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Frequency Response of LT1 Systems

An LTI can completely be characterized in the time domain by its
Impulse response (assuming no initial conditions)

Time: y[n] = x[n]*h[n]

z-transform: Y(z) = X(z2)H(2)

o H(z) is the system function or transfer function
Magnitude or gain

H (e =H (e™)H"(e”) = H (Z)H*(g

Phase response or phase shift

£H (&)= tan{ il (ejw)}

H, (")
o Be careful of which quadrant you are referring to (more later)
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Frequency Response of Ideal LLowpass
Filter

ldeal lowpass: h, [n]= sin (a,n)
n
; 1, ‘a)‘ <w
H o) — c
- (e ) {0, otherwise
A H(el?)
(XX coo
» o
-2 d ~W @ T 27
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Frequency Response of Ideal Highpass
Filter

Ideal highpass: hhp[n]za[n]_m

n

: 1l w S‘a)‘ﬁﬂ
H Jo — c
o (") {0, otherwise

A H(ev)

> o

-2 - -, @, T 2

Remark: This definition includes the phase specification. That is, zero phase for
all frequencies. Practical physical systems cannot achieve this specification. In
addition, it is noncausal and needs infinite input samples to compute the current
output =» they are not computationally realizable. Causal approximations to
ideal frequency-selective filters must have a nonzero phase response (more on
this later).

Typical filters include: lowpass, highpass, bandpass,bandstop, all-pass filters
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Frequency Response of Phase Delay

hy[n]=6[n—n,]< H, (e*) ="

The output is a delayed version of the input. Shape of the input waveform is not changed

A H@E)

Ha(e”)

ZH,, (ej“’) =—awn, |o|<7

27
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Linear Phase and Group Delay

Linear phase: The phase response is a linear function of @ (passing through the
origin). A frequency-selective filter with a linear phase is often acceptable and
can be approximated by a practical system. That is

H (ej“’) _ el @ < 0| < o,
0, otherwise

Group delay: 7 (@)= grd [H (ej“’)] — —dd—w{arg[H (e"“’)]} =n,

Group delay is a convenient measure of the linearity of the phase. The basic
property of group delay relates to the effect of the phase on a narrowband signal.
It is clear for the ideal delay, (@) = n, is a constant (independent of w).
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Narrowband Signals in Communication Systems

Consider the output of a system H (ej‘”) for a narrowband signal

x[n]=s[n]cos(a,n) A X(e)

_1 jagn 1 —jayn
—ES[“]G +§s[n]e o000 A l&— & 'YX
>

- 1 1 ®
jo) _ © j(o+ay) w-ay) ) -y wy
< X () 28(e )+28( ) ™ | ”
It is assumed that x[n] is nonzero only around @ = @, = the Narrowband signal:
_ A << @yand S(e!?) =0
effect of the phase of the system can be approximated around for || > A and X(ei®) is
@ = @, as the linear approximation. Let narrowband around *a,

J(—@”d+¢o)’ <0,

(assuming ‘H (e')

£H(e")=—g,—on, = H(ej“’):{ =1)

ei(—a’nd —¢o)’ w>0.
=Y (e*)=H(e")X(e*)= ;e e~ “"”dS( i “’0))+;e"”°e ‘””dS( “’*“’f’))

Note that: S[n—n,] < e, cos(gn+¢) <= 7e”’s(w-w,)+7e ’5(w+a,) (one cycle)

y[n]=F{h[n]}*F {x[n]]

EEEC20034: Intro. to Digital Signal
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Narrowband Signals
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s[n] is a slowly-varying envelope in x[n].
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Narrowband Signals in Communication Systems

so that the output can be approximated as
y[n]=6[n-n,]*= ( [n]e! ") 4 s[n]e o))

=5[n—ny]*s[n]cos(awn—¢,)

=s[n—n,]cos(m,n—awyny —¢)
Notice the group delay n,
contributes a delay in s[n]

. ] .
> o £H (e’“’)=—¢0—a)nd e

-T W @ \'\Slope =-Ny
We see that the time delay of the envelope s[n] of the narrowband signal x[n]
with Fourier transform centered at «, is given by the negative of the slope of the
phase at @, The deviation of the group delay from a constant indicates the
degree of nonlinearity of the phase.

A X(el?)

Remark: arg[H(.)]: continuous phase (Jvalue| < zor > 7)

ARGI[H()]: principal value (Jvalue| < 7)

= EEEC20034: Intro. to Digital Signal
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Example

Consider a filter with group delay and frequency response magnitude shown in
Figure 5.1a and b, respectively

20 I I I I

Group delay (samples)

0 | | | |

0 027 O4w 067 087 ™ 127 147 IR 1.8 2@
Radian frequency (w)
(a)
Frequency Response Magnitude
0 | | | | ]
=50 i

Magnitude (dB)

. A7

0 027 047w 067 087w T 127 14w léw 18w 1w
Radian frequency (w)

(b)

Figure 5.1 Frequency response magnitude and group delay for the filter in
Example 5.1.
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Example (contd)

Figure 5.2, shows an input signal and its spectrum.  Note that the input consists of
three consecutive narrowband pulses, at frequencies @ = 0.857, = 0.257, ® = 0.57.

o= 0.857[ w=0.257 InputSignalx[n]
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(b)
Figure 5.2 Input signal and associated Fourier transform magnitude for

Example 5.1.
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Example (contd)

In Figure 5.3, it shows the resulting output signal.

l [

Output Signal y [n]
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Figure 5.3 Output signal for Example 5.1.

Sample number(rn)

Since the filter has considerable attenuation at @ = 0.857, the pulse at that
frequency is not clearly present in the output. Also, since the group delay at
= 0.25x is approximately 200 samples and at @ = 0.5z is approximately 50
samples, the second pulse in x[n] is delayed by about 200 samples and the third

pulse by 50 samples.

EEEC20034: Intro. to Digital Signal
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Systems Described by Linear Constant
Coetticient Difference Equations

N M

> ay[n-k]=> bx[n-k]
k=0 k=0

N M
2.277Y(2)=2 bz X(z

(&) [1(-67)
% (1—dkz‘1)

a

Note:

» X(2) and Y(z) have overlapping regions of convergence.
* (1-c,z') contributes a zero at z=c, and a pole at z = 0.

* (1-d,z't) contributes a pole at z=d, and a zero at z = 0.

