels
The output values of a quantizer; a quantization level

represents all samples between two nearby decision
levels

X[n]=Q(x[n]), ift <x[n]<t,,, whereX[n] is the quantized sample

v

Note: It is actually more precise to express x[n] as % [n] .

' EEEC20034: Intro. to Digital Signal
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Quantization Error for the Uniform
Quantizer

Quantized samples and the true sample x[n] are different due to the use
of the quantizer. This difference can be expressed as the quantization

error e[n] = x[n]—x[n]
For the case of the 3-bit quantizer as shown In Flg 4.48,1.e.B+1 =3, if

A2 < x[n] < 3A/2, then it s clear that -5 <eln<2 . This will hold for
the 3-bit quantizer W|th a dynamic range “of -9A2 < X[n] < 7A/2

This implies [n]= x[n]+5 (at most)

Statistical characteristics of :

o e[n] is stationary (probability distribution unchanged)
o e[n] is uncorrelated with x[n]

o e[n], e[n+1], ... are uncorrelated (white)

o e[n] has a uniform distribution

The preceding characteristics are (approximately) valid if the signal is
sufficiently complex and the quantization steps are sufficiently small

EEEC20034: Intro. to Digital Signal
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EXﬂHlpl@ * X[n] = 0.99cos(n/10)
e using 3-bit and 8-bit quantizer

i | T (B+1=3and8). X =1.

0 ""‘ll l“."'r 1&*‘# | . . -
LL | W M o scale of the quantization error is
’ © v > adjusted so that the range +A/2 is
\E | indicated by the dashed lines

B B — S =0 «for 3-bit quantizer, the error is

i S l 00 s. highly correlated with the quantized

| " | signal. Also the intervals around the
sl ulnh o fitd el iilhpg) o positive peaks, the error is greater
N l“ Y1 than A2 in magnitude because the
o T o o0 on - gignal level is too large for this

| | setting of the quantizer parameters.

“‘ XTI (AP ALY T?TcTTTTH AR SR TAE TSN »Tﬂ'*_ ‘ _ _ .
"EEI R R O L R Lok W 1 For 8-bit quantizer, the error is not

0 % ™ . correlated with the unquantized
@ signal. The range of the error is
] = 099 cas(m 10, () Quantzed samples f th sosine wavelorm in par kept between —A/2 and +A/2.

(a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of
the signal in (a). (d) Quantization error sequence for 8-bit quantization of the
signal in (a).
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FError Analysis: Mean-Square Error

MSE of e[n] (= variance if zero—mean)

2
=E{(e-®)|= ji; Zide:?—z

Since A=X,/28, then

272Bx2
D)
SNR (signal-to-noise) ratio due to quantization
2 12 228 2 X
SNR =10log,, 2% =101log,, o= =10.8+6.02B - 20log,, —™
O- m X

o? is the RMS value of the signal amplitude
X, Is a parameter of the ADC and it would be fixed in a practical system

Remarks
o One bit buys a 6dB SNR improvement

o Ifthe input is Gaussian, a small percentage (0.064%) of the input samples would have an
amplitude greater than 40 If o, is chosen to be X_/4, SNR = 6B-1.25 dB. Then we can avoid
clipping the peaks of the S|gnal

o Forexample, a 90 to 96 dB SNR requires a 16-bit quantizer

EEEC20034: Intro. to Digital Signal
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Design and Error Analysis of Quantizers

Quantizer design
o Optimal quantizer design requirement PDF of data

o Choice of quantizer:

Uniform
0 Popular —easily to do
0 Good if the signal PDF is uniform (most likely not optimal in any sense)

Non-uniform

0 Lloyd-max (optimal mean-squared error design) (uniform is a special
case)

Given L and py(x[n]), we desire

L Ya

min_ &= Zj x[n]-%,[n]) px( [n])dx

terk[n] k=1 t,

EEEC20034: Intro. to Digital Signal
F  Processing 59



Lloyd-Max Quantizer (Optimal in MSE sense)

Note that

= €[ (x[n]-%[n])’ |= [, (x[n]=%[n])" b, (x[n])x
Therefore, the optimal MSE quantizer needs to minimize ¢, i.e.
. . ~ 2
miny &= min | (<[] =X[n)" by (x[n]) o
Assuming that p, (x[n]) is Gaussian, then

