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Frequency Response of  LTI Systems

 An LTI can completely be characterized in the time domain by its 
impulse response (assuming no initial conditions)

 Time: y[n] = x[n]*h[n]
 z-transform: Y(z) = X(z)H(z)

 H(z) is the system function or transfer function
 Magnitude or gain

 Phase response or phase shift

 Be careful of which quadrant you are referring to (more later)
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Frequency Response of  Ideal Lowpass 
Filter
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Frequency Response of  Ideal Highpass 
Filter
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Remark: This definition includes the phase specification.  That is, zero phase for 
all frequencies.  Practical physical systems cannot achieve this specification. In 
addition, it is noncausal and needs infinite input samples to compute the current 
output  they are not computationally realizable. Causal approximations to 
ideal frequency-selective filters must have a nonzero phase response (more on 
this later).
Typical filters include: lowpass, highpass, bandpass,bandstop, all-pass filters
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Frequency Response of  Phase Delay
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Linear Phase and Group Delay
Linear phase: The phase response is a linear function of ω (passing through the
origin). A frequency-selective filter with a linear phase is often acceptable and
can be approximated by a practical system. That is
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Group delay is a convenient measure of the linearity of the phase. The basic
property of group delay relates to the effect of the phase on a narrowband signal.
It is clear for the ideal delay, τ(ω) = nd, is a constant (independent of ω).
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Narrowband Signals in Communication Systems
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s[n] is a slowly-varying envelope in x[n].
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Narrowband Signals in Communication Systems

ω0-ω0 π-π ω

X(ejω)

ω0-ω0 π-π
ω

∠H(ejω)
Slope = -nd

Slope = -nd

-φ0

φ0

We see that the time delay of the envelope s[n] of the narrowband signal x[n]
with Fourier transform centered at ω0 is given by the negative of the slope of the
phase at ω0. The deviation of the group delay from a constant indicates the
degree of nonlinearity of the phase.

Remark: arg[H(.)]: continuous phase (|value| < π or > π)

ARG[H(.)]: principal value (|value| < π)
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Example
Consider a filter with group delay and frequency response magnitude shown in
Figure 5.1a and b, respectively
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Example (contd)
Figure 5.2, shows an input signal and its spectrum. Note that the input consists of
three consecutive narrowband pulses, at frequencies ω = 0.85π, ω = 0.25π, ω = 0.5π.

ω = 0.5π

ω = 0.25πω = 0.85π
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Example (contd)
In Figure 5.3, it shows the resulting output signal.

ω = 0.5π ω = 0.25π

Since the filter has considerable attenuation at ω = 0.85π, the pulse at that
frequency is not clearly present in the output. Also, since the group delay at ω
= 0.25π is approximately 200 samples and at ω = 0.5π is approximately 50
samples, the second pulse in x[n] is delayed by about 200 samples and the third
pulse by 50 samples.
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Systems Described by Linear Constant 
Coefficient Difference Equations
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Note:
• X(z) and Y(z) have overlapping regions of convergence.
• (1-ckz-1) contributes a zero at z=ck and a pole at z = 0.
• (1-dkz-1) contributes a pole at z=dk and a zero at z = 0.



EEEC20034: Intro. to Digital Signal 
Processing 15

BIBO Stability and Causality (Review)
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Inverse Systems

H(z) Hi(z)X(z) X(z)
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So poles of H(z) zeros of Hi(z)
So zeros of H(z) poles of Hi(z)
Hi(z) is causal and stable if all zeros of H(z) are inside the unit circle

Minimum phase
Both poles and zeros are inside the unit circle (more on this later)
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Impulse Response of  Rational System 
Functions (IIR)
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Impulse Response of  Rational System 
Functions (FIR)
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FIR Example
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Frequency Response for Rational System 
Functions: Magnitude
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Frequency Response for Rational System 
Functions: Magnitude
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Frequency Response for Rational System 
Functions: Phase and Group Delay
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Phase Ambiguity
?  Phase ambiguity.  The real filter phase is continuous and can be greater

than  or smaller than .  However, the calculated phase is the principal value,
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Example: Single Zero or Pole
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Example: Single Zero or Pole (contd)
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Frequency response of the single zero system by
varying the parameter r.