EEEC20034: Intro. to Digital Signal
F Processing
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BIBO Stability and Causality (Review)

BIBO Stability

Recall that if ) |h[n]| < oo (absolutely summable), then h[n] is BIBO stability. This is

n=

equivalent to the condition that Z |h[n]z™" | < for |z|:1. This implies that the ROC of H (z) include

N=-00

the unit circle.

Causality
Causal (right-sided sequence) iff ROC: |z| > .,

Causal and Stable
All poles are inside the unit circle

Example:
y[n]—gy[n—1]+ y[n—2]=x[n]
—H(z)= L

1
-1 -1
1--z2 (1 —21 )
2
EEEC20034: Intro. to Digital Signal
F  Processing
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Inverse Systems

X(2) = H@E@ = H@ —»X()

So poles of H(z) = zeros of H,(2)
So zeros of H(z) = poles of H,(2)

H.(z) is causal and stable if all zeros of H(z) are inside the unit circle

Minimum phase
Both poles and zeros are inside the unit circle (more on this later)

EEEC20034: Intro. to Digital Signal
Processing
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Impulse Response of Rational System
Functions (IIR)

IR (infinite impulse response) :
Assuming that M > N, then H (z) is

M-N N

=ZBZ‘ +Zl 17

k=

First term is obtained by long division and 2™ term can be obtained using partial
fraction expansion. The impulse response can thus be written as

= ij B.&[n- r]+ZN:&dQu [n],

where the first term is included only if M > N. When there is at least one non-zero pole

{d,} that is not canceled by a zero, there will be at least one term of the form A, (d, )" u[n],
and thus the impulse response will not be of finite length. This is known infinite impulse
response system or IlIR.

EEEC20034: Intro. to Digital Signal
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Impulse Response of Rational System
Functions (FIR)

FIR (finite impulse response) :

When there is no poles exceptatz=0, i.e. N =0, then H (z) is of the form
M

H(z)=H(z)=) bz ™"

k=1
Then

M b,, 0<n<M
h[n]=> bo[n-k|=<" ’
"] kzzc; Sn—k] {O, otherwise.

Since the impulse is of finite length, this system is known as finite impulse response or FIR.

EEEC20034: Intro. to Digital Signal
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FIR Example

a", 0<n<M
Example: h[n]=<"" o
0, otherwise.
Then the system function is
M 1—gM+ly;-M-1
H(z)=) a"z"= :
(2) nzzc‘j 1-az™

We can see that the zeros are located at
.27k

z, =ae M1, k=0,1,...,M,

which is the (M +1)th root of unity. a is assumed to

be real and positive, and the polesatz =a is
canceled by a zero.

EEEC20034: Intro. to Digital Signal
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Figure 5.6 Pole-zero plot for Example 5.7.
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Frequency Response for Rational System
Functions: Magnitude

Assuming that H (ej“’) is a rational function, i.e.

M M
> be ™ 1-ce ')
e (B
>ael* \WITTA-de ™)
k=0 k=1
Then
Ta-ce |
1-ce™”
()=~
% ‘_‘_‘1—dke‘j“"
k=1
where M denotes magnitude NOT absolute value. Hence, the squared magnitude of H (ej“’) IS
M
2 [ [(1-ce’”)(1-ce
e = o)l U507
% ‘L(l—dke‘j“’)(l—d:e"”)

k=1

EEEC20034: Intro. to Digital Signal
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Frequency Response for Rational System
Functions: Magnitude

This is equivalent to

2 J_JL(l—ckz‘l)(l—c:z)

k=1

‘m(l—dkz‘l)(l—d:z)

k=1 7—el®
For convenience, we sometimes express the magnitude in terms of the log magnitude which has
the unit of decibels or dB:
by
aO

Clearly, 20log,, | Y (') |=20log,, | H (e'”) | +20log,, | X (e'*) |

b,

EN

H(e)[ =[H (2) -

:H(z)H*(i*j

Z

_plo .
z=e 7=gl®

20log,, | H(e'”) |= 20log,,

£ 20l0g, fL-c,e |- 2010g,,[1-d,e ]
k=1 k=1

EEEC20034: Intro. to Digital Signal
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Frequency Response for Rational System
Functions: Phase and Group Delay

Phase:

AH(ej”):z[z.—‘:}Li (1 ce"") iz(l—dke“'“’)

k=1

Group delay :

di(arg [1—dke"“])‘idi(ar9 [1-ce™])

(0] k=1 U

grd[H (e')] = —;—ng (e*)=>"

N
k=1

EEEC20034: Intro. to Digital Signal
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Phase Ambiguity

Problem? Phase ambiguity. The real filter phase is continuous and can be greater L
than 7 or smaller than — . However, the calculated phase is the principal value, om |

— 7 <ARG[H (e!)]< 7 3w
which is what we get if we use the arctangent (atan or atan2 in Matlab) function, this is =*" "~

_ (a)
. H, (e .
ARG | H (&) | =arctan| ———— ( . ) , ARGLH(e)
He (e)
- | - T AN
where H,, (") and H, (e’ ) are real and imaginary parts of H (¢!, respectively. \ 7 /
T

- —

Therefore, ZH (e/”) = ARG| H (¢”) |+271 (@), where r () is a positive or negative

(b)
is a function of . See Figure 5.7 (right). Using ARG[e], then o

ARG[H(e"“’)} ARGL‘J+ZARG[1 e J“’] ZN:ARG[l—dkej“’}+27rr(a)). ?:

The last term is needed because the principal value of a sum of angles is not
equal to the sum of the principal values of the individual angles.

e The principal angle of H (e’”) can still be computed by computing the principal

angle of each pole and zero and an appropriate multiple of 2 can be added (©)

Figure 5.7 (a) Continuous-phase

i it ettt

or subtracted to obtain the principal value of the total phase function curve for o ystem functon evalated on
. . . t t . t

=>» ARG has jumps of 2z due to the integer multiples of 2z that mustbe ~ ----------- ! phea:glctfrtz?n part (2. (c) Infoger
subtracted in certain regions to bring the phase curve within the range of the L e e el

principal value

EEEC20034: Intro. to Digital Signal
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Group Delay

e The group delay function 7 () is still the derivative of the continuous phase function (not
principal value)

()= grd[H (ej”’)] _ —di{arg[H (e"“’)]}.