I ( [n]- xk[n]) px [n] dx j x[n]- xo[n) px( [n] dx+_f [n]—f<1[n])2 px(x[n])dx+...+'[:

=0

S [ (x{)- % ) (x[n])

k=1

de

= = g e 5[ o (e [ (x[n] =&, )" i (x{]) o =0

.(t xk_l[n]) Py (X [n])l—(tk—ik[n]) p, (x[n])=0 ‘Recall that

- —i FO
EEEC20034: Intro. to Digital Signal
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Lloyd-Max Quantizer

Note that
=Rl o (0 (6 [n]) e () =0
= (t % [n]) = (t % [n])
t.—%X.[n]=t.-%[n] = X.[n]=%][n] (impossible!)

t.— % [n] =—(tk _;(H[n]) ot = >A<k_1[n]2+ % [n]

.. The optimal MSE quantizer should design t, such that it is halfway in between two adjacent

quantization levels

de e A
dx [n] 2[ " (x[n]-% [n]) py (x[n])dx =0

Ji x[n] o (x[n]) e

o py (X[n])dx

[

.. The optimal MSE quantizer should design X, [n] such that it is at the centroid of its region

EEEC20034: Intro. to Digital Signal
F  Processing
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‘ Decision Level for Lloyd-Max Quantizer
(Gaussian Distribution)

X[n]

»X[N]

lT!:"l

x,[n] %,In] %[ %,nl %[n]

5-level Lloyd-Max quantizer for Gaussian-distributed signal x[n]

Note: The decision levels are closer together in areas of higher probability

EEEC20034: Intro. to Digital Signal
& F Processing
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‘ Uniform Quantizer (Special case of Lloyd Max)

Suppose p, (x[n]) = % Compute X, [n] using the relationships derived above for the Lloyd-Max quantizer.

EEEC20034: Intro. to Digital Signal
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D/A Conversion

Previously, we’ve discussed how a bandlimited signal can
be reconstructed using an ideal D/C converter from a
sequence of samples using ideal lowpass filter_i&g. The
reconstruction is represented as: X (J£2) = X(e*")H, (J£),
where H_(J£2) is our ideal lowpass filter.

T
T, |Q|<? sin(7t/T)

Hr(jQ): atIT

0, |Q|>£
A physically realizable counterpart of to the D/C
converter is the D/A converter followed by a realizable
lowpass filter

Examples of practical filters: zero-order hold and first-
order hold.

EEEC20034: Intro. to Digital Signal
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Mathematical Model for D/A

The D/A takes a sequence of binary
code words as its input and produces a
continuous-time output of the form

0

Xoa) = 3 X% [n]hy(t—nT) = 3" K[nlhy (t—nT)

n=—0

= quantized input * impulse response of

zero-order hold (see p. 52) DiA
Using the additive-noise model above, Al LComener [0
we can represent the effect of the @
quantization as
Kou(®)= My (1) + el (1) e A B
=X () + &) (b)
Purpose: Find a compensation filter to Convertsr (5) Repraseniaton I erms o

compensate for the distortion caused by wasroorder hold
the non-ideal h,(t) so that its output is

close to the analog original . e, (t) can

only be reduced by increasing the

number of bits we used for the quantizer.

EEEC20034: Intro. to Digital Signal
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D /A Reconstruction Filter

/ Xoa(t Compensated )
X[n]—> cor?/:r\ter ) » Reconstruction — % (t)

x Filter H, (jQ)

ul

In frequency domain

X,(jQ) = 3 x[nlH o(jQ)e =" {i x[n]e—“’”jH J(IQ) = X @)H ,(j)

N=—0o0 N=—00

since x(e"‘”)=li Xa(j(Q_ZTLkB

T
= Xo(jQ):% > Xa[j(Q—ZTLkDHO(jQ) as the interpolation filter H, (jQ) is used to remove the replicas

IfH, ( jQ) is not an ideal lowpass filter, we design a compensated reconstruction filter,

.0 oy

where H, ( jQ2) is the ideal lowpass filter.