Frequency response of the single zero system by
varying the parameter θ .
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Magnitude and Phase: Vector Geometry
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As seen in the single-zero/pole example,

• the magnitude of the system can be computed
by noting the length of the vectors.

• the phase can be computed by noting the angle
of the zero and pole makes with the vector.
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Example: Second-Order IIR System (Conjugate Poles)
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Figure 5.15:  Pole-zero plot of two poles example.
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Example: Second-Order FIR Systems 
(Conjugate Poles)

( ) ( )( )1 1 1 2 21 1 1 2 cosj jH z re z re z r z r zθ θ θ− − − − −= − − = − +

This is the reciprocal of the second-order pole example. So, the frequency response plots for this
FIR system are the negative of the plots in Figure 5.16 above. The pole and zero locations are
now interchanged in the reciprocal.
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Relationship Between Magnitude and 
Phase

• For rational system functions, there is some constraint between magnitude
and phase
•Given the number of poles and zeros, and the magnitude (phase) response,
there are only a finite number of possible phase (magnitude) responses.

( ) ( ) ( ) ( )

( )
( )

( )

( )

( )

( )

2 * *
*

1 *

*0 1 0 1
*

1 *0 0

1 1

*1

E.g.  Given magnitude (square), try to decide its phase

1

1 1
1           

1 1

because 1- 1

j

j j j

z e

M M

k k
k k
N N

k k
k k

k

H e H e H e H z H
z

c z c z
b bH z H
a z ad z d z

c z

ω

ω ω ω

=

−

= =

−

= =

−

 = =  
 

− −
    = =    

    − −

= −

∏ ∏

∏ ∏

( )( ) ( )** 1 *
*

11  for k kc z c z z
z

− ⇒ − → 
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Relationship between Magnitude and Phase

 For each pole dk of H(z) => poles dk and 
(dk*)-1 of C(z) 

 For each zero ck of H(z) => zeros ck and 
(ck*)-1 of C(z)

 In fact, the poles and zeros of C(z) occur in 
conjugate reciprocal pairs, with one coming 
from H(z) and the other from H*(1/z*)

 If H(z) is causal and stable, then we can 
deduce that all its poles are inside the unit 
circle, otherwise we cannot.  But even with 
the causality and stability assumption, the 
location of the zeros cannot be uniquely 
determined from the zeros of C(z).  For 
example, given two different causal and 
stable transfer functions,  H1(z) and H2(z), 
they still have the same squared magnitude 
function C(z) despite the fact that they are 
both causal and stable.  Therefore, given that 
we have access to only C(z), we need more 
constraints than causality and stability to 
uniquely identify the locations of the zeros, 
e.g. minimum phase (more about his later).

( ) ( )
( )

( )

( )

( )

1 *
2

* 0 1 1
*

1 *0

1 1

Let

1 1
1    

1 1

M M

k k
k k
N N

k k
k k

c z c z
bC z H z H

z a d z d z

−

= =

−

= =

− −
  = =   

    − −

∏ ∏

∏ ∏
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All-pass Systems
In an all-pass system:
  the magnitude equals constant
  all frequency components can pass through (but the phase is not linear)
  poles and zeros form a conjugate reciprocal pair

First-order all-pass 

•
•
•

( )

( )

1 *

1

*

*

system:

                                pole:  
1

1                                                            zero:  

                    
1

                         

ap

j
j

ap j

z aH z a
az

a
e aH e

ae

ω
ω

ω

−

−

−

−

−
=

−

−
=

−
*1          

1

j
j

j

a ee
ae

ω
ω

ω
−

−

−
=

−

Re{z}

Im{z}

a

*

1
a

Pole-zero diagram of a first-order all-pass system 
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Example of  an All-pass System

( )

( )