40
e Except at the discontinuities of ARG [H (ej“’)],

oo ()] g are [ e)]

(0] (0]
» Can also represent r(w) using ambiguous phase £H (e”) as

f(w)=—di[4H ()]

)
with the interpretation that impulses caused by discontinuities of size 2z in ZH (ej“’)

are ignored.

= EEEC20034: Intro. to Digital Signal
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Example: Single Zero or Pole

Im -_plane
_ z-plane
Given a single zero system: H(z)=(1-¢,z*), zero:c,=re" —d’\
Y
i ion: jo ~jo ejw_co V3
Geometric evaluation: H (e')=(1-c,e ) =-— -
ej(o —
Vv Va Vl
=—2 (see Fig. 5.9) 0 .
1 1 Illw
--------------------------- (N e e
2 *
H() =H(z)H | = |=(1-c.z")(1-c z
M@ =H @R[+ |=(1-c2)1-ci2)
=1-cyz—Czt +c,[
Let z = e’ and using Euler's identity
i \|? .. * .. 2
H(e! )| =1-c,(cosw+ jsinw)—c,(cosw— jsinm)+|c
‘ ( ) O( J ) O( J ) | O| Figure 5.9 z-plane vectors for a
. 2 first-order system function evaluated on
=1-2Re([c,|cosw—2Im[c, ]sin a)+|Co| the unit circle, with r < 1.
=1-2(Re[c,]cos @+ Im[c, Jsinw) +|c,| -
_ Note: The log magnitude can be written as
Assume the location of the zero is ¢, = re’”, we have . o
20log,, ‘H () :10Iogm‘H ()
. 2
‘H (e"") :1—2r(cosa)cose+sin @sin 49)+ r’ ~10l0g,, (1~ 2r cos(@—0) + )
=1-2rcos(w—0)+r’. = 20l0g,, [L-re’’e 1°|.
EEEC20034: Intro. to Digital Signal
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‘ Example: Single Zero

Phase: ZH(e')=2£(1-ce )= 2(e" -, ) Ze”.
Substitute ¢, = re’’, we have
ZH(e") = £(1-re¥e ) = £(1-rcos(w—-0)+ jrsin(o—-0)
. rsin(w-0)
1-rcos(w—6)
=Z(e) —reV)- zek
=/Vv,—Zv, (seeFig.5.9)
=¢—¢

:¢3_w-

=tan"

(see Fig. 5.9)

or Pole

/’_

(contd)

z-plane

Figure 5.9 z-p

lane vectors for a

first-order system function evaluated on

the unit circle, w

ithr < 1.

EEEC20034: Intro. to Digital Signal
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Frequency response of the single zero system by
varying the parameter 4.

10

Frequency response of the single zero system by
varying the parameter r.
10
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ia)
(a)
2
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Radians

2 1 |
0 iy T Ao Ir
2 2
- Radian frequency (w) -
(1=)]
2 (b)
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& i 1
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Radian frequency (w) =
(c) Radian frequency (@) -
(c)
Figure 5.11  Frequency response for a single zero, with 8 = = r =1,09,07 Figure 5.8 Fre f inal ui _
! : : : : . quency response for a single zero, with r = 0.9 and the three
and 0.5. (a) Log magnitude. (b) Phase. (c) Group delay for r = 0.9, 0.7, and 0.5. values of & shown. (a) Log magnitude. (b) Phase. (c) Group delay.
EEEC20034: Intro. to Digital Signal
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Magnitude and Phase: Vector Geometry

, (Z):(b jlkm!(l—ckzl) :(b_o]zN_M rH[(ZC) (assume N > M)

M .
Hlejw_ckl
R
= 9 OHler dk|
k=1
/H(e!” b0 N jo jo
(e!)=« a +> Z(e"—c)- Zz(e ~d)+(N-M)w
K:

As seen in the single-zero/pole example,
O/ * the magnitude of the system can be computed
o > by noting the length of the vectors.
K/ * the phase can be computed by noting the angle
of the zero and pole makes with the vector.

EEEC20034: Intro. to Digital Signal
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Example: Second-Order IIR System (Conjugate Poles)

Given:

B 1 _ | Z |
H )_(1—rejgzl)(1—rejgzl) (z-re’)(z-re)

2

The magnitude of H (') is

jo\| _ ‘ejz“" _ |V3|
‘H ()= 7 —re”[le’ —re |~ [v|v,]
(see Fig. 5.15). So the log magnitude is

H (e™) H (e™)[

20log,,

=10log,,

=10log,,1-10log,, |6 - rejg‘2 ~10log,, [e' — re*j‘-"‘2

=-10log,, (1-2r cos(w—0)+r*)-10log,, (1-2r cos(w+0)+r?)

The phase is:
ZH(e")= 21— Z(1-reV’e 1) - L(1-re e 7))

=-Z£[1-(rcoswcosd - jrsinwcosf+ jrcoswsin 6 +rsin wsin6) |
— £[1-(rcoswcos - jrsinwcosd - jrcoswsin @ —rsin wsin0) |
[1-(rcos(@—-6)— jrsin(w—0)) |- 2[1-(rcos(w+6)— jrsin(w+6))]|
~Z[1-rcos(w—0)+ jrsin(w—0)]-£[1-rcos(w+6)+ jrsin(w+6) ]|

rsin(o-0) L rsin(@+6) J

tan _tan™
o [1—rcos(a)—9)J o [1—rcos(a)+¢9)

EEEC20034: Intro. to Digital Signal
Processing
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rei?

2D

Figure 5.15: Pole-zero plot of two poles example.
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Figure 5.16 Frequency response for a complex-conjugate pair of poles as in
Example 5.8, with r = 0.9, = /4. (a) Log magnitude. (h) Phase. (c) Group delay.
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‘ Example: Second-Order FIR Systems
(Conjugate Poles)

H(z )=(1 rel?z )(1 re 1%z ) 1-2rcos@z*+r%z7?

This is the reciprocal of the second-order pole example. So, the frequency response plots for this
FIR system are the negative of the plots in Figure 5.16 above. The pole and zero locations are
now interchanged in the reciprocal.

EEEC20034: Intro. to Digital Signal
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Relationship Between Magnitude and
Phase

- For rational system functions, there is some constraint between magnitude
and phase

*Given the number of poles and zeros, and the magnitude (phase) response,
there are only a finite number of possible phase (magnitude) responses.