EEEC20034: Intro. to Digital Signal
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‘ D /A Reconstruction Filter

Zero-order
hold

Ideal interpolating

| flter H,(j{})

Iy

Then the output of the filter will be x, (t) if the input is x, (t)
Zero - order hold:
1, O<t<T ) 2sin(QT/2) _.
h(t)=<" < H,(jQ)= g 19T/2
() {O, otherwise 0 (192)
Thus, the compensated reconstruction filter is

IH21>/
L

H, (jQ)=1sin(QT/2)
0, | Q> 7/T
Remark: A "practical filter cannot achieve this approximation

Q< 2IT

_m 0 z r O
T T T
(a)
|5, (j)
1
_m kil 0
T T

(b)

Figure 4.54 (a) Frequency response
of zero-order hold compared with ideal
interpolating filter. (b) |deal
compensated reconstruction filter for
use with a zero-order-hold output.

EEEC20034: Intro. to Digital Signal
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Overall System

X,()| Haal)
—P Antialiasing
filter

—»

H(el<T)
Digital
filter

>

H,(e-7)
zero-order
hold

—>

H, (iQ)
Compensated
reconstruction

Y2092
—»

The frequency response of the effective filter is
Her (1) =H, (1) - H, (JQ) - H (") - H,, (i).

The power spectrum density of the quantization error at the output of the compensated reconstruction

filter is (from stochastic processes)

P,(JQ) =|A, (J) - Hy(jQ)- H(e™)| o7,

2
where o _A
12

EEEC20034: Intro. to Digital Signal
F  Processing

68



	Sampling of Continuous-Time Signals
	Outline
	Periodic Sampling
	Ideal Sampling – Time Domain
	Ideal Sampling – Frequency Domain
	Step 1 (contd)
	Step 2: Analog to Sequence (Analog to Discrete-Time)
	Aliasing
	Nyquist Sampling Theorem
	Reconstruction of Bandlimited Signals
	Signal Reconstruction Derivation
	Ideal Lowpass Reconstruction Filter
	Slide Number 13
	Discrete-Time Processing of Continuous-Time Signals (DTPCTS)
	DTPCTS
	Equivalency between H(ej) and Heff(j)
	Slide Number 17
	Design of Discrete-Time Filter H(ej)
	Design of Discrete-Time Filter H(ej)
	Continuous-Time Processing of Discrete-Time Signals (CTPDTS)
	System Equations for CTPDTS
	Example: Non-Integer Delay
	Example: Non-Integer Delay
	Changing of Sampling Rate Using Discrete-Time Processing
	Sampling Rate Reduction By An Integer Factor
	Frequency-Domain Representation
	Frequency-Domain Representation
	Frequency-Domain Representation
	Frequency-Domain Representation
	Frequency-Domain Representation
	Frequency-Domain Representation
	Slide Number 32
	Slide Number 33
	Slide Number 34
	How Do We Avoid Aliasing?
	Is Decimation Time-Invariant?
	Sampling Rate Enlargement By An Integer Factor
	Slide Number 38
	Mathematical Representation
	Mathematical Representation
	Is Interpolator Time-Invariant?
	Matrix Representation
	Linear Interpolation
	Changing Sampling Rate By a Rational Factor
	Slide Number 45
	Summary
	Digital Processing of Analog Signals
	Prefiltering
	Discrete-Time Solution To Avoid Aliasing
	Slide Number 50
	A/D Conversion
	Sample and hold
	Quantization
	Slide Number 54
	Quantizer Parameters
	Quantization Error for the Uniform Quantizer 
	Example
	Error Analysis: Mean-Square Error
	Design and Error Analysis of Quantizers
	Lloyd-Max Quantizer (Optimal in MSE sense)
	Lloyd-Max Quantizer
	Decision Level for Lloyd-Max Quantizer (Gaussian Distribution)
	Uniform Quantizer (Special case of Lloyd Max)
	D/A Conversion
	Mathematical Model for D/A
	D/A Reconstruction Filter
	D/A Reconstruction Filter
	Overall System
	Slide Number 69
	Frequency-Domain Representation
	Frequency-Domain Representation