1

1

1

1

0.9Example:        Solid Line
1 0.9

0.9                       Dashed Line
1 0.9

ap

ap

zH z
z

zH z
z

−

−

−

−

−
=

−
+

=
+
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General All-pass Systems

 A general all-pass filter is a product of the first-order and second-order factors.
 The continuous phase of a causal all-pass filter is always non-positive for 0 < ω < π. This can be 

proven by showing that the group delay of a first-order all-pass system is non-negative. (Pf)

because r < 1 (since the system is causal and stable).  Therefore, the denominator and numerator are 
positive, thus the group delay is always positive.  Since the group delay of higher order all-pass 

systems will be a sum of                      , therefore, group delay of any all-pass systems will be 
positive

( ) ( )( )
( )( )

1 * 11

1 1 * 1
1 1

                   (5.92)
1 1 1

:   number of real poles
:   number of complex-valued poles

2

cr MM
k kk
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k kk k k

r

c

c r

z e z ez dH z A
d z e z e z

M
M
M N M M

− −−

− − −
= =

− −−
=

− − −

= = +

∏ ∏

ap | ( ) |  constant
For , sin( ) 2arctan

1 1 cos( )

j

j j j

j j

H e
a re e re r

re e r

ω

θ ω θ

θ ω

ω θω
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− −

−

 =


=     − −
∠ = − −    − − −  

( )
2 2

22

1 1For ,   0,
1 1 2 cos 1

j j
j

j j j j

e re r ra re grd
re e r r re e

ω θ
θ

θ ω θ ωω θ

− −

− −

 − − −
= = = ≥ − + − −  −

2

2
1

1 j j

r

re eθ ω−

−

−
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General All-pass Systems

 Since 

and the phase of the 2nd term is always zero because from 
(5.92)

Since grd[Hap(ejω)] ≥ 0, therefore arg[Hap(ejω)] ≤ 0, for 0 
≤ ω ≤ π.

 All-pass filters can be used as phase compensators. They 
are useful in transforming frequency-selective lowpass 
filters into other frequency-selective forms and in 
obtaining variable-cutoff filters. 

( ) ( ) ( )0

0
arg arg ,   for 0 ,j j j

ap ap apH e grd H e d H e
ωω φ φ ω π     = − + ≤ ≤     ∫

( )
2

0
2

1 1

11 .
1 1

cr MM
kj k

ap
k kk k

edH e A A
d e= =

−−
= =

− −
∏ ∏
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Minimum-Phase Systems

 Magnitude response does not completely characterize the 
LTI system.  If we know the system is causal and stable, 
then we have only restricted the location of the poles, but 
not the location of the zeros.  However, if we place 
similar restrictions on the inverse of the system, then the 
location of the zeros can also be specified.

 For minimum-phase systems, H(z) and its inverse 1/H(z) 
are both causal and stable
 All poles and zeros are inside the unit circle

 Given the specification on the magnitude squared 
response, a unique minimum-phase system can be 
determined
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Factorization of  Rational System 
Functions
 For any (stable, causal) rational system 

function H(z), it can be express by H(z) = 
Hmin(z) Hap(z)
 Proof: Suppose H(z) has one zero (z=1/c*, |c| < 

1) outside the unit circle (and the remaining 
poles and zeros are inside the unit circle).  Then

where H1(z) is, by definition, a minimum-phase 
system.  Therefore, H1(z)(1-cz-1) is also 
minimum phase.  The above procedure can be 
extended to general cases to include more zeros 
outside the unit circle.

 Note that Hmin(z) contains the poles and zeros 
of H(z) that lie inside the unit circle, plus 
zeros that are the conjugate reciprocals of the 
zeros of H(z) that lie outside the unit circle.  
Then Hap(z) contains the zeros of H(z) that 
are outside the unit circle and the conjugate 
reciprocal poles inside the unit circle to 
cancel those zeros from Hmin(z)

Suppose: H(z) has the 
following pole-zero 
diagram

Hmin(z)

Hap(z)

( ) ( )( )

( )( )

1 *
1

1 *
1

1 11
1

H z H z z c

z cH z cz
cz

−

−
−

−

= −

−
= −

−
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Application of  MP System – Frequency 
Response Compensator

 

Distorting System 
         )(zH d  

Compensating System 
        )(zH c  

][ns  ][nsn  ][nsd  

)(zG  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

min
min

Design  such that  is desired.