E.g. Given magnitude (square), try to decide its phase

() = H () H(e”) = (z)H*(éj

z

Z:ejw

fli-6:") fle-as
“(Z)Ki}ﬁ(id z) HG]EZZJH(;%Z)

x
I
[N
~
I

1

(because (1—ckz*l)* =(1—c:(zl)*):> (1-cz) forz —>Z—1*J

EEEC20034: Intro. to Digital Signal
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Relationship between Magnitude and Phase

For each pole d, of H(z) => poles d, and
(d*)* of C(z) .

For each zero ¢, of H(z) => zeros ¢, and C(z)=H(z)H (Z_j :[g
(c*)tof C(2)

In fact, the poles and zeros of C(z) occur in

conjugate reciprocal pairs, with one coming
from H(z) and the other from H*(1/z")

If H(z) is causal and stable, then we can
deduce that all its poles are inside the unit
circle, otherwise we cannot. But even with

the causality and stability assumption, the °©
location of the zeros cannot be uniquely

H.(2)

\|H1£Z)|Z

Ha(2)

X

determined from the zeros of C(z). For
example, given two different causal and

stable transfer functions, H,(z) and H,(z),

they still have the same squared magnltude
function C(z) despite the fact that they are

both causal and stable. Therefore, given that

we have access to only C(z), we need more _
constraints than causality and stability to
uniquely identify the locations of the zeros,

e.g. minimum phase (more about his later).

X

Hx(2)I*

= EEEC20034: Intro. to Digital Signal
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All-pass Systems

In an all-pass system:
e the magnitude equals constant

e all frequency components can pass through (but the phase is not linear)

e poles and zeros form a conjugate reciprocal pair

First-order all-pass system:

-1 *
Z —a
H (z)= pole: a
ap( ) 1_az—l
1
Zero: —
a
- el _a"
J _
Ha(e")="——
1-ae
1-a‘el”

_jw

1—ae

EEEC20034: Intro. to Digital Signal
Processing

Im{z}

» Re{z}

Pole-zero diagram of a first-order all-pass system
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Example of an All-pass System

2

1
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=
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Figure 5.22  Frequency response for all-pass filters with real poles at z = 0.9
(solid line) and z = —0.9 (dashed line). {a) Log magnitude. {b) Phase (principal
value). (c) Group delay.
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General All—pass Systems

vzt od e (20 (2 e
Alk_!l dz i (1-e2")(1-g2 ) (592

M _: number of real poles

r

M_ : number of complex-valued poles

C

M=N=2M +M,

|H,,(e”)|= constant

Fora=re', “jo _ pa-if in(co—
ya ° _Hre__ =—@—2arctan rsin(w-6)
1-re’e 1—-rcos(w—06)

A general all-pass filter is a product of the first-order and second-order factors.

The continuous phase of a causal all-pass filter is always non-positive for 0 < w < 7 This can be
proven by showing that the group delay of a first-order all-pass system is non-negative. (Pf)

e"‘”—re"g}_ 1-r? 1-r?
i0 -] o 2 - . 12
1-re'’e™ | 1+r°-2rcos(w—0) ‘1—re’9e““"

Fora=rel, grd[ >0,

because r <1 (since the system is causal and stable). Therefore, the denominator and numerator are
positive, thus the group delay is always positive. Since the group delay of higher order all-pass

systems will be a sum of >, therefore, group delay of any all-pass systems will be

positive [L-re%e |

EEEC20034: Intro. to Digital Signal
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General All-pass Systems

Since

arg[Hap (ej“’ﬂ - —I:grd [Hap (ej¢)]d¢+arg[Hap (e"o)}, for 0<w< 7,

and the phase of the 2" term is always zero because from
(5.92)

M,

o ()= AL T o T

k=1

1- ek\
i-ef

Since grd[H,,(e!?)] = 0, therefore arg[H,,(e)*)] <0, for 0
<w<T.

All-pass filters can be used as phase compensators. They
are useful in transforming frequency-selective lowpass
filters into other frequency-selective forms and in
obtaining variable-cutoff filters.

EEEC20034: Intro. to Digital Signal
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Minimum-Phase Systems

Magnitude response does not completely characterize the
LTI system. If we know the system is causal and stable,
then we have only restricted the location of the poles, but
not the location of the zeros. However, if we place
similar restrictions on the inverse of the system, then the
location of the zeros can also be specified.

For minimum-phase systems, H(z) and its inverse 1/H(z)
are both causal and stable
o All poles and zeros are inside the unit circle

Given the specification on the magnitude squared
response, a unique minimum-phase system can be
determined

EEEC20034: Intro. to Digital Signal
Process ing
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|

Hunctions

For any (stable, causal) rational system
function H(z), it can be express by H(z) =

Hmin(z) Hap(z)

a

Proof: Suppose H(z) has one zero (z=1/c*, [c| <
1) outside the unit circle (and the remaining
poles and zeros are inside the unit circle). Then

H(z)= Hl(z)(z’l—c*)

—H,(z)(1-cz ) =5
i )( C )1 =
where H,(z) is, by definition, a minimum-phase
system. Therefore H,(z)(1-cz?) is also
minimum phase. The above procedure can be
extended to general cases to include more zeros
outside the unit circle.

Note that H,..(z) contains the poles and zeros
of H(z) that ie inside the unit circle, plus
zeros that are the conjugate remprocals of the
zeros of H(z) that lie outside the unit circle.
Then H, (z) contains the zeros of H(z) that
are outside the unit circle and the conjugate
reciprocal poles inside the unit circle to
cancel those zeros from H_;. (z)

EEEC20034: Intro. to Digital Signal
Processing

“actorization ot Rational System

Suppose: H(z) has the
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Application of MP System — Frequency

Response Compensator

s[n]: | Distorting System | Sq[N] | Compensating System 's, [n]
> > I >
: Hq(2) H.(2)

Design H, (z) such that G(z)=H, (z)H,(z) is desired.
For example, if we wish G(z)=H, (z)H,(z) = constant
(

LetHd(z)szmin(z)Hap

z), then choose H_(z) =

1
Hdmin (Z)

Then G (2) = H, (z) =[6(2)| =1 and 26 (&)= 2H,, (&)

instead.