For example, if we wish constant
1Let ,  then choose  instead.

Then ,  and 1

c d c
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d d ap c
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j j
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G z

z H z H z

G z H z H z

H z H z H z H z

G e H e

H z
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Frequency Response Compensator
( ) ( )( )( )( )

( ) ( )
( )

0.6 1 0.6 1 0.8 1 0.8 1

zeros outside unit circle

min

1 0.9 1 0.9 1 1.25 1 1.25
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Hmin(z) Hap(z) 
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Properties of  Min. Phase Systems

 Minimum phase-lag property
 Why this type of systems is called “minimum phase”?
 Given the magnitude specification  of a system, find the one that has the 

least phase-lag. Minimum-phase system.
 Proof:

It was shown before that for allpass filters, arg[Hap(ejω)] < 0, 0 ≤ ω ≤ π.  
Thus, arg[H(ejω)] = arg[Hmin(ejω)] + negative value
Hence, Hmin(z) has the minimum phase-lag, i.e. the phase of Hmin(z) is 
less negative than that of H(ejω). 

 Remark: To ensure the minimum phase-lag property, (in addition to the 
pole and zero locations), we require that H(ejω) > 0, at ω = 0, 
i.e.                      .  This is because h[n] and –h[n] both have the same 
magnitude but the phase will be different by a factor of π radians.  So to 
remove the ambiguity, we must impose this condition

min

min

( ) ( ) ( )

arg[ ( )] arg[ ( )] arg[ ( )]
ap

j j j
ap

H z H z H z

H e H e H eω ω ω

= ⋅

⇒ = +

0( ) [ ] 0j

n
H e h n= >∑
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Properties of  Min. Phase Systems

 Minimum group-delay property

( ) ( ) ( )

( ) ( )

min

0

min

      0j j j
ap

j j

grd H e grd H e grd H e

grd H e grd H e

ω ω ω

ω ω

ω π
>

     = + ≤ ≤     

   ⇒ <   
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Properties of  Min. Phase Systems

 Minimum energy-delay property
 The partial energy of a minimum-phase system is most 

concentrated around n = 0, i.e. the energy of a 
minimum-phase system is delayed the least of all 
systems having the same magnitude response function.  
See Fig. 5.32a. Define partial energy (of impulse 
response) to be 
Then the minimum-phase system Hmin(z) has the largest 
E[n] among all possible H(z).  That is, it accumulates 
more energy up to n.

∑
=

=
n

m
mhnE

0

2][][
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Min. phase

Max. phase

Min. phase Max. phase
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Linear Phase Systems

[ ] [ ] ( )
( ) [ ] [ ]

( )

, for     is real and

  Zero phase systems are not realizable for real-time systems

    

  Ideal delay systems:      

                      

 even
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Example

[ ] ( )
( )

The impulse response of a causal lowpass filter symmetric about  is
sin

                                  

A zero-phase LPF (i.e. ideal LPF) can be defined as

                         

d

c d
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n n

h n
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ω
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−

( ) ( ) ( )
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where the impulse response is shifted left by .  Therefore,
the causal LPF does not have zero phase (phase )
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Linear Phase Systems and Its Relationship to the Impulse 
Response

[ ]

( )

[ ] ( )
( )

[ ] [ ] [ ]( )

,

E.g.  Symmetry on  in the ideal delay system:

                Let   
0, otherwise,

sin
                  

1.  integer

      is an even function  2

2.  i

j
j c
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c
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h n

e
H e

n
h n

n

h n h n h n

ωα
ω ω ω

ω α
π α

α

α

α

− <
= 


−  ⇔ =
−

=

− =

=

[ ] [ ] [ ]( )