Processing

EEEC20034: Intro. to Digital Signal
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Frequency Response Compensator

Hq (2)=(1-0.9¢"%72")(1-0.9e77°0"2 ) (1-1.25¢7%"2 ™ )(1-1.25¢ """

Zeros out5|de unit circle

Then we can obtain H, (z) by obtaining H,,;, (z). This is done by reflecting the
zeros of H (z) that are outside the unit circle to inside the unit circle. Then

H.,, (2) is obtained to cancel out the reflected zeros.
H,(2) = Hymin (2)H,, (2)
=(1-0.9¢"%72")(1-0.9e °**z*)(1.25)" (2" —0.8¢ 1**" ) (2"~ 0.8¢/°*")
(2) = (1.25)%(1- 0.9e/°%77 1) (1~ 0.9¢ 1°%" 7 1)(1- 0.8e/%877 1)(1- 0.8e 1°%¥z 1)

(z'-0.8e71°%)(z* - 0.8e'%%7)
(L-0.8e °%7 ) (1-0.8¢°%7 )

= H

dmin

= Hap(z) =

EEEC20034: Intro. to Digital Signal
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Hmin(z) Hap(z)
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. (©) corresponding curves in Figures 5.28 and 5.29 equals the corresponding curve in
(© Figure 5.28  Frequency respanse for minimum-phase svstem in Example 5.15 Figure 5.2?wi_tht_he sum of the phase curves taken modulo 2.} (a) Log magnitude.
Figure 5.27 Frequency response for FIR system with pole-zero plot in (a]JLog Iﬁagnituclg b) ghasep 10) Group delay. phase sy ample 5.15. (b) Phase (principal valug). {c) Group delay.
Figure 5.26. (a) Log magnitude. (b) Phase (principal value). (c) Group delay. ' ' '
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Properties ot Min. Phase Systems

Minimum phase-lag property
o Why this type of systems is called “minimum phase”?

o Given the magnitude specification of a system, find the one that has the
least phase-lag. =» Minimum-phase system.

o Proof: H(z) =H,;,(2)-H, (2)

= arg[H (e")] =arg[H;, (¢")] +arg[H,, (¢"")]
It was shown before that for allpass filters, arg[H,
Thus, arg[H(e!*)] = arg[H....(€!“)] + negative value

Hence, H_. (z) has the minimum phase-lag, 1.e. the phase of H_. (z) Is
less negatlve than that of H(el®).

Remark: To ensure the minimum phase-lag property, (in addition to the
pole and zero locations), we require that H(el“) > 0, at @ = 0,

l.e. HE=Xhm>0. This is because h[n] and —-h[n] both have the same
magnitude’but the phase will be different by a factor of zradians. So to
remove the ambiguity, we must impose this condition

' EEEC20034: Intro. to Digital Signal
9 ' Processing 43
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‘ Properties ot Min. Phase Systems

= Minimum group-delay property

grd [H (ej“’)]: grd [Hmin (ej“’)]+9rd [Hap(ej“’)] O<w<rz

>0

— grd [Hmin (ej“’)] < grd [H (ejw)]

E[sp EEEC20034: Intro. to Digital Signal
Z Processing
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Properties ot Min. Phase Systems

Minimum energy-delay property

o The partial energy of a minimum-phase system is most
concentrated around n = 0, I.e. the energy of a
minimum-phase system is delayed the least of all
systems having the same magnitude response function.
See Fig. 5.32a. Define partial energy (of impulse
response) to be  Efnl= > ot

Then the minimum-phase system H_.:-(z) has the largest
E[n] among all possible H(z). That is, it accumulates
more energy up to n.

' EEEC20034: Intro. to Digital Signal
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Min. phase Max. phase 3.39 h[n]
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5 2 a0 1 2 31 4 3 & =
I : [ \ {a)
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a order order '
pole o pole 219 28 MaX. phase
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o 2 a1 0 1 2 3 4 5 & n
I \ | <)
l Fourth- | e \ Fourth- | e
o 01'd]er order 150 haln]
Ol
P o] o 2.58 251
° BE Lo 1.26
Figure 5.30 Four systems, all having T I
the same frequency-response
magnitude. Zeros are at all combinations SR L A L
of 0.0e*/5~ and 0.8¢=/%~ and their ()
reciprocals. Figure 5.31  Sequances corresponding
to the pole—zero plots of Figura 5.30.
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=i
I 20—
= m— 1] (minimum phase)
=
[ N T 2 L E ] (maximum phase)
e
. —-— E[n]
== Eyln]
7
i | | | | |
0 1 2 3 4 5 n

Figure 5.32 Partial energies for the four sequences of Figure 5.31. (Note that
£ ;[n] is for the minimum-phase sequence h;[n] and Ex[n] is for the maximum-
phase sequence hy[n].)
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Linear Phase Systems

e Zero phase systems are not realizable for real-time systems
e h[n]=h[-n], forneZ = H/(e") s real and even
e Ideal delay systems: H,,(e'*)=e" < h,[n]=6[n-a]
- [Ha(e”)
ZH, (€)= -oa
grd [Hid (ej‘”)} —a
e Linear phase: H(e"“’)z‘H(ej‘“)

{ H(e”)

ZH(e")=-wa, a: canbe non-integer

=1

J\

g Joo. |a)| <7

=any

EEEC20034: Intro. to Digital Signal
F  Processing
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Example

The impulse response of a causal lowpass filter symmetric about n=n, Is
sine, (n—ny )
h, [n] -
z(n—ny)
A zero-phase LPF (i.e. ideal LPF) can be defined as

N

H,(e")=H, (e )e"™ :‘ng(e"”)
where the impulse response is shifted left by n,. Therefore,

the causal LPF does not have zero phase (phase = —wn,)

Hm(e"“’):‘HgID (ej”’)

e_ ja)nd

' EEEC20034: Intro. to Digital Signal
9 ' Processing
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Linear Phase Systems and Its Relationship to the Impulse
Response

E.g. Symmetry on h[n] in the ideal delay system:

0, otherwise,

sin[o,(n-a)]

1L e P

Let Hlp (eiw):{ej‘”“x |CU|<C!)c

1. a =integer
h,[n] is an even function (h[2a—n]=h[n])