[ ]

1nteger + 
2

      is an even function  2

3.  Otherwise,
      has no symmetry

  For case 2 and 3, even though the delay is not an integer, but we can interpret the output using the idea
of 

lp

lp

h n h n h n

h n

α − =

•

( )
( ) ( ) ( )
continuous time processing of discrete-time signals, i.e. the continuous-time filter, ,  is equal to

 or .  So that the frequency response of the effective (discrete-time)

system i

c

j T
c c

h t

h t t T H j e αδ α − Ω= − Ω =

( )s ,  

  From case 1 and 2, they suggest that symmetry (in these two cases, even symmetry) is sufficient to
guarantee linear phase 

j j
effH e eω ωα ω π−= <

•

α = point of symmetry
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Linear Phase Systems and Its Relationship to the 
Impulse Response

 Observations
 In case 1 and 2, the signal is 

symmetric, i.e. h[2α-n] = h[n].
 In case 1, since α=5 is an integer, 

we can shift the impulse response 
to the left by α to obtain a signal 
that has zero-phase.  This is not 
true for case 2 since α = 4.5 is not 
an integer 

 The symmetric property in cases 1 
and 2 is only sufficient, and not 
necessary, to obtain linear phase.  
This is so because the impulse 
response in Figure 5.35c also has 
linear phase but it is not 
symmetric (the group delay is a 
constant α = 4.3) 
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Generalized Linear Phase

( ) ( ) ,   , : real constants

( ) is called the amplitude response.  It is real.
Special case: 0    linear phase

Group delay: ( ) grd ( )

Phase: arg ( ) ,    0

Esse

j j j j

j

j

j

H e A e e

A e

H e

H e

ω ω αω β
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α β
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τ ω α

β αω ω π

− += ⋅

= →

  = =  


  = − < <  
ntially, this system has a  group delayconstant
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Symmetry Property of  Generalized Linear 
Phase Systems

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( )

We can observe the symmetry by decomposing  as follows:
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Symmetry Property of  Generalized Linear 
Phase Systems

( ) [ ] ( ) [ ]

[ ] ( ) ( ){ }

Cross-multiplying the above, we have

                                 sin cos cos sin

                                cos sin sin cos 0

                     

n n
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h n n h n n
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[ ] ( )

[ ]

           ,    eqn. (*)

This is a necessary condition on ,  , and  for the system to have constant group delay.
However, there are many solutions that satisfy eqn.(

sin 0,  

*).
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Solution 1
0 or

                                               2  integer
[2 ] [ ]      (even symmetry)

To see if this is really a solution to (*), we plug it into (*).  Let 0. We get:
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:  We only require that  satisfies a symmetric property. There is no constraint on 
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Solution 2


2

2 or 3 2

                           2  integer       sin cos
2 2 2

[2 ] [ ]      (odd symmetry)  (implies the point of symmetry = 0)
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FIR Systems With Generalized Linear 
Phase: Even Symmetry

[ ]  Previously, we've shown that (even) symmetry in  is sufficient for the system to have 
    generalized linear phase
  If a generalized linear-phase system is also causal, then (*) becomes

         

h n•

•

[ ] [ ]
[ ]

0
                             [ ]sin( ) 0,    

Under this causal condition and the even symmetry condition, i.e. 2 ,
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= 

( )  is real and evenj
eA e ω
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FIR Systems With Generalized Linear 
Phase: Odd Symmetry