2. a =integer + %

h,[n] is an even function (h[2c—n]=h[n])
3. Otherwise,

h, [n] has no symmetry

a = point of symmetry

e For case 2 and 3, even though the delay is not an integer, but we can interpret the output using the idea

of continuous time processing of discrete-time signals, i.e. the continuous-time filter, h, (t), is equal to

h.(t)=5(t—aT) or H (jQ)=e"'%"". So that the frequency response of the effective (discrete-time)

system is Hq () =€, |o|< 7

e From case 1 and 2, they suggest that symmetry (in these two cases, even symmetry) is sufficient to

guarantee linear phase

EEEC20034: Intro. to Digital Signal
Processing
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Linear Phase Systems and Its Relationship to the

Impulse Response
Observations A ,{‘ HT .
o Incase 1 and 2, the signal is ‘U | U" )
symmetric, i.e. h[2a-n] = h[n]. " e )
o Incase 1, since a=5 is an integer, |
we can shift the impulse response

to the left by « to obtain a signal
that has zero-phase. This is not
true for case 2 since = 4.5 is not

Amplitud
o
(=]
I

\
\
—H
ks

~4o_
—““..,_\\
.Y
J

s
e
)

an integer o

o The symmetric property in cases 1 |
and 2 is only sufficient, and not
necessary, to obtain linear phase. el
This is so because the impulse g oap W H
response in Figure 5.35¢ also has R e S NHEL® R
linear phase but it is not l L
symmetric (the group delay is a " e ‘
constant = 4.3) 5, ik e S i, o, = 04
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Generalized Linear Phase

H(e")=A(e!)-e" ", a,p: real constants

A(e') is called the amplitude response. It is real.

Special case: =0 — linear phase
(Group delay: (@) = grd| H(e!") | =«
Phase: arg[H(ej“’)]:,B—aa), O<w<rx

2

Essentially, this system has a constant group delay

EEEC20034: Intro. to Digital Signal
F  Processing
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Symmetry Property of Generalized Linear
Phase Systems

We can observe the symmetry by decomposing H (ej“’) as follows:
H (ejw): A(ejw)ej(ﬂ—aw)
= A(e")cos(B-aw)+ jA(e" )sin(B-aw)
H (e!”) is also equal to:

(e”") :Zh[ne""n Zh[ COS N — J:Zh[n Jsinwn

N=-—c0

Since tangent of phase = Im{e} / Re{e}, and using the two equations above (assuming that
h[n] is real), we have

sin( - ao) Zh[ ]sin &n

N=—o0

) s 5a0) S praleasen

Note that A(e'”) has disappeared.

EEEC20034: Intro. to Digital Signal
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Symmetry Property of Generalized Linear
Phase Systems

Cross-multiplying the above, we have

sin( 8 —aw) i h[n]coswn =—-cos(B-aw) i h[n]sinwn

N=—o0 N=—o0

= i h[n]{cos @nsin (B —aw)+sinencos(B—aw)}=0

N=—o0

= 3 h[n]sin[o(n-a)+#]=0, Yo, eqn. (*)

n=—0

This is a necessary condition on h [n] a, and g for the system to have constant group delay.
However, there are many solutions that satisfy eqn.(*).

EEEC20034: Intro. to Digital Signal
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Solution 1

h[n]sin[ @(n—-a)+B]=0, Vo,

p=0orr
20 =M = integer
h[2 —n]=h[n]  (even symmetry)

M is the order of
the filter

To see if this is really a solution to (*), we plug it into (*). Let #=0. We get:
i h[n]sin w(n—%)

N=—o0

M

:h{%}sinw(%—%} ;Oh n]sma)(n——j+ Z;: h[n sma)(n—%j

n=

(From the 2™ term, let p =M —n)

= {%}sinw(%—%) z h[p]smw(M p— %)+ni h[n]sina)(n—%j

=M+1

= h{%}sin w(%—%)+ glh[n]{sin a)(n—%jmin a)(M —n—%ﬂ

+

_ Z;: h[n][sin w(n—%)+sinw(%—nﬂ

n=—-+1
2

=0 (matches with result: i h[n]sin[ @(n-a)+B]=0)

Note: We only require that h [n] satisfies a symmetric property. There is no constraint on

the numerical values of h[n]. Remark: It will be shown later that A(ej“’) is even (and real).

EEEC20034: Intro. to Digital Signal
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Solution 2

B =r/2o0r 37/2

2
2a =M = integer ; sin{w(n—%}r%}:cmw(n—%j

h[2a —n]=-h[n]  (odd symmetry) (implies the point of symmetry = Q)

=i’:oh[n]sin[a)(n—oc)+,8] =0,

To see if this is really a solution to (*), we plug it into (*). Let g = /2. We get:

i h[n]cos w(n —%j

N=-—o0

-1

_ 22 h[n]cosa)(n—%}r i h[n]cosa)(n—%j

N=—o0

— i h[p]cosw(M - p—%}t i h[n]cosw(n—%} (From the 1 term, letp=M —n)

pz%ﬂ n=

g o2l

<

n=—-+1

=0 (matches with result: i h[n]sin[ @(n-a)+ B ]=0)

Remark: It will be shown later that A(e’) is odd (and real).

There are other possible solutions, for example, fractional delay.

EEEC20034: Intro. to Digital Signal
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FIR Systems With Generalized Linear
Phase: Even Symmetry

e Previously, we've shown that (even) symmetry in h[n] Is sufficient for the system to have
generalized linear phase
o |f a generalized linear-phase system is also causal, then (*) becomes

S hinJsin(@n-wa + B) =0, Va

Under this causal condition and the even symmetry condition, i.e. h[2a —n]=h[n],
h[n]=0, n<0andn>M.
This implies that h[n] is an FIR filter.

More precisely, if the filter length is M +1, and

h[n]:{h[M —n], 0<n<M,

_ (symmetric w.r.t. M / 2)
0, otherwise

then, H (e'”) = A (e )e ™%, where A, (e”) is real and even

EEEC20034: Intro. to Digital Signal
F  Processing
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FIR Systems With Generalized Linear
Phase: Odd Symmetry

I

(anti-symmetric w.r.t. M / 2)

_h[M =n]. 0<n<M,
=4 M -0l O<n<l
0, otherwise

then, H (&) = jA, (e')e ™" = A, (e}*)e M/ )'2 "where A, (e*”) is real and odd

Remark : Nearly all linear phase filters are FIR filters. There are special types of IIR filters
that have linear phase, but they cannot be implemented by difference equations. The above

two cases are the most common ones

EEEC20034: Intro. to Digital Signal
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Four Types of Linear Phase FIR Filters

Type-I.

Type-II.

Type-Ill.

Type-IV.

h[n]=h[M —n]
M :
M even (or > an integer)
h[n] =h[M —n]
M odd (or % a half integer)

h[n]=—-h[M —n]
M even
h[n]=—-h[M —n]
M odd

EEEC20034: Intro. to Digital Signal
Processing
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Type-1 Linear Phase FIR Filter

We can show Type-I FIR's have linear-phase by checking its Fourier Transform.

H (€)= Zh[ Jei

M /2-1 . _ M .
= h[n]e““’”+h[M/2]e"“’M’2+ Z h[n]e "
Mn/:20—1 12+1

= > h[n]e +h[M/2]e" jomiz

0

h[M—k]e™™™*  (letn=M -k = k=M —n)

~ ~
éM'l\) §

>
Il

M /2-1 M/2-1 _
= > h[n]e +h[M/2]e ™+ 3" h[k]e ™™™ (for Type-Ifilter: h[k]=h[M —k])
Mn/:20—l ) ) ~ )
= h[n](e““’n +e““’(“"‘”))+h[M [2]e7 M2
n=0
M /2-

h[n]e 2 (ejwne 2 _|_eja)ne 2 J‘Fh[M/Z]erM/z

o

n=

_ {Mﬁlzh[n]co{w(n_%ﬂm[m /2]}

n=0

EEEC20034: Intro. to Digital Signal
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Type-1 Linear Phase FIR Filter
Letk=—(n—%) = n=—k+%. Thenn=0=k =

2
M /2 hl:%}, k =0,
H (ej“’) =e %" a[k]cos(wk), wherea[k]=:
k=0

2h[n], k=1 %

n[n] .
M=4 k=0:>n:7:2,

® TITT k=l>n=-1+—=1

0 4 gl

NIRRT k=M:>n:O

I X X 2

4

The first term e19M?2 gives a phase of -wM/2 to H(el®). Since h[n] is real, the second term in the product
above contribute a phase of 0 or 7 (in case h[n] is negative) to H(e!®). So the overall phase of H(el®) is

-oM/2 or -oM/2 + 7.
The phase of H(el®) is linear by definition of linear phase -ja+ /3, where
a=M/2, p=0orr

EEEC20034: Intro. to Digital Signal
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Type-1I Linear Phase FIR Filter

We can show Type-Il FIR's have linear-phase by checking its Fourier Transform.

n=0
(M-1)/2 . M
= > h[n]e?+ > h[n]e
n=0 n=(M+1)/2
(M-1)/2 . (M-1)/2 _
= > h[nle? + > h[M-k]e™™  (letn=M -k = k=M —n)
n=0 k=0
(M-1)/2 . (M-1)/2
= Y h[nle ™+ > hlk]e M (for Type-Il filter: h[k]=h[M —k])
n=0 k=0
(M-1)/2 (M)
= h[n|(e™ " +e ™™
> hlnl( )

2

EEEC20034: Intro. to Digital Signal
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Type-1I Linear Phase FIR Filter

Letk:M—n—l = nzb—k, n:O:k:M, n:M:k:O
2 2 2 2

_ . (M—l)/Z B . 7] B
H(e“"):e‘“"“’”2 > 2h M-1 ylcos| wf k-2
= 2 | i 2
_ M-1/2  [ag _ . B
=g 1M/ Z 2h M—k cos| w k+1j
o 2 ] i 2

The first term e12M2 gives a phase of -@M/2 to H(el#). Since h[n] is real, the second term in the product above
contributes a phase of 0 or zto H(el#). So the overall phase of H(el®) is

-oM/2 or -aM/2 + 1.

The phase of H(el®) is linear by definition of linear-phase -ja+ 3, where
a=M/2, p=0or r.
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Type-111 Linear Phase FIR Filter

For Type-Ill FIR linear-phase systems, note that at n = M/2,
h[M/2] = -h[M-(M/2)] = -h[M/2],
so h[M/2] = 0.

We can show Type-Ill FIR's have linear-phase by checking its Fourier Transform.

H(e)= Zh[n]e jen

M /2-1 M _
= > h[n]e" +h[M /2]e ™2+ > h[n]e "
n=0 n=M/2+1
M/2-1 M/2-1 for Type-Ill filter: h[M /2] =0.
= Y h[nle?™ + 3 h[M —k]e M
Z [n] Z [Letn_M k = k= M—n)
M/2-1 M/2-1
=Y h[n]e " - Z h[k]e ™ (for Type-Ill filter: h[k]=—h[M —k])
n=0
M/2-1 _ _ _ M
_ h_n_(e—la)n_e—Ja)(M—n)):e—jwM/Z( J) Z 2h[n]sm{a)(n—7ﬂ

n=0 n=0

EEEC20034: Intro. to Digital Signal
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Type-111 Linear Phase FIR Filter

Letk:M—n = n:M—k, n:O:k:M, n:M—1:>k:1
2 2 2 2

M2 [ ] B
H(ej“’):e‘j”'\"’z(—j)k_lzh %—k sin a)(%—k—%ﬂ
_ M/2 _M ) i
=e M2(=j) > 2h| ——k |sin| & (k)]
o L2 _ B
—joM 2 < M .
= JkZ_;Zh[?—k}sm(a)k)

The first term je M2 gives a phase of -@M/2+7/2 to H(el®). Since h[n] is real, the second term in the product
above contribute a phase of 0 or zto H(el%). So the overall phase of H(el?) is

-oMI2 +2 or  -@M/2 + 372,
The phase of H(el®) is linear by definition of linear-phase -ja+ 3, where
a=M/2 , p= a2 or 342.
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Type-1V Linear Phase FIR Filter

We can show Type-1V FIR's have linear-phase by checking its Fourier Transform.