( ) ( ) ( ) ( )/2 /2 /2

If
[ ], 0 ,

                                    [ ]    (anti-symmetric w.r.t. / 2)
0,

then, ,  where  is real and odd

 all linear ph

j j j M j j M j
o o

j
o

h M n n M
h n M

otherwise

AH e jA e e A e

Remark

e

: Nearly

eω ω ω ω ω π ω− − +=

− −
=


=

≤ ≤


ase filters are FIR filters.  There are special types of IIR filters
that have linear phase, but they cannot be implemented by difference equations.  The above 
two cases are the most common ones
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Four Types of  Linear Phase FIR Filters
Type-I. [ ] [ ]

 even  (or , an integer)
2

Type-II. [ ] [ ]

 odd  (or , a half integer)
2

Type-III. [ ] [ ]
 even

Type-IV. [ ] [ ]
 odd

h n h M n
MM

h n h M n
MM

h n h M n
M
h n h M n
M

= −



 = −





= − −



= − −



I

II

III

IV
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Type-I Linear Phase FIR Filter

( ) [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

0
/ 2 1

/ 2

0 / 2 1
/ 2 1

/ 2

0

We can show Type-I FIR's have linear-phase by checking its Fourier Transform.

            / 2

            / 2

M
j j n

n
M M

j n j M j n

n n M
M

j n j M

n

H e h n e

h n e h M e h n e

h n e h M e h M k e

ω ω

ω ω ω

ω ω

−

=

−
− − −

= = +

−
−− −

=

=

= + +

= + + −

∑

∑ ∑

∑ ( ) ( )

[ ] [ ] [ ] ( ) [ ] [ ]( )

[ ] ( )( ) [ ]

[ ]

/ 2 1

0
/ 2 1 / 2 1

/ 2

0 0
/ 2 1

/ 2

0

2

    let   

            / 2   for Type-I filter: 

            / 2

            

M
j M k

k
M M

j M kj n j M

n k
M

j M nj n j M

n

j M j
j n

n M k k M n

h n e h M e h k e h k h M k

h n e e h M e

h n e e e

ω

ωω ω

ωω ω

ω
ω

−
−

=

− −
− −− −

= =

−
− −− −

=

− −

= − ⇒ = −

= + + = −

= + +

=

∑

∑ ∑

∑

[ ]

[ ] [ ]

/ 2 1
/ 22 2

0

/ 2 1
/ 2

0

/ 2

            2 cos / 2
2

M j MM
j n j M

n

M
j M

n

e e h M e

Me h n n h M

ω ω
ω ω

ω ω

− − −

=

−
−

=

 
+ + 

 
   = − +      

∑

∑
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( ) [ ] ( ) [ ]
[ ]

/2
/2

0

Let .  Th  0 ,  1 1 1
2 2 2 2 2 2

, 0,
2,      where 

2 , 1, ,
2

en 

cos
M

j j M

k
H e e

M M M M M Mk n n k n k n k

Mh k
k a k

Mh n k
a kω ω ω−

=

 = − − ⇒ = − + = ⇒ = = − ⇒ = − + + = 
 

   =    = 
 = …

= ∑

The first term e-jωM/2 gives a phase of -ωM/2 to H(ejω). Since h[n] is real, the second term in the product
above contribute a phase of 0 or π (in case h[n] is negative) to H(ejω). So the overall phase of H(ejω) is

-ωM/2  or  -ωM/2 + π.

The phase of H(ejω) is linear by definition of linear phase -jα+β, where

α = M/2,   β = 0 or π.

n

M = 4

40

0 2,  
2

1 1 1,  
2

 

0
2

Mk n

Mk n

Mk n

= ⇒ = =

= ⇒ = − + =

= ⇒ =

h[n]

k=
0

k=
1

k=
2
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Type-II Linear Phase FIR Filter

( ) [ ]

[ ]
( )

[ ]
( )

[ ]
( )

[ ] ( )

0

1 /2

0 1 /2

1 /2

0

We can show Type-II FIR's have linear-phase by checking its Fourier Transform.