H (e) = Zh[n]e jon

n=0
(M-1)/2 _ M _
= > h[n]e?+ > h[n]e’"
n=0 n=(M+1)/2
(M-1)/2 M-1)/2

h[M-k]e ™™™ (letn=M -k = k=M -n)

[

Il
>
M
o
o
>
| I
D
B
=]
+
z—M
Il
o

<
|
[REN
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N
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N

h[k]e ™™™ (for Type-IV filter:h[k]=—-h[M —k])

I
>
g
o
>
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>
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Type-1V Linear Phase FIR Filter

Letk:M—n—1 = nzb—k, n:0:>k:M_1, n:M:k:O
2 2 2 2 2

_ _ (M-1)/2 B . B B .
H(el)=e M2 (=) 3 2h M=Ly sin a)(u—k—mﬂ

k=0 2 | 2 2
| (M-1)/2  [pp - T
=e_JwM/2(—j) 2h M—k sin a)(—k—lj
‘oo 2 ] 2

| (M-1)/2 B ]
=g oMz Zh[u—k}sin a)(k+1j
=0 2 2

The first term je M2 gives a phase of -@M/2+7/2 to H(el®). Since h[n] is real, the second term in the product
above contribute a phase of 0 or zto H(el%). So the overall phase of H(el?) is

-oMI2 +2 or  -@M/2 + 372,
The phase of H(el®) is linear by definition of linear-phase -ja+ 3, where

a=M/2 , p= a2 or 342.
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Type-1 Example

1 0<n<4,
h[n]= _ (M
0 otherwise

. (5w
sin| —

= H (e )=ge%
( ) sin;)

4)
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Figure 5.37 Frequency response of type | system of Example 5.17. (a) Magnitude.

(b) Phase. (c) Group delay.
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Type-IT Example

<n<
h[n]= Lo 0=nss s
0 otherwise
.5 .
= H(e®)=e i sin (3m)
. [0
sin| —
2

6.0

Amplitude
=
I

th ol
3

T
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Radian frequency (w)
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Radians
|
Fa =
/

T
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Figure 5.38
(a) Magnitude
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Radian frequency (a)

(<)

Frequency response of type Il system of Example 5.18.
. (b) Phase. (c) Group delay.
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Figure 5.39  Frequency response of type lll system of Example 5.19. (a) Magni-
tude. (b) Phase. (c) Group delay.
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Type-1V Example

h[n]=6[n]-6[n-1]
= H(e*)=1-e"

=j Zsin% e 2

(M =1)

Amplitude
(=0
T

08—

raly |~

T

Radian frequency (w)

{a)
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Radian frequency (w)
(b)

ol

Samples
5
l

0.5

[Tk -

T

Radian frequency (w)
(c)

rall_'i‘ -

Figure 5.40 Frequency response of type IV system of
(a) Magnitude. (b) Phase. (c) Group delay.

Example 5.20.
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Z.eros of Linear Phase FIR Systems

Causal, stable, FIR systems > no nonzero poles
Zeros are conjugate pairs (because h[n] is real)

Zeros are reciprocal pairs (z,, z,2)
o Proof (Type-I and Il systems)

H(z)=Y h[n]-z" =Y h[M —n]-2"

= Zol hik]-zz™ (k=M —n)
=z"H(z%)
If z, is a zero, i.e. H(zy) = 0, then z;MH(z,1) = 0. That s, its
reciprocal is a zero too
o Proof (Type Ill and 1V systems)
H(z)=-z" H(z‘l)
If z, Is a zero, so is its reciprocal

= EEEC20034: Intro. to Digital Signal
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Z.eros of Linear Phase FIR Systems

Type-11 (symmetry, odd order) = zeroatz =-1
Type-111 (anti-symmetry, even order) > zeroatz =1 and -1
Type-1V (anti-symmetry, odd order) > zerosatz=1
o Proof (Type-1 and Il systems)
H(z)=z"H (z’l)

-M

Letz=-1, then H (-1)=(-1) " H(-1)

For M even (Type-1), the equality is satisfied

For M odd (Type-1I), H (—1) must be 0 for the equality to be satisfied
o Proof (Type Il and 1V systems)

H(z)=-z""H (z‘l)

Letz=1, thenH (1)=—H (1)

= H (1) must be 0 for the equality to be satisfied

Letz=-1 then H (-1)=—(-1)" H(-2)

= For M odd (Type-1V), the equality is satisfied

= For M even (Type-Ill), H (—1) must be 0 for the equality to be satisfied

These constraints on the zeros are useful in designing linear phase FIR systems. For example, for
highpass systems, M cannot be odd (zero should not be at z = -1)
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N=Min__

notes

TABLE 2.4.1 Four types of real coefficient linear phase FIR filters.
N

Here H(z) = Y h(n)z™", with h(n) real
n=0

Type 1 2 3 4
Symmetry h(n) = h(N =n) | h(n)=hN —=n) | h(n) = —h(N —n) | h(n) = —=h(N - n)
|y Parity of N N even N odd N even N odd

Expression for
frequency
resporse

H(e™)

e~ d“NI2 [ p(w)

e d“NI2 Hp(w)

je I9NI2 H p(w)

je~ 3N/ H p(w)

Amplitude response

or zero-phase

M=

b, cos(wn)

b~
Il
o

M
cos & 3 bpcos(wn)

n=0

M
sin w Y b,cos(wn)

n=0

M
sing 37 bpcos(wn)
n=0

response M =N/2 M=(N-1)/2 M=(N-2)/2 M=(N-1)/2
Hp(w)
Special features Zeroatw=7 |Zeroatw=0andw| Zeroatw=20
Can be used for Any type of Any bandpass Differentiators and Differentiators,
bandpass response| response except and Hilbert Hilbert
(LPF, HPF, etc.) Highpass transformers! transformers,

and high pass filters
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Factorization of Linear Phase Systems

Any linear phase FIR systems can be expressed as
H(z)=H,,(2) He(2) Huu(2)

- NS e N
linear min. unit max.
phase phase circle phase

Because zeros are reciprocals, H,.,, (z)=2""H_, (z*), where M, is the number of

zeros of H ;. (z) (outside the unit circle). H, (z) has M, number of zeros. H . (z) has
M. number of zeros outside the unit circle
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Factorization Example

Given:

H o (2) = (1.25)° (1 0.967°%72 ) (1—0.9e 1672 )(1— 0.8¢1°% 7 *)(1-0.8¢ 1°%"7 )
Then

H o (2) = (0.9)%(1-1.1111e"27)(1-1.1111e /%77 *)(1-1.25¢'°%" 2 *)(1-1.25e ***2 )
Then

H(z)=H,, (z)H,(z) has linear phase

= 20109y, |H (e')| = 2010g,|H 1y, (€'*)| + 2010g,4|H 1, (€*)| = 4010g, [H,y;, (')
= ZHE™)=sH_ ('")+£H__ (")=ZH_ (") +(~oM, - ZH . (e'*)) = —oM,

min max min min
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