            

                  let   

M
j j n

n

M M
j n j n

n n M

M
j M kj n

n

H e h n e

h n e h n e

h n e h M k e n M k

ω ω

ω ω

ωω

−

=

−
− −

= = +

−
− −−

=

=

= +

= + − = − ⇒

∑

∑ ∑

∑ ( )
( )

[ ]
( )

[ ] ( ) [ ] [ ]( )
( )

[ ] ( )( )
( )

[ ]
( )

1 /2

0

1 /2 1 /2

0 0

1 /2

0

1 /2
/2

0

                       for Type-II filter:  

            

            2 cos
2

M

k

M M
j M kj n

n k

M
j M nj n

n

M
j M

n

k M n

h n e h k e h k h M k

h n e e

Me h n n

ωω

ωω

ω ω
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=

− −
− −−

= =

−
− −−
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−
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= −

= + = −

= +
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The first term e-jωM/2 gives a phase of -ωM/2 to H(ejω). Since h[n] is real, the second term in the product above
contributes a phase of 0 or π to H(ejω). So the overall phase of H(ejω) is

-ωM/2   or     -ωM/2 + π.

The phase of H(ejω) is linear by definition of linear-phase -jα+β, where

α = M/2,   β = 0 or π.

( )
( )

( )

1 /2
/2

0

1 /2
/2

0

Let 

12 cos
2

1         

1 1 1 1      ,   0 ,  0
2 2 2 2 2

1
2

1
2

   2 cos
2

M
j j M

k

M
j M

k

M M M Mk n n k n k n k

M kH e k

M k k

e h

e h

ω ω

ω

ω

ω

−
−
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−
−

=

    = −

− − −
= − − ⇒ = − = ⇒ = =
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⇒ =

 

−

−

 

−
−

−

∑

∑
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Type-III Linear Phase FIR Filter

( ) [ ]

[ ] [ ] [ ]

[ ] [ ] ( )

0
/2 1

/2

0 /2 1

/ /2 1

0 0

We can show Type-III FIR's have linear-phase by checking its Fourier Transform.

            / 2

            

M
j j n

n
M M

j n j M j n

n n M

M M
j M kj n

n k

H e h n e

h n e h M e h n e

h n e h M k e

ω ω

ω ω ω

ωω

−

=

−
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−
− −−

= =
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∑
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∑ [ ]

[ ] [ ] ( ) [ ] [ ]( )
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2 1
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0 0

/2 1
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0

for Type-III filter: / 2 0.
       

Let    

                           for Type-III filter: 

            

M M
j M kj n

n k

M
j M nj n j M

n

h M
n M k k M n

h n e h k e h k h M k

h n e e e

ωω

ωω ω

−

− −
− −−
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−
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=

 =
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∑

∑ ∑

∑ ( ) [ ]
/2 1

0
2 sin

2

M

n

Mj h n nω
−

=

  − −    
∑

For Type-III FIR linear-phase systems, note that at n = M/2,

h[M/2] = -h[M-(M/2)] = -h[M/2],

so h[M/2] = 0.
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The first term je-jωM/2 gives a phase of -ωM/2+π/2 to H(ejω). Since h[n] is real, the second term in the product
above contribute a phase of 0 or π to H(ejω). So the overall phase of H(ejω) is

-ωM/2 +π/2    or      -ωM/2 + 3π/2.

The phase of H(ejω) is linear by definition of linear-phase -jα+β, where

α = M/2 ,   β = π/2 or  3π/2.

( ) ( )

( ) ( )
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1
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2 sin
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2 2

         

2 2
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2 2
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j M
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M k k
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ω ω
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ω

ω

ω
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=

−

=

−

=
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 = −     

 =   
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−

∑

∑

∑
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Type-IV Linear Phase FIR Filter

( ) [ ]

[ ]
( )

[ ]
( )

[ ]
( )

[ ] ( )
( )

0

1 / 2

0 1 / 2

1 / 2 1 / 2

0 0

We can show Type-IV FIR's have linear-phase by checking its Fourier Transform.
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               for Type-IV filter: 
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The first term je-jωM/2 gives a phase of -ωM/2+π/2 to H(ejω). Since h[n] is real, the second term in the product
above contribute a phase of 0 or π to H(ejω). So the overall phase of H(ejω) is

-ωM/2 +π/2    or      -ωM/2 + 3π/2.

The phase of H(ejω) is linear by definition of linear-phase -jα+β, where

α = M/2 ,   β = π/2 or  3π/2.
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1 1 1
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Type-I Example

[ ]

( ) 2

1         0 4,
     ( 4)

0        otherwise

5sin
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sin
2

j j

n
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H e eω ω

ω
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Type-II Example

[ ]

( ) ( )5
2

1         0 5,
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0        otherwise
sin 3
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ωω ω
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Type-III Example

[ ] [ ] [ ]
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Type-IV Example
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Zeros of  Linear Phase FIR Systems

 Causal, stable, FIR systems  no nonzero poles
 Zeros are conjugate pairs (because h[n] is real)
 Zeros are reciprocal pairs (z0, z0

-1)
 Proof (Type-I and II systems)

If z0 is a zero, i.e. H(z0) = 0, then z0
-M H(z0

-1) = 0.  That is, its 
reciprocal is a zero too

 Proof (Type III and IV systems)

If z0 is a zero, so is its reciprocal

( )

( )

0 0
0

1

( ) [ ] [ ]

        [ ]     

        

M M
n n

n n

k M

k M

M

H z h n z h M n z

h k z z k M n

z H z
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= ⋅ = − ⋅

= ⋅ = −

=
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∑

( )1)( −−−= zHzzH M
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Zeros of  Linear Phase FIR Systems

 Type-II (symmetry, odd order)  zero at z = -1
 Type-III (anti-symmetry, even order)  zero at z = 1 and -1
 Type-IV (anti-symmetry, odd order)  zeros at z = 1

 Proof (Type-I and II systems)

 Proof (Type III and IV systems)

 These constraints on the zeros are useful in designing linear phase FIR systems.  For example, for 
highpass systems, M cannot be odd (zero should not be at z = -1)

( )
( ) ( ) ( )

( )

1( )

Let 1,  then 1 1 1
For  even (Type-I), the equality is satisfied
For  odd (Type-II), 1  must be 0 for the equality to be satisfied
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M H
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( ) ( )

( )
( ) ( ) ( )
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Let 1,  then 1 1

 1  must be 0 for the equality to be satisfied

Let 1,  then 1 1 1
For  odd (Type-IV), the equality is satisfied
For  even (Type-III), 1  must be 0 for the e
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H z z H z

z H H
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z H H
M
M H

− −= −

= = −

⇒
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⇒ − quality to be satisfied
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N = M in 
notes
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Factorization of  Linear Phase Systems

( )


( ) ( ) ( )min uc max

linear min. unit max.
phase phase circle phase

Any linear phase FIR systems can be expressed as
                                                  

Because zeros are reciprocals, 

H z H z H z H z= ⋅ ⋅
  

( ) ( )
( ) ( ) ( )

1
max min

min max

, where  is the number of

zeros of  (outside the unit circle).   has  number of zeros.   has
 number of zeros outside the unit circle

M
i

uc o

i

H z z H z M

H z H z M H z
M

− −=
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Factorization Example

( ) ( )

2 0.6 1 0.6 1 0.8 1 0.8 1
min

2 0.6 1 0.6 1 0.8 1 0.8 1
max

min

Given:
   ( ) (1.25) (1 0.9 )(1 0.9 )(1 0.8 )(1 0.8 )
Then
   ( ) (0.9) (1 1.1111 )(1 1.1111 )(1 1.25 )(1 1.25 )
Then
   

j j j j

j j j j

H z e z e z e z e z

H z e z e z e z e z

H z H z

π π π π

π π π π

− − − − − −
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= − − − −
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10 10 min 10 max 10 min

min max min min

 has linear phase

  20 log ( ) 20log ( ) 20log ( ) 40log ( )

  ( ) ( ) ( ) ( ) ( ( ))

j j j j

jw j j j j
i i

H z

H e H e H e H e

H e H e H e H e M H e M

ω ω ω ω

ω ω ω ωω ω

⇒ = + =
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Hmin(z) Hmax(z)

H(z)
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